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Estimating diffusion tensors is an essential step in many applications — such as diffusion tensor image (DTI)
registration, segmentation and fiber tractography. Most of the methods proposed in the literature for this
task are not simultaneously statistically robust and feature preserving techniques. In this paper, we propose
a novel and robust variational framework for simultaneous smoothing and estimation of diffusion tensors
from diffusion MRI. Our variational principle makes use of a recently introduced total Kullback–Leibler
(tKL) divergence for DTI regularization. tKL is a statistically robust dissimilarity measure for diffusion tensors,
and regularization by using tKL ensures the symmetric positive definiteness of tensors automatically. Further,
the regularization is weighted by a non-local factor adapted from the conventional non-local means filters.
Finally, for the data fidelity, we use the nonlinear least-squares term derived from the Stejskal–Tanner
model. We present experimental results depicting the positive performance of our method in comparison
to competing methods on synthetic and real data examples.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Diffusion weighted magnetic resonance imaging (MRI) is a very
popular imaging technique that has been widely applied (Jones,
2010) in recent times. It uses diffusion sensitizing gradients to
non-invasively capture the anisotropic properties of the tissue being
imaged. Diffusion tensor imaging (DTI) approximates the diffusivity
function by a symmetric positive definite tensor of order two
(Basser et al., 1994). DTI is an MRI modality that provides information
about the movement of water molecules in a tissue. DTI describes the
diffusion direction of water molecules in the brain which is associated
with the direction of fiber tracts in the white matter. When this
movement is hindered by membranes and macromolecules, water
diffusion becomes anisotropic. Therefore, in highly structured tissues
such as nerve fibers, this anisotropy can be used to characterize the
local structure of the tissue. Consequently, many applications are
based on the estimated diffusion tensor fields, such as registration
(Gur and Sochen, 2007; Jia et al., 2011; Wang et al., 2011; Yang
et al., 2008; Yeo et al., 2009), segmentation (Descoteaux et al.,
2008; Goh and Vidal, 2008; Hasan et al., 2007; Lenglet et al., 2006;
Liu et al., 2007; Motwani et al., 2010; Savadjiev et al., 2008; Vemuri
et al., 2011; Wang and Vemuri, 2005), atlas construction (Assemlal
et al., 2011; Barmpoutis and Vemuri, 2009; Mori et al., 2008; Xie
et al., 2010), anatomy modeling (Faugeras et al., 2004), fiber tract
related applications (Burgela et al., 2006; Durrleman et al., 2011;
rights reserved.
Lenglet et al., 2009; Mori and van Zijl, 2002; Savadjiev et al.,
2008; Wang et al., 2010, 2012; Zhu et al., 2011) and so on. All of
these latter tasks will benefit from the estimation of smooth diffusion
tensors.

Estimating the diffusion tensors (DTs) from DWI is a challenging
problem, since the DWI data are invariably affected by noise during
its acquisition process (Poupon et al., 2008b; Tang et al., 2009;
Tristan-Vega and Aja-Fernandez, 2010). Therefore, a robust DTI
estimation method which is able to perform a feature preserving
denoising is desired. For most of the existing methods, the DTs are es-
timated by using the raw diffusion weighted echo intensity image
(DWI). At each voxel of the 3D image lattice, the diffusion signal
intensity S is related with its diffusion tensor D∈SPD(3)1 via the
Stejskal–Tanner equation (Stejskal and Tanner, 1965)

S ¼ S0 exp −bgTDg
� �

; ð1Þ

where S0 is the signal intensity without diffusion, b is the b-value and
g is the direction of the diffusion sensitizing gradient.

There are various methods (Barmpoutis et al., 2009a; Batchelor
et al., 2005; Chang et al., 2005; Chefd'hotel et al., 2004; Fillard et al.,
2007; Hamarneh and Hradsky, 2007; Mangin et al., 2002; Mishra
et al., 2006; Niethammer et al., 2006; Pennec et al., 2006; Poupon
et al., 2008b; Salvador et al., 2005; Tang et al., 2009; Tristan-Vega
1 SPD(3) represents the space of 3×3 symmetric positive definite matrices.
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2 Usually, the noisier the image, the larger will α and β be, and vice-versa. The noise
in the images can be estimated by using any of the popular methods described in Aja-
Fernandez et al. (2009) and Tristan-Vega and Aja-Fernandez (2010).
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and Aja-Fernandez, 2010; Tschumperle and Deriche, 2003, 2005;
Vemuri et al., 2001; Wang et al., 2003, 2004) in existing literature,
to estimate D from S. A very early one is a direct tensor estimation
(Westin et al., 2002), which gives an explicit solution for D and S0.
Though time efficient, it is sensitive to noise because only 7 gradient
directions are used to estimate D and S0. Another method is the min-
imum recovery error (MRE) estimation or least squares fitting (Basser
et al., 1994) whichminimizes the error when recovering the DTs from
the DWI. MRE is better than direct estimation because it uses more
gradient directions, which increase its reliability. However, it does not
smoothen the DWI or the DTI, and thus it is subject to noise in the
input data.

With this in mind, many denoising frameworks (Gilboa et al.,
2004; Spira et al., 2007) have been proposed to improve the signal
to noise ratio (SNR). Some methods perform denoising on the DWI
and then estimate the DTI. Typical approaches to DWI denoising are
designed according to the statistical properties of the noise. Most of
these approaches assume that the noise follows the Rician distribu-
tion (Descoteaux et al., 2008; Koay and Basser, 2006; Landman et
al., 2007; Piurica et al., 2003), and when denoising, they use the
second order moment of the Rician noise (McGibney and Smith,
1993), maximum likelihood (ML) (Sijbers and den Dekker, 2004)
and expectation maximization (EM) approaches (DeVore et al.,
2000; Marzetta, 1995), wavelets (Nowak, 1999), anisotropic Wiener
filtering (Martin-Fernandez et al., 2007), total variation schemes
(McGraw et al., 2004), Markov random fields (Zhang et al., 2001),
nonparametric neighborhood statistics techniques like non-local
means (NLM) (Awate and Whitaker, 2005; Coupe et al., 2008) and un-
biasedNLM(Manjon et al., 2008;Wiest-Daessle et al., 2008) algorithms,
Perona–Malik-like smoothing (Basu et al., 2006) or the linearminimum
mean square error (LMMSE) scheme (Aja-Fernandez et al., 2008).

Alternatively, some methods first estimate the diffusion tensors
from the raw DWI and then perform denoising on the tensor field
(Moraga et al., 2007). One representative method is by using the
NLM framework incorporating a log-Euclidean metric (Fillard et al.,
2005). The drawback of such two-stage processes is that the errors
might be accumulated from one stage to the other.

Bearing these deficiencies in mind, researchers developed a varia-
tional framework (VF) based estimation (Chefd'hotel et al., 2004;
Tschumperle and Deriche, 2003; Wang et al., 2003, 2004). These ap-
proaches take into account the SPD (symmetric positive definite)
constraint on the diffusion tensors. The smoothing in all these
approaches involves some kind of weighted averaging over neighbor-
hoods which define the smoothing operators resulting from the vari-
ational principles. Some of these smoothing operators are locally
defined and do not capture global geometric structure present in
the image. Moreover, they are not statistically robust.

To overcome the aforementioned drawbacks, we propose a novel
statistically robust variational non-local approach for simultaneous
smoothing and tensor estimation from the raw DWI data. This
approach combines the variational framework, non-local means and a
statistically robust regularizer on the tensor field. The main contribu-
tions of this approach are three-fold. First, we use a statistically robust
divergence measure total Bregman divergence to regularize the
smoothness measure on the tensor field. Combined with the Cholesky
decomposition of the diffusion tensors, this automatically ensures the
positive definiteness of the estimated diffusion tensors, which over-
comes the common problem for many techniques that manually force
the tensor to be positive definite or resort to accuracy of finite precision
arithmetic leading to the equivalence between testings for positive def-
initeness and positive semidefiniteness as in Wang et al. (2003, 2004).
Second, it uses an adaptation of the NLM to find the weight for the
smoothness regularization terms. This preserves the global structure
of the tensor field while denoising. Finally, it achieves simultaneous
denoising and DTI estimation, which is able to avoid the error propaga-
tion of a two stage approach described earlier. Besides, this method can
be easily extended to a higher order tensor estimation. We will explain
these points at length in the rest of the paper.

The rest of the paper is organized as follows. In the Proposedmethod
section, we introduce our proposed method, followed by the empirical
validation in the Experiments section. Finally we conclude.

Proposed method

Our proposed integrated variational non-local approach has three
components, minimizing the data fidelity error, smoothing over S0
and the tensor field. The proposed model is given by the following
equation:

min
S0 ;D∈SPD

E S0;Dð Þ

¼ 1−α−βð Þ∫Ω

Xn
i¼1

Si−S0 exp −bgTi Dgi
� �� �2

dx

þα∫Ω ∫V xð Þ w1 x; yð Þ S0−S0 yð Þð Þ2dydx
þβ∫Ω ∫V xð Þ w2 x; yð Þδ D;D yð Þð Þdydx;

ð2Þ

where Ω is the domain of the image, n is the number of diffusion gra-
dients, V xð Þ is the search window at voxel x, and δ(D, D(y)) is the
total Kullback–Leibler (tKL) divergence (Vemuri et al., 2011) between
tensors D and D(y) which will be explained in detail later. The first
term captures the non-linear data fitting error, the second and third
terms are smoothness constraints on S0 and D. α and β are constants
balancing the fitting error and the smoothness.2 w1(x,y) and w2(x,y)
are the regularization weights for S0 and D. Since S0 and S are linearly
related, while D and S are “logarithmically” related, so we use differ-
ent methods to calculatew1(x,y) andw2(x,y). Note, Si, S0 and D by de-
fault represent the values at voxel x, unless specified otherwise.

The discrete case of Eq. (2) is

min
S0;D∈SPD

E S0;Dð Þ

¼ 1−α−βð Þ∑
x∈Ω

Xn
i¼1

Si−S0 exp −bgTi Dgi
� �� �2

þα∑
x∈Ω

∑
y∈V xð Þ

w1 x; yð Þ S0−S0 yð Þð Þ2

þβ∑
x∈Ω

∑
y∈V xð Þ

w2 x; yð Þδ D;D yð Þð Þ:

ð3Þ

Since most of the time, DTI estimation problems are in the discrete
case, we will focus on the discrete case in this work.

Computation of the weights w1(x,y) and w2(x,y)

w1(x,y) and w2(x,y) are the regularization weights of the smooth-
ness terms. If w1(x,y) is large, it requires S0 and S0(y) to be similar.
Similarly, if w2(x,y) is large, it requires D and D(y) to be similar. Usu-
ally, one requires S0's and D's to be respectively similar only if the cor-
responding diffusion signals are similar. We will computew1(x,y) and
w2(x,y) according to the statistical properties of the diffusion weight-
ed signals. It has been recognized that the diffusion signal S follows
the Rician distribution (Descoteaux et al., 2008; Koay and Basser,
2006; Piurica et al., 2003), i.e.,

p S �; S ;σ2
� �

¼ S
σ2 exp − S2 þ �S2

2σ2

 !
I0

S�S
σ2

� �
; ð4Þ



3 An n×n matrix A∈SL(n) implies det(A)=1.
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where �S is the signal without noise, σ is the variance of the Rician
noise. Since S0 is linearly related with S and D is “logarithmically” re-
lated with S, we set the regularization weights for S0 and D to be

w1 x; yð Þ ¼ 1
Z1 xð Þ exp

− S N xð Þð Þ−S N yð Þð Þk k2
hσ2

 !
; ð5Þ

w2 x; yð Þ ¼ 1
Z2 xð Þ exp

− logS N xð Þð Þ− logS N yð Þð Þk k2
hσ2

 !
; ð6Þ

where Z1 and Z2 are normalizers, h is the filtering parameter (Coupe
et al., 2006), and σ is the standard variation of the noise, which is
estimated by using the first mode of the background (Aja-Fernandez
et al., 2009; Tristan-Vega and Aja-Fernandez, 2010). N xð Þ and N yð Þ
denote the neighborhoods of x and y respectively. The neighborhood
of x can be viewed as the voxels around x or a square centered at x
with a user defined radius. Furthermore,

S N xð Þð Þ−S N yð Þð Þk k2 ¼
Xm
j

S μ j

� �
−S νj

� �2��� ���; and

logS N xð Þð Þ− logS N yð Þð Þk k2 ¼
Xm
j

logS μ j

� �
− logS νj

� ���� ���2;
where μj and νj are the jth voxels in the neighborhoodsN xð Þ andN yð Þ
respectively, and m is the number of voxels in each neighborhood.

From Eq. (5), we can see that if the signal intensities for two
voxels are similar, w1(x,y) and w2(x,y) are large. Consequently
according to Eq. (3), S0 and S0(y), D and D(y) should be similar
respectively.

NLM is known for its high accuracy and high computational com-
plexity. To address the computational load problem, we use two
methods. One is to decrease the number of computations performed
by selecting voxels in the search window, and the other is to make
use of parallel computing. Concretely, we will prefilter the voxels in
the search windowwhich are not similar to the voxel under consider-
ation if their diffusion weighted signal intensities are not similar. This
is specified as

w1 x; yð Þ ¼

1
Z1 xð Þ exp

− S N xð Þð Þ−S N yð Þð Þk k2
hσ2

 !
;

if
S N xð Þð Þk k2
S N yð Þð Þk k2 ∈ τ1; τ2½ �

0; Otherwise

:

8>>>>>><
>>>>>>:

w2 x; yð Þ ¼

1
Z2 xð Þ exp

− logS N xð Þð Þ− logS N yð Þð Þk k2
hσ2

 !
;

if
S N xð Þð Þk k2
S N yð Þð Þk k2 ∈ τ1; τ2½ �

0; Otherwise

:

8>>>>>><
>>>>>>:

τ1 and τ2 are the thresholds for prefiltering.We set τ1=0.1 and τ2=10
in our experiments.

In the context of parallel computing, we divide the computations
into smaller parts and assign the computations to several processors.
Since the smaller parts for NLM are not correlated, thus it can improve
the efficiency a lot by using parallel computing. In our case, we divide
the volumes into 8 subvolumes, and assign each subvolume to one pro-
cessor, and a desktop with 8 processors is used. This multi-threading
technique greatly enhances the efficiency.

Computation of the tKL divergence

tKL divergence is a special case of the recently proposed total
Breman divergence (tBD) (Liu et al., 2010; Vemuri et al., 2011). This
divergence measure is based on the orthogonal distance between
the convex generating function of the divergence and its tangent
approximation at the second argument of the divergence. The total
Bregman divergence δf associated with a real valued strictly convex
and differentiable function f defined on a convex set X between points
x, y∈X is defined as,

δf x; yð Þ ¼ f xð Þ−f yð Þ− x−y;∇f yð Þh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∇f yð Þk k2

q ; ð7Þ

where 〈⋅, ⋅〉 is the inner product, and ‖∇ f(y)‖2=〈∇ f(y), ∇f(y)〉 gen-
erally. tBD has been proven to have the property of being intrinsically
robust to noise and outliers. Furthermore, it yields a closed form for-
mula for computing the median (an ‘1-norm average) for a set of
symmetric positive definite tensors. When f(x)=− log x and X is
the set of probability density functions (pdf), Eq. (7) becomes the
tKL divergence, which is

δf x; yð Þ ¼ ∫x logx
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∫y 1þ logyð Þ2
q : ð8Þ

Motivated by an earlier use of the tKL divergence as a dissimilarity
measure between DTs for DTI segmentation (Vemuri et al., 2011), we
use tKL to measure the dissimilarity between tensors and apply it in
the DTI regularization. It has been shown that the tKL divergence
(Vemuri et al., 2011) based ‘1-norm average, termed by the t-center,
is invariant to special linear group transformations (denoted by
SL(n)).3 This is detailed in the following.

Since order-2 SPD tensors can be seen as covariance matrices of
zero mean Gaussian pdf (Wang et al., 2004). Let P, Q∈SPD(l), then
their corresponding pdf are

p t;Pð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞldetP

q exp − tTP−1t
2

 !
;

q t;Qð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞldetQ

q exp − tTQ−1t
2

 !
;

and the tKL between them is explicitly given by,

δ P;Qð Þ ¼ ∫p logpqdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∫ 1þ logqð Þ2qdt

q

¼
log det P−1Q

� �� �
þ tr Q−1P

� �
−l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ log detQð Þð Þ2

4 −c2 log detQð Þ
q ;

where c1 ¼ 3l
4 þ l2 log2π

2 þ l log2πð Þ2
4 and c2 ¼ l 1þlog2πð Þ

2 .
Moreover, the partial minimization of the third term in Eq. (3)

min
D

∑
y∈V xð Þ

δ D;D yð Þð Þ

leads to the t-center for the set of D(y). The t-center has been well
studied in Vemuri et al. (2011). Given a set of tensors {Qi}, the
t-center P∗ minimizes the ‘1-norm divergence to all the tensors, i.e.,

P� ¼ arg min
P

∑
i
δ P;Q ið Þ; ð9Þ



Fig. 1. (a) Ground truth synthetic DTI field, (b) the original DWI corresponding to g1,
(c) the Rician noise affected DWI, the DTI estimation by using (d) MRE, (e) VF,
(f) LMMSE, (g) NLM, and (h) the proposed technique.
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and P∗ is explicitly expressed as

P� ¼ ∑
i

ai
∑jaj

Q−1
i

 !−1

;

ai ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ

log detQ ið Þð Þ2
4

−c2 log detQ ið Þ
s0

@
1
A

−1

:

ð10Þ

The t-center for a set of DTs is the weighted harmonic mean, which
is in closed form.Moreover, theweight is invariant to SL(n) transforma-
tions, i.e., ai(Qi)=ai(ATQiA), ∀A∈SL(n). The t-center after the transfor-
mation becomes

P̂� ¼ ∑ai ATQ iA
� �−1

� �−1
¼ ATP�A: ð11Þ

This means that if {Qi}i=1
m are transformed by some member of

SL(n), the t-center will undergo the same transformation. It was also
found that the t-center will be robust to noise in that the weight
will be smaller if the tensor has more noise (Vemuri et al., 2011).
These properties make it an appropriate tool for the DTI applications.

The SPD constraint

It is known that if a matrix D∈SPD, there exists a unique lower di-
agonal matrix L with its diagonal values all positive, and D=LLT

(Golub and Loan, 1996). This is the well known Cholesky factorization
theorem. Wang et al. (2003, 2004) were the first to use Cholesky fac-
torization to enforce the positive definiteness condition on the esti-
mated smooth diffusion tensors from the DWI data. They use the
argument that testing for positive definiteness is equivalent to testing
for positive semidefiniteness under finite precision arithmetic and
hence their cost function minimization is set on the space of positive
semidefinite matrices, which is a closed set that facilitates the exis-
tence of a solution within that space. Unlike (Wang et al. (2003,
2004), we use Cholesky decomposition and tKL divergence to regular-
ize the smoothness of the tensor field, and this automatically ensures
the diagonal values of L to be positive. This argument is validated as
follows.

Substituting D=LLT into Eq. (9), we get

δ L; L yð Þð Þ

¼
∑3

i¼1 logLii yð Þ− logLiið Þ þ tr L−T yð ÞL−1 yð ÞLLT
� �

−1:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ

∑3
i¼1 logLii yð Þ

� �2
4 −c2∑

3
i¼1 logLii yð Þ

r : ð12Þ

Because by using the “log” function in the computation, Eq. (12)
automatically requires Liis to be positive, therefore we do not need
to manually force the tensor to be SPD. The detailed explanation is
given in Appendix A.

Numerical solution

In this section, we present the numerical solution to the variation-
al principle (3). The partial derivative equations of Eq. (3) with re-
spect to S0 and L can be computed explicitly and are,

∂E
∂S0

¼ −2 1−α−βð Þ
Xn
i¼1

vi−2α ∑
y∈V xð Þ

w1 x; yð Þ S0−S0 yð Þð Þ;

∂E
∂L ¼ 4 1−α−βð Þ

Xn
i¼1

bS0viL
Tgig

T
i

−2β ∑
y∈V xð Þ

w2 x; yð Þ L−1−LTL−T yð ÞL−1 yð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ

∑3
i¼1 logLii yð Þ

� �2
4 −c2∑

3
i¼1 logLii yð Þ

r ;

ð13Þ
where

vi ¼ Si−S0 exp −bgTi LL
Tgi

� �� �
exp −bgTi LL

Tgi
� �

: ð14Þ

To solve Eq. (13), we use the limited memory quasi-Newton
method described in Nocedal and Wright (2000). This method is use-
ful for solving large problems with a lot of variables, as is in our case.
This method maintains simple and compact approximations of
Hessian matrices making them require, as the name suggests, modest



Table 1
Error in estimated DTI and S0, by using different methods, from synthetic DWI with different levels of noise.

SNR Error MRE VF LMMSE NLM Proposed α=0 β=0

50 �θ 0.204±0.064 0.107±0.038 0.096±0.060 0.085±0.054 0.082±0.045 0.112±0.049 0.179±0.062
�S0 0.269±0.138 0.217±0.106 0.208±0.080 0.191±0.112 0.133±0.103 0.171±0.098 0.224±0.082

40 �θ 0.550±0.351 0.275±0.312 0.203±0.304 0.195±0.301 0.108±0.102 0.169±0.192 0.539±0.348
�S0 0.584±0.354 0.278±0.359 0.215±0.320 0.216±0.328 0.140±0.226 0.218±0.225 0.542±0.355

30 �θ 0.588±0.359 0.434±0.394 0.230±0.363 0.217±0.348 0.144±0.130 0.214±0.251 0.570±0.359
�S0 0.753±0.441 0.485±0.370 0.282±0.401 0.275±0.352 0.173±0.231 0.286±0.432 0.607±0.451

15 �θ 0.727±0.561 0.504±0.388 0.396±0.426 0.384±0.422 0.218±0.252 0.372±0.283 0.711±0.577
�S0 0.968±0.570 0.622±0.517 0.479±0.482 0.478±0.457 0.235±0.272 0.481±0.474 0.921±0.580

7 �θ 1.092±0.595 0.688±0.656 0.460±0.526 0.519±0.469 0.265±0.276 0.457±0.472 1.001±0.591
�S0 1.334±1.094 0.827±0.680 0.543±0.583 0.562±0.554 0.273±0.283 0.592±0.57 1.306±1.095
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storage, besides yielding a linear rate of convergence. Specifically, we
use the linear Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method
(Nocedal and Wright, 2000) to construct the Hessian approximation.

Experiments

We evaluated our method on synthetic datasets with various
levels of noise, and real datasets, including rat spinal cord datasets
and human brain datasets. Based on the estimated tensor fields by
using the technique presented in this paper, we achieved DTI seg-
mentation for the rat spinal cord datasets, and some preliminary
fiber tracking on human brain datasets. However, since the main
thrust of this paper is the estimation of smooth diffusion tensor fields,
the segmentation and fiber tracking results are not presented here.

We compared our method with other state-of-the-art techniques
including VF (Tschumperle and Deriche, 2003), NLM (Wiest-Daessle
et al., 2008) and LMMSE (Tristan-Vega and Aja-Fernandez, 2010)
respectively. We also presented the MRE method for comparison since
several software packages (3DSlicer 3.64 and fanDTasia (Barmpoutis
et al., 2009b)) use this technique due to its simplicity.We implemented
VF by ourselves since we did not find any open source versions on the
web. For LMMSE, we used the implementation in a 3DSlicer 3.6. For
NLM, we used an existing code5 for DWI denoising and used our own
implementation of the least squares fitting to estimate DTI from the
denoised DWI. To ensure fairness, we tuned all the parameters of each
method for every experiment, and chose the set of parameters yielding
the best results. The visual and numerical results show that ourmethod
yields better results than the competing methods.

DTI estimation from synthetic datasets

There are two groups of synthetic datasets. The first one is a
16×16 DTI with two homogeneous regions as shown in Fig. 1(a).
Each region is a repetition of a tensor, and the two tensors are D1=
[3.3,1.8,1.3,0,0,1.2]′ and D2=[3, 2.2, 3, −1, 0, 0]′.6 To generate the
DWI based on this DTI, we let S0=5, b=1500s/mm2, and g be 22
uniformly-spaced directions on the unit sphere starting from
(1,0,0). Substituting the DTI, S0, b, g into the Stejskal–Tanner equa-
tion, we generate a 16×16×22 DWI S. One representative slice of S
is shown in Fig. 1(b). Then following the method proposed in Koay
and Basser (2006), we add the Rician noise to S and get S̃, by using

the formula S̃ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S xð Þ þ nrð Þ2 þ n2

i

q
, where nr, ni ∼N(0,σ2). By

varying σ, we get different levels of noise and therefore a wide
range of SNR (SNR ¼ mean Sð Þ

σ ).
In our experiments, we set α=0.1 and β=0.4. The search win-

dow size is set to be 25 and the neighborhood size is 9. Fig. 1(c)
shows the slice in Fig. 1(b) after adding noise (SNR=60). The
4 http://www.slicer.org/.
5 https://www.irisa.fr/visages/benchmarks/.
6 D is written as [D11,D22,D33,D12,D23,D13].
estimated DTI from using MRE, VF, NLM, LMMSE and the proposed
method are shown in Fig. 1. The figure visually depicts that our meth-
od can estimate the tensor field more accurately.

To quantitatively assess the proposed variational unified model,
we determine the accuracy of the computed principle eigenvectors
of the tensors. Let �θ be the average angle between the principle ei-
genvectors of the estimated tensor field and the original known ten-
sor field. Besides we compare the difference, denoted as �S0 ,
between the estimated and ground truth S0. The results are shown
in Table 1, from which it is evident that our method outperforms
others and the significance in performance is more evident at higher
noise levels. Even though the accuracy of NLM and our proposed
method is very similar at high SNR, however, our method is much
more computationally efficient than NLM. The average CPU time
taken to converge for our method on a desktop computer with Intel
8 Core 2.8 GHz, 24 GB of memory, GNU Linux and MATLAB (Version
2010a) is 3.51 s, whereas, NLM requires 5.26 s (note both methods
are executed by using multi-core processors).

We also evaluated the importance of the two regularization terms
separately. α=0 means removing the regularization on S0, while
β=0 means removing the regularization on D. For these two cases,
we evaluate the �θ and �S0 , and the results are shown in the last two
columns of Table 1. The results show that removing either the regu-
larization term will increase the DTI estimation error. This implies
that both regularization terms are necessary in order to get accurate
estimation results.

We also evaluated our method on the 64×64 fibercup dataset
(Fillard et al., 2011; Poupon et al., 2008a) with a voxel size of
3×3×3 mm3, a b-value of 1500s/mm2 and 130 gradient directions.
For the parameter settings in the proposed model, we chose α=0.1
and β=0.4. The search window size is 9 and the neighborhood size is
4. We showed the estimated S0, D11, D12, D13, D22, D23, D33, FA and
the visualization of the estimated DTI by using fanDTasia (Barmpoutis
et al., 2009a) in Fig. 2. The results depict that the proposed method
can give a well smoothened and feature preserved tensor field.

DTI estimation from real datasets

We also did DTI estimation on a 100×80×32×52 3D rat brain DWI.
The data was acquired by using a PGSE technique with TR=1.5 s,
TE=28.3 ms, bandwidth=35Khz, 52 diffusion weighted images
with a b-value of 1334 s/mm2.

We compared with several other methods on the DTI estimation,
however, to save space, we only show the results of MRE, LMMSE
and our proposed method. We present D11, D22, D33, S0, FA, and
mean trace for each estimated result. The DTI estimation results
of MRE, LMMSE and our proposed method are shown in Figs. 3, 4
and 5 respectively.

We used a human brain DWI dataset (256×256×72) provided by
Alfred Anwander of the Max Planck Institute for Human Neuroscience
(Makuuchi et al., 2009). The DWIs were acquired with a whole-body
3 T Magnetom TRIO operating at 3 T (Siemens Medical Solutions)

http://www.slicer.org/
https://www.irisa.fr/visages/benchmarks/


Fig. 2. From left to right, top to bottom are the estimated S0, D11, D12, D13, D22, D23,
D33, FA and the visualization of the estimated DTI by using fanDTasia.

Fig. 3. From left to right, top to bottom are D11, D22, D33, S0, FA, and mean trace of the
estimated tensor field by using MRE on the rat cord data set.
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equipped with an 8-channel head array coil. The twice-refocused
spin-echo EPI sequence (TR=12 s, TE=100 ms) consists of 22 diffu-
sion gradients with a b-value of 800s/mm2.
Fig. 4. From left to right, top to bottom are D11, D22, D33, S0, FA, and mean trace of the
estimated tensor field by using LMMSE on the rat cord data set.
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Fig. 5. From left to right, top to bottom are D11, D22, D33, S0, FA, and mean trace of the
estimated tensor field by using our proposed method on the rat cord data set.

Fig. 6. From left to right, top to bottom are D11, D22, D33, S0, FA, and mean trace of the
estimated tensor field by using MRE on the human brain dataset.
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For the parameters of our model, we chose α=0.15 and β=0.45.
The search window size is 64 and the neighborhood size is 27. We
compared with several other methods on the DTI estimation, howev-
er, to save space, we only show the results of MRE, LMMSE and our
proposed method. We present D11, D22, D33, S0, FA, and mean
trace for each estimated result. The DTI estimation results of MRE,
LMMSE and our proposedmethod are shown in Figs. 6, 7 and 8 respec-
tively. The comparisons indicate that the proposed DTI estimation
method generates better results.
Conclusions

We proposed a robust variational non-local means based unified
approach for simultaneous denoising and DTI estimation. The
proposed method is a combination of a variational framework,
non-local means and an intrinsically robust divergence measure to
regularize the DTI estimation. In the variational principle, we used
non-linear diffusion tensor fitting term, along with a combination
of non-local means and the tKL based smoothness measure for
denoising. To speed up the NLM method, we performed prefiltering
on the voxels in the search window to reduce the number of compu-
tations and made use of parallel computing to distribute the compu-
tational load. This variational non-local approachwas validatedwith
both synthetic and real datasets and was shown to be more accurate
than competing methods in the literature. The results show that our
method depicts better noise removal while preserving the structure
information even at high levels of noise.

For future work, we plan to develop a GPU-based implementation
to further reduce the computation time. After getting a more compre-
hensive tensor estimation technique, we will utilize it as a prepro-
cessing step in applications to fiber tracking and DTI segmentation.
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Appendix A. Automatically ensuring the positivity of diag(L)

Since

L ¼
L11 0 0
L21 L22 0
L31 L32 L33

0
@

1
A;

and

D ¼ LLT ¼
L211 L11L21 L11L31

L11L21 L221 þ L222 L21L31 þ L21L32
L11L31 L21L31 þ L21L32 L231 þ L232 þ L233

0
B@

1
CA:
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Fig. 7. From left to right, top to bottom are D11, D22, D13, S0, FA, and mean trace of the
estimated tensor field by using LMMSE on the human brain dataset.

Fig. 8. From left to right, top to bottom are D11, D22, D33, S0, FA, and mean trace of the
estimated tensor field by using our proposed method on the human brain dataset.
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Let Lii=exp(ai), i=1, 2, 3, then by solving ai, we can ensure the Lii
is positive. Therefore, the positiveness of the diagonal values of L is
transferred to solve ai.

Now L is converted to L̂:

L̂ ¼
exp a1ð Þ 0 0
L21 exp a2ð Þ 0
L31 L32 exp a3ð Þ

0
@

1
A:

∂E
∂L ¼ 4 1−α−βð Þ

Xn
i¼1

bS0viL
Tgig

T
i

−2β ∑
y∈V xð Þ

w2 x; yð Þ
L−1−LTL−T yð ÞL−1 yð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ

∑3
i¼1 logLii yð Þ

� �2
4 −c2∑

3
i¼1 logLii yð Þ

r ;

∂E
∂L̂

¼ ∂E
∂L ·J;

ðA:1Þ

where “⋅” is element-wise product, and

J ¼
exp a1ð Þ 0 0

1 exp a2ð Þ 0
1 1 exp a3ð Þ

0
@

1
A:

Therefore, the partial derivative is in closed form. This can be
solved by using the L-BFGS method.
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