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Abstract. A proper distance metric is fundamental in many computer
vision and pattern recognition applications such as classification, image
retrieval, face recognition and so on. However, it is usually not clear what
metric is appropriate for specific applications, therefore it becomes more
reliable to learn a task oriented metric. Over the years, many metric
learning approaches have been reported in literature. A typical one is
to learn a Mahalanobis distance which is parameterized by a positive
semidefinite (PSD) matrix M. An efficient method of estimating M is
to treat M as a linear combination of rank-one matrices that can be
learned using a boosting type approach. However, such approaches have
two main drawbacks. First, the weight change across the training sam-
ples may be non-smooth. Second, the learned rank-one matrices might be
redundant. In this paper, we propose a doubly regularized metric learn-
ing algorithm, termed by DRMetric, which imposes two regularizations
on the conventional metric learning method. First, a regularization is
applied on the weight of the training examples, which prevents unsta-
ble change of the weights and also prevents outlier examples from being
weighed too much. Besides, a regularization is applied on the rank-one
matrices to make them independent. This greatly reduces the redun-
dancy of the rank-one matrices. We present experiments depicting the
performance of the proposed method on a variety of datasets for various
applications.
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1 Introduction

The choice of an appropriate distance or similarity measure over the input space
is critical to many computer vision and pattern recognition applications, includ-
ing but not limited to clustering and classification [1], image retrieval [2], shape
detection [3], face recognition [4–9], tracking [10]. There are many commonly
used distance metrics, e.g. Euclidean distance, L1-norm distance, χ2 distance,
and Mahalanobis distance etc. However, it is usually very hard to predict which
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distance measure is appropriate for a certain application with specific inputs.
Therefore, it is more apt to develop a task-dependent metric based on the avail-
able knowledge of the inputs. It was shown [1, 9] that a properly designed dis-
tance metric, compared with the standard distances, can significantly improve
the performance for many applications.

There are a lot of metric learning algorithms in the literature. A good metric
learning algorithm should be able to learn a metric that can amplify informa-
tive dimensions (feature) and squash non-informative dimensions. This is unlike
Euclidean distance, which treats every dimension equally and does not consider
the correlation between them.

In most cases, metric learning algorithms are derived from the labeled training
datasets, and the goal of the algorithm is to learn a metric which can separate the
instances of different classes apart, and bring together the instances belonging
to the same class. To be specific, the labeling of the inputs can be provided
mainly in three ways. First, the input constraint is (xi, yi) where xi ∈ R

D

is an instance and yi is its label. Second, the input constraint is ((xi,xj),yij)
where yij indicates whether xi and xj are “similar“ or “dissimilar“ [11]. An even
weaker representation often used in information retrieval [12] is the proximity
relationship over triplets (i, j, k), meaning that xi is closer to xj than to xk.
Proximity relationships are the most natural constraint for learning a metric,
and are of the weakest representation because proximity triplets can be derived
from the other kinds of constraints, but not vice versa.

In this paper, we propose a doubly regularized metric learning algorithm,
termed by DRMetric. Our goal is to learn a Mahalanobis distance metric which
tries to preserve the proximity relationships over the input. Mahalanobis dis-
tance metric is parameterized by a positive semidefinite (PSD) matrix [13, 14]1.
It has been well studied and advantages were shown over some other metrics
such as multidimensional scaling (MDS) [15], ISOMAP [16], and locally linear
embedding (LLE) [17].

Several aspects of our DRMetric are novel. First, we use the total Kullbak-
Leibler (tKL) divergence [18] to regularize the evolution of the weights on the
training triplets. tKL is a recently proposed divergence which has been proved
to be statistically robust [18]. The regularization automatically ensures that
the weight of the examples is upper bounded, therefore, the weight can not be
extremely large for outliers. Note that without regularization, the weight of an
outlier example will keep increasing, which may lead to serious problems such as
overfitting and inefficiency. Furthermore, for some noisy examples, their weight
may depict severe oscillations. This not only hampers the convergence rate of the
metric learning algorithm, but also leads to overfitting, and lowers the accuracy.
Second, we regularize the rank-one PSD matrices to minimize the dependence
between them. This regularization makes the rank-one matrices least correlated,

1 Strictly speaking, this matrix should be symmetric positive definite (SPD) in order
for it to be a metric. However, we relax the requirement and allow two different
instances to have zero distance.
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and therefore least redundant, which greatly decreases the number of rank-one
matrices needed and improves the efficiency.

The rest of the paper is organized as follows. In Section 2, we briefly review
the metric learning literature. In Section 3, we present the doubly regularized
linear programming metric learning algorithm, termed by DLMetric. In Section
4, we investigate DLMetric empirically by evaluating our algorithm on a number
of datasets for various applications. We also compare our method with the state-
of-the-art metric learning and other algorithms. Finally, we conclude the paper
in Section 5.

2 Literature Review

A good task dependent metric has attracted extensive attention recently. The
machine learning community has done many researches to automatically learn
a distance function from available knowledge of the dataset [13, 19, 20, 11].
Most existing works assume the metrics to be Mahalanobis distance, which are
parameterized by PSD matrices.

Various techniques have been proposed to learn a PSD matrix from the
dataset. Some techniques force the negative eigenvalues in the learned symmet-
ric matrix to be zero as in [11]. Some others set the matrix to be the inverse of
the covariance matrix of the centered data points in small subsets of points with
known relevant information [13]. In [20], the matrix exponential gradient update
was used which preserves symmetry and positive definiteness due to the fact that
the matrix exponential of a symmetric matrix is always an SPD matrix. In [21],
Iwasawa factorization was used to ensure the positive definiteness [21]. Most of
these techniques are limited from a scalability or a computational complexity
view point.

More recently, some researchers [1, 12] adapted the boosting technique to met-
ric learning. This kind of metric learning is based on an important theorem that
a PSD matrix with trace one can always be represented as a convex combination
of multiple rank-one PSD matrices. This is a generalization of boosting [22] in
the sense that the weak learner in these metric learning algorithms is a rank-one
matrix instead of a classifier. The main idea behind these boosting-based metric
learning algorithms is that at each iteration, they will learn a rank-one matrix
from the training examples that follow a distribution. The weighted rank-one
matrix is then added to the PSD matrix. This weight is typically related to
the rank-one matrix’s ability to discriminate the examples from different classes.
The higher the discriminatory power, the larger the weight, and vise versa. After
learning the rank-one matrix, the distribution of the examples is updated. The
examples are reweighted according to the rule that misclassified examples tend
to gain weight and correctly classified examples tend to lose weight. Therefore,
the rank-one matrices to be learned will be focused more on the examples that
were misclassified previously.

However, these methods are not statistically robust i.e., the learning process
is sensitive to noisy data and outliers [23, 24]. The reason is that the weight of
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noisy examples might switch between severe increase and severe decrease fre-
quently, which seriously slows down the convergence of the learning process.
Furthermore, the weight of outliers might keep increasing, which largely affects
the metric to be learned. To avoid these issues and inspired by the regularized
boosting [23, 24] techniques, we propose a regularized metric learning algorithm,
which regularizes the weight updating process involved in the training stage. Fur-
thermore, in order to reduce the redundancy of the learned rank-one matrices,
we add another regularization term to make the dependence between the learned
rank-one matrices as small as possible. In this way, we can use much fewer num-
ber of rank-one matrices (i.e. much fewer number of iterations) to form the PSD
matrix which parameterizes a suitable metric. Experimental results illustrate
that for a dataset of D dimensions, DRMetric is able to learn a relatively good
metric in D iterations.

3 Proposed Method

Given a dataset X = {xi}, with xi ∈ R
D, and its associated triplet set T =

{(i, j, k)}, with (i, j, k) meaning that xi is more similar to xj than to xk. Let
N = |T | denote the number of triplets in T . The goal is to learn a Mahalanobis
distance which preserves the relationship in T .

A Mahalanobis distance is parameterized by a PSD matrix M ∈ R
D×D. The

Mahalanobis distance between xi ∈ X and xj ∈ X based on M is

dM(xi,xj) = (xi − xj)
TM(xi − xj) (1)

To remove the scalability effect of the distance resulting from M, we require
tr(M) = 1. Since any trace-one PSD matrix can be decomposed as a convex
combination of rank-one trace-one PSD matrices, i.e.,

M =

D∑

l=1

wlulu
T
l ,ul ∈ R

D, ‖ul‖ = 1,w ∈ ΔD . (2)

To avoid notation clutter in later computations, we introduce a vector vn = [vnl],
where vnl corresponds to ul and the nth triplet (i, j, k), and is defined as

vnl = (xi − xk)
Tulu

T
l (xi − xk)− (xi − xj)

Tulu
T
l (xi − xj). (3)

A potentially appropriate M should be able to maximize the soft margin defined
in the following linear programming,

max
w,ρ,ζ

ρ− α

N∑

n=1

ζn

s.t.

t∑

l=1

wlvnl ≥ ρ− ζn , n = 1, · · · , N,

w ∈ Δt, ζ ≥ 0 ,

(4)
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where ζn is the slack variable, and α is a constant factor which penalizes the
slack variables.

The Lagrangian dual problem of (4) is

max
d,c,q

min
w,ρ,ζ

L(w, ρ, ζ,d, c,q) = −ρ+α
N∑

n=1

ζn−
N∑

n=1

dn(
t∑

l=1

wlvnl−ρ+ζn)+c(1Tw−1)−qT ζ,

(5)

where d, c, and q are non-negative regularizers. After some simple algebraic
manipulation we arrive at the dual problem of (4) given by,

min
d∈ΔN ,d≤α1

max
l=1,··· ,t

N∑

n=1

dnvnl. (6)

3.1 Regularization on d

The regularization on d is very important because for the non-regularized met-
ric learning algorithm, the weight of the training examples might change very
severely, i.e., the weight of a training example might oscillate significantly when
it is misclassified or correctly classified by the weak learners (rank-one matrices)
as shown in Fig. 1. This instability will seriously affect the learning efficiency,
accuracy, and also lead to overfitting. With regularization, severe oscillations
and instabilities can be prevented, which makes the algorithm converge faster,
i.e. need fewer number of rank-1 PSD matrices. Fig. 1 depicts that, using regu-
larization, the resulting weight change of the training data is stable.
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Fig. 1. Change in the weight of a training example in the Heart disease dataset from the
UCI repository, under metric learning without regularization and with regularization

To overcome the aforementioned instabilities, we add a regularization term to
the update of d in (6), i.e.,

min
d∈ΔN ,d≤α1

max
l=1,··· ,t

N∑

n=1

dnvnl + ηδ(d, d̂), (7)
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where η is the regularization coefficient that balances the margin and the smooth-
ness. η is set to be a fixed number2 as in [23] to make the number of iterations

upper bounded by a constant without hurting the accuracy. δ(d, d̂) is the tKL
divergence [23, 25], and

δ(d, d̂) =

∑N
n=1 dn log

dn

d̂n√
1 +

∑N
j=1 d̂j(1 + log d̂j)2

. (8)

Note that the regularization term δ(d, d̂) ensures that the evolution of d is
smooth.

Here, d̂ can be chosen in different ways. In this paper, we set d̂ = d0, where
d0 is the initialized distribution, this means d should not be far away from the
initialized distribution. Since d0 is user defined, it is usually set according to the
application problem and the data. One tends to initialize larger weight on the
examples with more importance, so we use δ(d,d0) as the regularizer. Note that
the dn is upper bounded by α as in (6), therefore the weight of the noisy examples
and outliers is prevented from being too large leading to possible domination in
the learning3.

To directly compute dt from (7) is complicated, instead, we will first find its
Lagrangian and use it to compute dt. To find the Lagrangian, we rewrite (7)
into the following form

min
β,d

β + ηδ(d,d0)

s.t.

N∑

n=1

dnvnl ≤ β, l = 1, · · · , t

d ∈ ΔN , d ≤ α1 .

(9)

The Lagrangian Ψ of (9) is given by,

Ψ(d, β,w, ξ, γ) = β+ηδ(d,d0)+
t∑

l=1

wl(
N∑

n=1

dnvnl−β)+
N∑

n=1

ξn(dn−α)+γ(d·1−1) (10)

where, wl, l = 1, · · · , t, ξn, n = 1, · · · , N and γ are non-negative regularizers.
Using some simple calculus and the KKT condition [26], we can simplify (10)
and get the partial Lagrangian

Ψ(d,w) = ηδ(d,dt) +
t∑

l=1

wl

N∑

n=1

dnvnl . (11)

2 η =
ε
√

1+(logN−1)2

2 log(ND)
, where N is the number of training samples, D is the dimension

of each training sample, and ε is the error tolerance of the margin between different
classes based on the learned metric [23].

3 To make such a d exist, we should require α ≥ 1/N . It was shown in [24] that
α = 1/s, and s ∈ {1, · · · , N} is a favorable choice.
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Now differentiating Ψ with respect to d, setting it to 0, and normalizing d, we
get,

dtn =
d0n exp

(
−c

∑t
l=1 wlvnl

)

Zt
, where c =

1

η

√√√√1 +

N∑

n=1

d0n(1 + log d0n)
2, (12)

and Zt is the normalization parameter to make
∑N

n=1 d
t
n = 1. Here if dtn > α,

then we manually set dtn = α.

3.2 Regularization on u

We put two constraints on u. First, we want it to maximize the margin. Second,
we require u to be independent of the previously learned ul, l = 1, 2, · · · , t, so
that the learned {u} will not be redundant. Therefore, the number of rank-one
matrices needed to form a good metric is reduced. The dependence between
u and ul is measured by ‖uTul‖2 ∈ [0, 1]. The larger ‖uTul‖2 is, the more
dependent they are. When ‖uTul‖2 = 0, u and ul are independent.

The two constraints on u are described as

max
u

N∑

n=1

dtn[(xi −xk)
TuuT (xi − xk)− (xi − xj)

TuuT (xi − xj)]− λ

t−1∑

l=1

‖uTul‖2, (13)

where λ is the regularization coefficient to penalize the dependence. (13) can be
rewritten as

max
u

uT {
N∑

n=1

dtn[(xi−xk)(xi−xk)
T − (xi−xj)(xi−xj)

T ]−λ

t∑

l=1

ulul}uT (14)

Let matrixAt =
∑N

n=1 d
t
n[(xi−xk)(xi−xk)

T−(xi−xj)(xi−xj)
T ]−λ

∑t
l=1 ulu

T
l ,

then ut+1 is the eigenvector corresponding to the largest eigenvalue of At.
The weight vector w for the rank-one matrices should satisfy the linear pro-

gramming problem (4) which can be solved using column generation [27] or a
gradient based method.

3.3 Building the Triplets

For each xi ∈ X, we first find the a instances {xj}aj=1 which are in the same
category as xi but are most different from xi. After that, we find the a nearest
neighbors {xk}ak=1 in a different category, then (i, j, k) will form a triplet. If
the size of X is small, we will use a larger a, otherwise, we will use a smaller
a. Furthermore, if the number of triplets is very large, we will randomly select
10 ∼ 50% of the triplets for training.

As a summary, the algorithm for the proposed DRMetric is presented in Algo-
rithm 1. The proof of the convergence is very similar to the proof from Schapire
and Singer [28].
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Algorithm 1. Doubly Regularized Metric Learning

Input: Dataset X = {xi}, xi ∈ R
D

Triplet set T = {(i, j, k) | xi is closer to xj than to xk}. N = |T |, the number of
triplets in T .
Output: M =

∑t
l=1 wlulu

T
l , ul ∈ R

D, ‖ul‖ = 1, w ∈ Δt, t is the number of
iterations.
Initialization: Initialize d0n, the weight of the nth triplet, n = 1, · · · , N , according
to the importance, or set d0n = 1/N by default.
for l = 1 to t do

Find the optimal ul according to (13);
Update the distribution d according to (12);
Update the weight w according to (4)

end for
Return M =

∑t
l=1 wlulu

T
l .

4 Experimental Results

The proposed algorithm is evaluated on a number of public domain datasets for
a variety of applications. We use the UCI machine learning repository [29] for
classification, use the COREL image dataset for content based image retrieval,
and use the Labeled Faces in the Wild (LFW) [30] dataset for face recognition.
We compare our method with many state-of-the-art metric learning and other
techniques. The results show that our proposed metric learning method is very
promising for many applications.

4.1 Classification

The classification experiments are performed on the UCI machine learning repos-
itory [29], which is a collection of datasets that have been extensively used for
analyzing machine learning techniques. The repository contains a large variety
of datasets, including very noisy datasets (e.g. the Optical Recognition of Hand-
written Digits dataset, the wine dataset) as well as relatively clean datasets,
which is optimal for testing the robustness and accuracy of classification algo-
rithms. We selected 9 datasets from the UCI repository. The selected datasets
include noisy and clean datasets, cover small size to large size datasets in terms
of number of instances in the datasets, and range from low dimension to high
dimension in terms of number of attributes per instance of the datasets. The
description of the selected datasets is shown in Table 1.

We use 5-fold cross validation to evaluate the proposed algorithm. The regular-
ization parameters α, η and λ are determined during the training and validation
stage, and they are set to be the numbers which maximize the performance on
the training dataset. The final result is the average of the results obtained over
the 5 runs. The proposed DRMetric is compared with many other non-metric
learning and metric learning algorithms, including Euclidean distance, L1-norm
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Table 1. Description of the selected UCI datasets

dataset � instances � attributes

Heart disease 303 74
Australian sign 6650 14
Blood transfusion service center 748 5
Artificial characters 6000 7
Glass identification dataset 214 10
Adult dataset 48842 14
Handwritten digits 5620 64
Wine dataset 178 13
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Fig. 2. The neighbor accuracy curves from different metrics on the Heart disease,
Australian sign and Blood transfusion service center datasets in the UCI repository

distance, χ2 distance, BoostMetric [9], MatrixBoost [1], ITML [14], and COP
[11]. The code for metric learning methods is obtained directly from the corre-
sponding authors or downloaded from the authors’ webpage. The classification
performance is measured based on neighbor accuracy curves. The neighbor ac-
curacy measures the percentage of correctly classified instances based on the kth
(k = 1, 3, 5, 7, 9) nearest neighbor. The average neighbor accuracy is shown in
Fig. 2. The comparison depicts that in general DRMetric yields higher classifi-
cation accuracy.

We also evaluate the 3-nearest-neighbor voting classification accuracy on sev-
eral UCI datasets including the Glass Identification dataset, the Adult dataset,
the Optical Recognition of Handwritten Digits dataset, and the Wine dataset.
The classification results are shown in Table 2, which reflects that the proposed
method outperforms the other methods.

Besides, for DRMetric, we examined the relationship between the classification
accuracy change and the number of iterations. The results are shown in Fig. 3,
which implies that when the number of iterations is less thanD (the dimension of
the dataset), the classification accuracy increases at a higher rate. However, when
the number of iterations is larger than D, the classification accuracy improves
very slowly. This means that, using our method, D rank-one matrices can form
a relatively high quality Mahalanobis distance.
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Table 2. Classification accuracy using different metrics on selected datasets from the
UCI repository

dataset Euclidean L1 χ2 ITML COP BoostMetric MatrixBoost proposed

Characters 0.7235 0.7452 0.7651 0.9114 0.8889 0.9147 0.9049 0.9288
Glass 0.6114 0.6404 0.6479 0.7975 0.7850 0.8135 0.7991 0.8204
Adult 0.6017 0.6249 0.6284 0.7760 0.7752 0.7981 0.7894 0.8075
Digits 0.6865 0.7107 0.7284 0.7352 0.7473 0.8014 0.8148 0.8290
Wine 0.7240 0.7261 0.7602 0.8625 0.8958 0.9074 0.9152 0.9161
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Fig. 3. The change of classification accuracy with related to the number of iterations
using DRMetric on the Heart disease (left), Australian sign (middle), and Blood trans-
fusion service center (right) datasets. The black disk corresponds the classification
accuracy when the number of iterations equals to the number of attributes.

4.2 Content Based Image Retrieval

The task for image retrieval is that given one image in a category, find the images
in the same category. We use the COREL image database [31] to evaluate our
method on content based image retrieval. The database contains 3400 real-world
images with 34 different categories, and 100 images per category.

Each image is represented as a 33 dimensional feature vector, which is a
combination of low level features including color features, edge features and
texture features. For color features, we first represent the images in the HSV color
space, and then compute the mean, variance, skewness of the HSV color to get a
9 dimensional feature vector. For edge features, the Canny edge detector [32] is
first applied to images to detect the edges, and the histogram for edge direction
was quantized into 9 bins of every 40 degrees, which resulted in 9 different
edge features. For texture features, we use the multi-resolution simultaneous
autoregressive (MASAR) model [33] to get 15 features. In total, there are 33
features for each image.

We use 10-fold cross validation to evaluate the proposed algorithm, i.e., 90%
images are used to learn the metric, and 10% images are used for evaluation.
We use every image in the test dataset as a query, if the retrieved image belongs
to the same category as the query image, the retrieval is correct. We measure
the retrieval performance based on the neighbor accuracy curves. Neighbor ac-
curacy measures the percentage of correctly retrieved images in the kth nearest
neighbors of the query images (k = 1, · · · , 40 in our experiments).
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We compared our method to many algorithms, including Euclidean distance,
L1-norm distance, χ2 distance, BoostMetric [9], MatrixBoost [1], ITML [14], and
COP [11]. The retrieval results are shown in Fig. 4. The results illustrate that
our proposed method achieves a higher neighbor accuracy when using 1st ∼ 25th
and 34th ∼ 40th nearest neighbors. However, it’s a little worse than MatrixBoost
when using the 26th ∼ 33rd nearest neighbors.

We compare the computational time of BoostMetric [9], MatrixBoost [1], and
DRMetric to learn the distance metric on the COREL database. All algorithms
are run on a laptop with Intel(R) Core(TM)2 CPU L7500 @1.6GHz, 4GB mem-
ory, GNU Linux and MATLAB (Version R2011a). The average CPU time taken
to converge for our algorithm is 167.68s, while BoostMetric takes 244.81s, and
MatrixBoost takes 239.28s.
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Fig. 4. Comparison of using different metric learning methods for content based image
retrieval on the COREL dataset

4.3 Face Recognition

In this scenario, the goal for face recognition is to do pair matching: given two
face images, determine if these two images belong to the same person. We use the
Labeled Faces in the Wild (LFW) [30] dataset. This is a fairly difficult dataset
for face recognition, because it has a large range of the variation (varying pose:
straight, left, right, up; expression: neutral, happy, sad, angry; eyes: wearing
glasses or not; clothes: wearing different clothes; size: small, medium or large)
seen in real life. It includes 13233 images of 5749 people collected from news
articles on the Internet. The number of images per person ranges from 1 to
530, and 1680 people have two or more distinct images in the dataset. This is
a popular dataset which has been used by many researchers [4, 6, 34, 8, 35] to
evaluate their face recognition frameworks.

In this experiment, we have compared the proposed DRMetric to the state-of-
the-art methods for the task of face pair-matching problem. To ensure fairness,
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we used the same features as used in the literature [4–9, 36]. Features of face
images are extracted by computing the 3-scale, 128-dimensional SIFT descrip-
tors [37], centered on 9 points of facial features extracted by a facial feature
descriptor, as described in [5]. In this way, we get 3 × 128 × 9 = 3456 features
in total for each image. PCA is then performed on the feature vectors to reduce
the dimension to 400 (because the result in [9] showed that dimension 400 is a
good compromise between performance and efficiency) for training. The triplets
are built according to Section 3.3. The number of generated triplets is 44794,
out of which, we use 20% (i.e. 8960) for training. We compared our method
with LDML funneled [38], Hybrid aligned [36], V1-like funneled [8], Simile [6],
Attribute + Simile [6], Background sample [39] Multiple LE + comp [4], and
FrobMetric [9]. All these methods except FrobMetric are more complicated than
our method, because they either use additional information, hybrid descriptors
or combination of classifiers. The performance is described using an ROC curve4

on which each point represents the average over the 10 runs of (false positive
rate, true positive rate) for a fixed distance threshold. The results from all other
techniques were taken from their latest published results. The comparison is
shown in Fig. 5, which depicts that our method is only slightly worse than the
two leading techniques (Attribute + Simile [6] and Background sample [39]) that
are much more complicated. Furthermore, our method is comparable to or better
than other state-of-the-art techniques on face recognition.
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Fig. 5. False positive (FP) rate versus true positive (TP) rate on face recognition using
different metric learning methods on the LFW dataset

4 If the distance, based on the learned metric, is above some threshold, the two images
will be declared as not belonging to the same person, and vice versa. For each
threshold, we get the corresponding FP/TPrate. By changing the thresholds, we get
a set of {FP/TPrate}, which forms the ROC curve. Using ROC curve to evaluate
face recognition methods is widely used in literature [38, 36, 6, 39, 8].
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5 Conclusions

We proposed an efficient and robust doubly regularized metric learning algo-
rithm DRMetric. It has two regularization parts. First, we use tKL to regularize
the update of the weight of the training examples. This avoids instabilities in
the weight change, and consequently avoids overfitting and make it more ro-
bust to noisy data as well as outliers. Second, we add a regularization to the
rank-one matrices enforcing them to be as independent as possible. In this way,
the redundancy of the learned rank-one matrices as well as the number of neces-
sary rank-one matrices are significantly reduced, which leads to higher efficiency.
Furthermore, DRMetric is robust and capable of handling a variety of datasets
for different applications. Though the idea behind DRMetric seems simple, its
robustness and applicability can not be undervalued.
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