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Abstract. Computation of the mean of a collection of symmetric pos-
itive definite (SPD) matrices is a fundamental ingredient of many algo-
rithms in diffusion tensor image (DTI) processing. For instance, in DTI
segmentation, clustering, etc. In this paper, we present novel recursive
algorithms for computing the mean of a set of diffusion tensors using
several distance/divergence measures commonly used in DTI segmenta-
tion and clustering such as the Riemannian distance and symmetrized
Kullback-Leibler divergence. To the best of our knowledge, to date, there
are no recursive algorithms for computing the mean using these measures
in literature. Recursive algorithms lead to a gain in computation time
of several orders in magnitude over existing non-recursive algorithms.
The key contributions of this paper are: (i) we present novel theoretical
results on a recursive estimator for Karcher expectation in the space of
SPD matrices, which in effect is a proof of the law of large numbers (with
some restrictions) for the manifold of SPD matrices. (ii) We also present
a recursive version of the symmetrized KL-divergence for computing the
mean of a collection of SPD matrices. (iii) We present comparative tim-
ing results for computing the mean of a group of SPD matrices (diffusion
tensors) depicting the gains in compute time using the proposed recur-
sive algorithms over existing non-recursive counter parts. Finally, we also
show results on gains in compute times obtained by applying these re-
cursive algorithms to the task of DTT segmentation.

1 Introduction

Finding the mean of a population of symmetric positive definite (SPD) matri-
ces/tensors is an often encountered problem in medical image analysis and com-
puter vision, specifically in diffusion MRI processing, tensor-based morphometry,
texture analysis using the structure tensor etc. The mean tensor can be used to
represent a population of structure tensors in texture analysis, diffusion tensors
in diffusion tensor image (DTI) segmentation or for interpolation of diffusion
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tensors or in clustering applications. It is also useful in atlas construction where
the atlas is usually defined as the mean of a population of DTT data. It is well
known that computation of the mean can be posed as a minimization problem in
which one minimizes the sum squared distances between the unknown mean and
the members of the set whose mean is being sought. Mathematically speaking,
we want to find, p* = min,, Z? d*(z;, 1), where, d is the chosen distance, z; are
the data samples whose mean is being sought and p* is the mean. Depending
on the definition of distance d, one gets different kinds of means. For example,
if we choose the Euclidean distance for d, we get the arithmetic mean, where as
if we choose the geodesic distance in the domain of x;, we get the Karcher mean
and so on. Also, if we chose the Li-norm instead of the Ly norm in the above
formula, we get the median.

Tomes of research has been published on finding the mean tensor using dif-
ferent kinds of distances/divergences and has been applied to DTI as well as
structure tensor field segmentation, interpolation and clustering. In [I], authors
generalized the geometric active contour model-based piece-wise constant seg-
mentation [23] to segmentation of DTIs using the Euclidean distance to mea-
sure the distance between two SPD tensors. Authors in [4], present a geometric
active contour [B6] based approach for tensor field segmentation that used in-
formation from the diffusion tensors to construct the so called structure tensor
which is a sum of structure tensors formed from each component of the diffu-
sion tensor. A Riemannian metric on the manifold of SPD matrices was used in
[189] and [TOITIIT2] for DTT segmentation and for computing the mean inter-
polant of diffusion tensors respectively. In [I3JI4UT5] and [I0] the symmetrized
KL-divergence was used for DTI segmentation and interpolation respectively.
The Log-Euclidean distance was introduced to simplify the computations on the
manifold of SPD matrices and this was achieved by using the principal Log-map
from the manifold to its tangent space and then using the Euclidean metric on
the Log-mapped matrices in the tangent space at the identity [16]. More recently,
in [9], a statistically robust measure called the total Bregman divergence (tBD)
family was introduced and used for interpolation as well as DTI segmentation.

None of the above methods for computing the mean of SPD matrices which
are used within the segmentation algorithms or in their own right for interpo-
lation purposes are in recursive form with the exception of the Log-Euclidean
metric based scheme for which a recursive form was proposed in [I7]. A recursive
formulation would be more desirable as it would yield a computationally efficient
algorithm for computing the means of regions in the segmentation application.
Also, in many applications such as DTI segmentation, clustering and atlas con-
struction, data are incrementally supplied to the algorithm for classification or
assimilation to update the mean and an algorithm that recursively updates the
mean rather than one that recomputes the mean in a batch mode would be much
more efficient and desirable. In this paper, we pursue this very task of recursive
mean computation. The key contributions of this paper are: (i) first, we present
novel theoretical results proving the probabilistic convergence of the recursive
intrinsic Karcher expectation computation of a set of SPD matrices to the true
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Karcher expectation. This is a significant result namely, a restricted form of the
law of large numbers for the space of SPD matrices. (ii)) We present recursive
formulations for computing the mean using commonly used distance/divergence
measures mentioned above and present experiments that depict significant gains
in compute time over their non-recursive counterparts. (iii) We present synthetic
and real data experiments depicting gains in compute time for DTT segmentation
using these recursive algorithms.

The rest of the paper is organized as follows: in Section [2] we present novel
theoretical results leading to the intrinsic Karcher expectation computation al-
gorithm. In addition, we present the recursive formulations for the commonly
used symmetrized KL-divergence based mean computation as well as the Log-
Euclidean distance based mean. Section [B] contains synthetic and real data exper-
iments depicting the improvements in computation time of the DTI segmentation
task. Finally, we present the conclusions in Section [l

2 Methods

2.1 The Recursive Karcher Expectation Estimator

Let P, denote the space of n x n SPD matrices, which is not a vector space,
since it is not closed under vector operations. Instead, the General Linear Group
(GL(n) denoting the group of n X n non-singular matrices) is the natural group
action on P, where the group action can be defined as Vg € GL(n),YM € P,,
M|g] = gMg". Let U,V € T\ P,,, where T P, denotes the tangent space of P,
at point M. The GL invariant metric (a metric invariant to GL group action) in
P,, can then be uniquely defined as

< U,V >y= traceM'UM V) (1)

With this metric, the curve length on the manifold can then be evaluated and
the geodesic distance between any given points M, N € P,, can be computed in
a closed form

dist(M,N)? = trace(Log(M~'N)?) (2)

where Log is the matrix logarithm. As the distance is defined, given m points
My, Ms, ..M, € P, the center of the mass on P, can then be defined as the min-
imizer of the sum of squared geodesic distance pu* = argmin, > .-, dist(u, M;)?,
which is also known as Karcher mean[I8]. Unlike the arithmetic mean in the Eu-
clidean space, the Karcher mean on P, has no existing analytic (closed form)
solution in P, for m > 2. A gradient based optimization is needed whenever
we need to compute this Karcher mean [I0], which makes it computationally
expensive.

The Karcher mean can be viewed as an extension of the arithmetic mean from
the Euclidean space to the Riemannian manifold. Similarly, the expectation and
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the variance can also be extended. Given a random variable M € P, with a
probability density P(M)

BE(M) = argmin,, / dist(1, X)2 P(X)[dX] 3)

n

Var(M) = /P dist(E(M), X)? P(X)[dX] (4)

where [dX] denotes the unique GL invariant measure on P,.

We now develop an estimator for the intrinsic (Karcher) expectation that can
be used to represent a set of data points in P, (the space of diffusion tensors)
and can be computed recursively. This recursive computation property is a very
important property especially for online problems where the data points are
provided sequentially. This is very pertinent to applications such as DTI and
structure tensor field segmentation, diffusion/structure tensor clustering etc.

Let X € P,, kK = 1,2,... be iid samples in P, from probability measure
P(M). The recursive Karcher expectation estimator can be defined as:

M, = X, (5)
1 1 1 1
My 1 (wit1) = M (M 2 X1 M 2 )k M (6)

Here we set wi41 = kil. We now prove the following properties of the recursive
Karcher expectation estimator presented here in the form of theorems with their
proofs.

Theorem 1. Let iid samples X be generated from a density P(X; u) that is
symmetric w.r.t. to its expectation u, then My, is a unbiased estimator. By sym-
metry we mean that VX € P, P(X;u) = P(uX~1u; ), note that X, p, uX 11
are on the same geodesic and dist(u, X) = dist(p, pX 1)

Proof. Without loss generality we assume that p = I, where I is the identity
matrix. We can now prove the theorem by induction. For k = 1,
EM;)=EXy)=1

where E denotes the Karcher expectation. P,,, (Mj;1I) is obviously symmetric.
Assuming F(My) = I, and the the posterior P, (M) is symmetric. Then,

Pmk+1 (Mk+1) =
1 1 1 1
/ Px(Xk—H)PMk (X1§+1(ka1Mk+1ka1)wk+171X1§+1)[ka+l] =
P,

P,

MEk+1 (M};Jil)

since P, Pp,, are symmetric and

1 1 1 1 1 1 1 1
2 2 T2 \wWgt1—ly 2 -1 _ y"2 2 —1 2 wi41—1 2
(Xk+1(xk+1Mk+1Xk+1) * Xk+1) = Xk+1(Xk+1Mk+1Xk+1) * Xk+1

Thus, P, , is symmetric with respect to I, and E(Mjy1) = I = p since

k+1

/ Log(M) P, (M)[dM] = / Log(N"1)P,,, ., (N"H[dN"1] = 0
P, P,
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Theorem 2. VA,B € P,,, and w € [0, 1]
|Log(A%(A™2BA~2)“Az)|[> < tr((1 — w)Log(A) + wLog(B))?)  (7)

Note that the left side of the inequality is the square distance between the
identity matrix and a geodesic interpolation between A and B, and the right
side of the inequality is the square distance between the identity and the log
linear interpolation. This inequality is true based on the fact that P, is a space
with non-positive sectional curvature.

Proof. Let y(w) = A2(A~2BA~2)"Az. Then ~(w) is a geodesic between A, B
Since P, is a Hadamard space, based on Lurie’s notes on Hadamard space [19],
we know that

lhs = dist(I,vy(w))? < (1 — w)dist(I, A)?* + wdist(I,B)* — w(1 — w)dist(A, B)?
(3)
Also

rhs — (1 — w)dist(I, A)? + wdist(I, B)? — w(1 — w)dist(A, B)?)

9

=w(l — w)(dist(A,B)? — tr(LogA — LogB)?) > 0 ©)
where the last inequality is based on the Cosine inequality in [20]. Thus, we have
proved that lhs < rhs.

Theorem 3. Let wy = i, we then have, Var(My) < iuz, where u? = Var(X;),
i=1,2...

Proof. We will use induction to prove the theorem. We still assume that F(Xj) =
I. When k =1, Var(M;) = Var(Xy) = u?.

Assume that the claim is true for k = i, that is Var(M;) < u®. When
k =14+ 1, using the lemma above, we know that,

Var(Miq1(w)) <

[ 10 = w)Log(M0) + wLog(Xi )| POV P(Xn) [dML[dX
n n (10)

=(1—w)*Var(M;) + w’Var(Xis1)
<(1- w)21u2 + w?u?

(1 —w)?tu? +wu? = HI»IUQ when w = Zil.

From the theorems above, we can find that the recursive Karcher expectation
estimator is an unbiased estimator for the Karcher expectation when the sam-
ples are drawn from a symmetric distribution on P,,. And it weakly converges
to the expectation. Note that what we have proved is a restricted form of the
law of large numbers, where the restriction is that the samples be drawn from a
symmetric distribution on P,. Of course, this recursive Karcher expectation esti-

mator can be viewed as an approximation of the Karcher sample mean. However,



Recursive Karcher Expectation of SPD Tensors 395

in our experiments, we find that it actually has similar accuracy as the Karcher
sample mean. Also, because it is a recursive estimator, it would be far more
computationally efficient to use our estimator than the standard non-recursive
Karcher mean algorithm when the diffusion tensors are input sequentially to the
estimation algorithm as in all the aforementioned applications.

2.2 Recursive Form of the Symmetrized KL-Divergence Mean

We now present a recursive formulation for computing the symmetrized KL-
divergence based mean. Let’s recall, the symmetrized KL divergence also called
the J-divergence, is defined by J(p, ¢) = 5 (KL(p||q)+KL(q||p)) Using the square
root of J, one can define a divergence between two given positive definite tensors.
The symmetrized KL (K L) divergence based mean of a set of SPD tensors is
the minimizer of the sum of squared KL divergences. This minimization problem
has a closed form solution as shown in Wang et al. [I3] and regurgitated here
for convenience,

Mkt = \/B—l[\/\/BA\/B]\/B—l (11)

where A = 117 ZTi is the arithmetic mean, B = 117 ZT;l is the harmonic

7 7
mean, T = {T;} is the given tensor field and N is the total number of tensors.
The closed form equation [I1] can be computed in an recursive manner as follows.
Let the arithmetic and harmonic means at iteration n be denoted by (A4,) and
(Bn), respectively. When a new #(n + 1)% tensor, Tpy1 augments the data
set, the quantities A,, and B,, are recursively updated via the following simple
equations,

n 1
An - An Tn 12
HZ + n 1Pt (12)
n 1
Boi1 = B, T 1. 1
+1 n4+1 + n4+1 n+1 ( 3)

Using the above recursive form of the arithmetic and harmonic means of a set of
tensors and the closed form expression [[1] we can recursively compute the K L,
mean of a set of SPD tensors.

2.3 Recursive Mean for the Log-Euclidean Metric

We now present the recursive form of the Log-Euclidean (LE) based mean. It
is well known that P, can be diffeomorphically mapped to the Euclidean space
using the matrix Log function, which makes it possible to directly induce the
Euclidean metric on P, called the Log-Euclidean metric [16]. Then, the Log-
Euclidean distance can be defined as,

Drg(T1, T2) = [[Log(T1) — Log(T2)|| (14)
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where ||.|| is the Euclidean norm. The LE-mean on a set of SPD matrices, is
obtained by minimizing the sum of the squared LE distances which leads to a
closed form solution

n
Mg = Exp()  Log(T;)) (15)
i=1
This closed form expression can be rewritten in a recursive form for more efficient
computation. Let My, be the Log-Fuclidean mean in the nt" iteration. When the
(n+1)%¢ tensor, say Tpy1 is added, the current mean can be recursively updated
using the following equation,

n
Mut1 = El’p(n + 1L09(Mn) + Log(TnJrl))' (16)

n+1
We were made aware of this recursive form having appeared in [I7] by one of
the reviewers which was not known to us at the time of this submission.

3 Experiments

3.1 Performance of the Recursive Estimators

To justify the performance of the recursive estimators, we first generate iid sam-
ples from the Log-normal distribution [21I] on Ps; with the expectation at the
identity matrix. Then, we input the 100 random samples sequentially to all esti-
mators including the recursive karcher expectation estimator (RK EFE), Karcher
mean (K M), recursive KLy mean (RKLS), non-recursive K Ls (KLS) mean,
recursive Log-Euclidean mean (RLEM) and the non-recursive Log-Euclidean
mean (LEM) respectively. To compare the accuracy of RKEE and KM, we
evaluate the error of the estimator using the squared distance in Equation
between the ground truth (the identity matrix) and the computed estimate. The
accuracy test of the remaining algorithms is not included because for KLs and
Log-Fuclidean “metrics” , the recursive and non-recursive algorithm will gen-
erate the exact same results. Also, the computation time for each step (each
sample) is recorded. For comparison, we have the same settings for all the mean
computation algorithms. We run the experiment 20 times and plot the average
error and the average computation time at each step in Figure [l In Figure [
(a), we see that the accuracy of computed mean is nearly the same for both the
non-recursive Karcher mean and the recursive Karcher expectation estimators
after they are given 10 samples. The computation time (in CPU seconds on an
1-7, 2.8GH Z processor) for the Karcher mean however increases linearly with
the number of steps, while that for the recursive Karcher expectation estimator
is nearly a constant and far less than the non-recursive case. This means that
the recursive Karcher expectation estimator is computationally far superior es-
pecially for large size problems where data is input incrementally, for example
in algorithms for segmentation, clustering, classification and atlas construction.
Similar conclusions can also be drawn in Figure [ (¢) and (d), where for se-
quentially input data the recursive mean algorithm for K L, divergence and
Log-Euclidean mean are much more efficient than their own batch versions.
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Fig. 1. Accuracy and speed comparisons of the recursive versus non-recursive mean
computation algorithms for data on Ps. Figure (a) is the mean error of the Karcher
mean (red dashed line) and the recursive Karcher expectation estimator (blue solid
line) for each step. Figures (b) (c) (d) are the comparisons of computation time (in
seconds) between the recursive (red dashed line) and non-recursive (blue solid line)
mean computation algorithms for different “metrics” respectively. Results for the Rie-
mannian metric are shown in Figure (b), K Ls in (c), Log-Euclidean in (d) respectively.

3.2 Application to DTT Segmentation

In this section, we present results of applying our recursive algorithms to the
DTT segmentation problem. In [I3], the classical levelset based segmentation
algorithm [2] was extended to the field of diffusion tensors. In this algorithm,
based on a piecewise constant model, the segmentation procedure became a EM
like algorithm, where at each iteration, the mean tensor is computed over each
region and the region boundary is then evolved based on the mean tensor. In
this section, we use this algorithm to segment DTIs, and plug in different tensor
field mean computation techniques for comparison.

Firstly, experiments on DTI segmentation of synthetic datasets is presented
here. We manually generated an image region of size (64 x 64) which contains two
different kind of tensors (differing in orientation, one vertical and another hori-
zontal). Then DW-MR signal is generated based on [22] with 5 different level of
Riccian noised added to the DW-MR signal ¢ = 0.1,0.15,0.2,0.25, 0.3, where o2
is variance of the Gaussian noise added to the real and image part of the DW-
MR signal. DTIs are constructed by using the technique in [23]. Exact same
dataset and same setting are used for all six methods. The initialization curve
overlaid on a noisy dataset is depicted in Figure2] (a). To evaluate the segmenta-
tion result, the dice coefficient between the ground truth segmentation and the
estimated segmentation are computed. These results are shown in Figure [2 with
Figure (b) depicting the dice coefficients and Figure (¢) showing the comparison
of the running times. From the Figure (b) we can see that the segmentation
accuracies are very similar for the recursive and non-recursive methods for the
same “distance metric”. For different “distance metric”s, result of the Rieman-
nian (GL invariant) metric is the most accurate, since the GL invariant metric is
the natural metric on P,. In Figure 2l we can find that segmentation using the
KM takes significantly longer time than other methods, this is because there
is no closed form computation formula for Karcher mean on P,, and hence the
Karcher mean computation is very time consuming which can also be seen in
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Table[dl The recursive Karcher expectation estimator is about 2 times faster and
has the similar accuracy. For KL, and Log-Euclidean “metrics”, the time saved
by the recursive method is not so significant as for the GL-invariant metric. This
is because, although the mean computation time for the recursive method is at
least one tenth of the non-recursive method (0.01 versus 0.1 in Table[d]), the CPU
time used for curve evolution is about 1 ~ 4 seconds which makes the savings in
total segmentation time not significant. From these results we can find that the
RKEE is the most attractive from an accuracy and efficiency viewpoint.

W RKEE
B KM
M RKLS
mKLS
W RLEM
W LEM

I R ]

025 03 0.1 0.5

01 0.15 0.25 03

(b) (c)

Fig. 2. Results for the DTT segmentation experiments on the synthetic dataset. Figure
(a) is the initialization overlaid on the synthetic dataset at one of the noise levels
used in the experiments. Figure (b) is the segmentation accuracy evaluated by the dice
coefficient of the segmentations from all the methods at different noise levels. Figure
(c) is the total segmentation time (in seconds) for all methods at different noise levels.

Table 1. Time (in seconds) for mean computation in the DTI segmentation on syn-
thetic dataset

Noise Level RKEE KM RKLS KLS RLEM LEM

0.1 0.01 075 0.01 0.12 0.01 0.13
0.15 0.007 1.02 0.006 0.23 0.01 0.15
0.2 0.02 155 0.01 042 0.005 0.22
0.25 0.01 222 0.01 0.63 0.006 0.28
0.3 0.01 4.52 0.008 0.55 0.01 0.45

For the real data experiment, the DTT are estimated [13] from a DW-MR
scan of a rat spinal cord. The DW-MR data were acquired using a PGSE with
TR = 1.5s, TE = 28.3ms, bandwidth = 35 Khz, 21 diffusion weighted images
with a b-value of 1250s/mm? were collected. The image size is 128 x 128 x 10.
We used the same initialization for each segmentation. We applied all of the six
methods (recursive and non-recursive for each of the three “distance” measures)
to perform this experiment. In order to compare the time efficiency, we report the
whole segmentation running time, including the total time required to compute
the means. Table 2] shows the result of this comparison, from which we can
find that it is much more efficient to use the recursive mean estimator in the
segmentation than using the batch mean estimator. Especially, in the case of the



Recursive Karcher Expectation of SPD Tensors 399

Karcher mean, which has no closed form formula and takes nearly half of the total
reported segmentation time, whereas, using the recursive Karcher expectation
estimator makes the computation much faster, and also significantly reduces
the total segmentation time. The segmentation results are depicted in Figure 3]
for each method. Each (3, 3) diffusion tensor in the DTT data are illustrated as
an ellipsoid whose axis directions and lengths correspond to the eigen-vectors
and eigen-values respectively. From the figure we can see that the segmentation
results are visually similar to each other, while our recursive Karcher expectation
based method takes much less time which would be very useful in practice.

Table 2. Timing in seconds for segmentation of grey matter in a rat spinal cord

Segmentation Method RKFEE KM RKLS KLS RLEM LEM
Mean computation time 0.02 3.56 0.01 0.56 0.01 0.4
Total segmentation time 5.09 8.13 3.41 4.41 545 5.82

Fig. 3. Segmentation results of grey matter in a rat spinal cord for 6 different methods.
Figure (a) is RK EFE based segmentation. Figure (b) is segmentation using the Karcher
mean K M. Figure (c) and (d) are results for the recursive and non-recursive K L, mean
estimators respectively. Figure (e) and (f) are results for the recursive and non-recursive
Log-Euclidean mean respectively.

A second real data set from an isolated rat-hippocampus was used to test
the segmentation algorithms. Figure [ depicts the segmentation of the molec-
ular layer in the rat hippocampus. For the sake of space, we present only the
segmentation results from the recursive algorithms presented in this paper and
not the non-recursive counterparts as their results are visually similar and the
key difference is in the time savings.
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Fig. 4. Segmentation results of the molecular layer in a rat hippocampus for 3 different
methods. Figure (a) RK EFE based segmentation. (b) Recursive K Ls based segmenta-
tion (c) Recursive Log-Euclidean based segmentation.

4 Conclusion

In this paper, we presented a novel recursive Karcher expectation estimator
(RKEE) on P,, which can be used to recursively estimate the expectation of the
data distribution by taking data input sequentially. We proved that under the
symmetric distribution assumption, the RKEE is an unbiased estimator and it
converges (weakly) to the Karcher expectation, which to our knowledge has never
been proved before. In effect, we proved the Law of Large Numbers for P, for
samples drawn from symmetric distributions. Recursive algorithms to compute
the K L; mean and Log-Euclidean mean are also presented in the paper. The
synthetic and real data experiments with comparison demonstrated the efficiency
of our proposed method.
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