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ABSTRACT

The unscented Kalman filter (UKF) was recently introduced

in literature for simultaneous multi-tensor estimation and

tractography. This UKF however was not intrinsic to the

space of diffusion tensors. Lack of this key property leads

to inaccuracies in the multi-tensor estimation as well as in

tractography. In this paper, we propose an novel intrinsic

unscented Kalman filter (IUKF) in the space of symmetric

positive definite matrices, which can be used for simultaneous

recursive estimation of multi-tensors and tractography from

diffusion weighted MR data. In addition to being more ac-

curate, IUKF retains all the advantages of UKF for instance,

multi-tensor estimation is only performed in the places where

it is needed for tractography, which would be much more

efficient than the two stage process involved in methods that

do tracking post diffusion tensor estimation. The accuracy

and effectiveness of the proposed method is demonstrated via

real data experiments.

1. INTRODUCTION

Diffusion Weighted MR Imaging (DW MRI) is the technique

that can measure the local constrained water diffusion proper-

ties in different spatial directions in MR signals and thus infer

the underlying tissue structure. It is a unique non-invasive

technique that can reveal the neural fiber structures in-vivo.

The local water diffusion property can be described either

via a diffusivity function or a diffusion propagator function.

The diffusivity function can be estimated from the DW-MR

signals and represented by a 2nd order tensor at each image

voxel yielding the so called Diffusion Tensor Imaging (DTI)

pioneered in [1]. It is now well known that DTI fails to ac-

curately represent locations the data volume containing com-

plex tissue structures such as fiber crossings. To solve this

problem, several higher order models were proposed such as

[2, 3, 4].

To further reveal the fibrous structures such as brain white

matter, fiber tracking methods were proposed to analyze the
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connectivities between different regions in the brain. Existing

fiber tracking methods fall mainly in two categories, deter-

ministic and probabilistic. One popular deterministic track-

ing method is the stream line method [5, 6], where the track-

ing problem is tackled using a line integration. The deter-

ministic tracking method can also based on the (Riemannian

or Finsler) geometry imposed by the diffusivity function [7]

where the tracking problem is posed as a shortest path prob-

lem. In probabilistic fiber tracking methods [8, 9, 10], a prob-

abilistic dynamic model is first built and then a filtering tech-

nique such as particle filter is applied. Most of the exist-

ing fiber tracking methods are based on two stages namely,

first estimating the tensors from DWI and then tracking using

these estimated tensors.

Recently, in [11] a filtered multi-tensor tractography

method was proposed in which the fiber tracking and the

multi-tensor reconstruction was performed simultaneously.

There are mainly two advantages of this approach: (1) The

reconstruction is performed only at locations where it is nec-

essary, which would significantly reduce the computational

complexity compared to the approaches that first reconstruct

whole tensor field and then apply tractography, (2) fiber track-

ing is used as a regularization in the reconstruction i.e., the

smoothness of the fiber path is used to regularize the recon-

struction. However, in [11] the filtering is applied only to

the tensor features (major eigen vectors etc.) all of which

have strict mathematical constraints that ought to be satisfied

but not all of the constraints were enforced. For example,

the constraint on eigen vectors to lie on the unit sphere was

not enforced. In general it would be more favorable to track

the full tensor and enforce the necessary constraints. It is

known that diffusion tensors are in the the space of sym-

metric positive definite(SPD) matrices denoted as Pn, which

is not a Euclidean space but a Riemannian manifold. Vec-

tor operations are not available on Pn. So algorithms that are

based on vector operations can not be applied directly to these

spaces, and non-trivial extensions are needed. In this paper,

we propose a novel intrinsic unscented Kalman filter on Pn,

which to the best of our knowledge is the first extension of
the unscented Kalman filter to Pn. We apply this filter to
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both estimate and track the tensors in the multi-tensor model

using the intrinsic formulation to achieve better accuracy as

demonstrated through experiments. We perform real data

experiments to demonstrate the accuracy and efficiency of

our method.

The rest of the paper is organized as follows: the intrin-

sic unscented Kalman filter is described in section 2, where in

subsection 2.1 the basic geometric properties are briefly in-

troduced, followed by a novel dynamic model defined for the

multi-tensor model. We then present the intrinsic unscented

Kalman filter algorithm and finally the experiments are pre-

sented in 3.

2. INTRINSIC UNSCENTED KALMAN FILTER FOR
DIFFUSION TENSORS

In this section, we will describe an intrinsic unscented

Kalman filter to track diffusion tensors which lie in the in

the space of n × n symmetric positive definite(SPD) matri-

ces denoted by Pn. Firstly, we will give a brief introduction

of Riemannian geometry on Pn and the readers are referred

to [12] for further details. The dynamic model and a novel

intrinsic unscented Kalman filter based on the Riemannian

geometry on Pn will then be presented in the following sec-

tions.

2.1. Riemannian Geometry on Pn

Pn, the space of n×n SPD matrices, is a smooth manifold and

can be represented as a quotient space Pn = GL(n)/O(n)
where GL(n) denotes the General Linear group (the group

of n × n non-singular matrices) and O(n) denotes the space

of n × n orthogonal matrices. So the natural way to move

on Pn is by using the GL group action. Let X ∈ Pn, g ∈
GL(n), the group actiong applied to X is X[g] = gXgt.

At each point X ∈ Pn there is a tangent space denoted by

TXPn which can be identified with a vector space Sym(n) –

the space of n × n symmetric matrices. For tangent vectors

U and V ∈ TXPn the intrinsic inner-product/metric can be

defined as

< U,V >X= tr(X−1/2UX−1VX−1/2). (1)

With this metric the distance between two points X,Y ∈
Pn can be defined as the length of the geodesic in the manifold

between X,Y, which can be written in a closed form

dist(X,Y)2 = tr(log2(X−1Y)) (2)

where log is the matrix log function. The exponential map

in Pn at a certain point X ∈ Pn denoted by ExpX(·)
maps a tangent vector V ∈ TXPn rooted at the origin

to a geodesic in the manifold. That is, the curve segment

γ(t) = ExpX(tV), t ∈ [0, 1] is a geodesic from γ(0) = X
to ExpX(V). The Log map (LogX(·)) is the inverse of the

Exponential map. The Exponential and Log map on Pn are

given by ExpX(V) = X1/2 exp(X−1/2VX−1/2)X1/2and

LogX(Y) = X1/2 log(X−1/2YX−1/2)X1/2 where X,Y ∈
Pn, V ∈ TXPn, and log and exp denote the matrix exp and

log operators.

The extension of the arithmetic mean in the Euclidean

space to the Riemannian manifold is the Karcher mean – an

estimator that minimizes the sum of squared distances. In Pn

the Karcher mean of set of elements Xi ∈ Pn is

μ∗ =
∑̂

i
Xi = argminμ

∑
i

dist2(Xi, μ) (3)

This optimization can be computed using a gradient based

technique.

For a certain matrix-valued random variable X ∈ Pn, the

intrinsic expectation can be defined similarly to the Karcher

mean,

E(X) = argminY

∫
Pn

dist2(X,Y)dP(X) (4)

, where dP (X) is the probability measure. This expectation is

called Karcher expectation. The matrix-valued random vari-

able X can then be projected to TE(X)Pn, and the covariance

matrix can be defined in this tangent space.

2.2. The State Transition and Observation Models

The state transition model on Pn in this paper is based on
the GL operation and the LogNormal distribution. For the
bi-tensor (sum of two Gaussians) model, the state transition
model at step k is given by,

D
(1)
k+1 = Exp

FD
(1)
k

Ft(v
(1)
k )

D
(2)
k+1 = Exp

FD
(2)
k

Ft(v
(2)
k )

(5)

where, D
(1)
k , D

(2)
k are the two tensor states at step k, F is

the state transition GL based operation, v
(1)
k and v

(2)
k are

the Gaussian distributed state transition noise for D
(1)
k and

D
(2)
k in the tangent space T

D
(1)
k

P3 and T
D

(2)
k

P3 respectively.

Here we assume that the two state transition noise models

are independent from each other and the previous states. The

covariance matrices of the two state transition noise models

are Q
(1)
k and Q

(2)
k respectively. The covariance matrix Q

(i)
k

i = 1, 2 is a 6 × 6 matrix defined for the tangent vectors in

T
D

(1)
k

P3. Note that Q
(i)
k is not invariant to GL coordinate

transform on Pn. Assume a random variable X = Expμ(v)
in Pn, where v is a random vector from a zero mean Gaus-

sian with Q being the covariance matrix. Then, after a GL
coordinate transform g ∈ GL(n), the new random variable

Y = gXgt = Expgμgt(u). The covariance matrix of u is

Q(g) = (g ⊗ g)−1Q(g ⊗ g)−t (6)
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where ⊗ denotes the Kronecker product. In this paper, we first

define the covariance matrix at the identity QI3×3 = qI6×6,

where q is a positive scalar. And the covariance matrix at

point X can be computed using Eq. 6 by setting g = X
1
2 .

With this definition the state transition noise is independent

with respect to the system state.

The observation model is based on the bi-tensor diffusion

model.

S
(n)
k = S0(e

−bng
t
nD

(1)
k gt

n + e−bng
t
nD

(2)
k gt

n) (7)

where gn denotes the direction of n-th magnetic gradient, and

bn is the corresponding b-value, and S
(n)
k is the MR signal for

n-th gradient at iteration step k. The covariance matrix of the

observation model for all the magnetic gradients is a diagonal

matrix denoted by R. This assumes that the measurements

from distinct gradient directions are independent.

2.3. The Intrinsic Unscented Kalman Filter

Just as in the standard Kalman filter, at each iteration step

of the unscented Kalman filter [11] there are two stages, the

prediction and update stages respectively. In the prediction

stage, the state of the filter at the current iteration is predicted

based on the result from the previous step and the state tran-

sition model. In the update step, the information from the

observation at the current iteration is used in the form of the

likelihood to correct the prediction. Since the states are now

diffusion tensors which are in the space of Pn, where no vec-

tor operations are available, we need a non-trivial extension

of the Unscented Kalman filter, especially for the prediction

stage to be valid on Pn.
To begin with, we define the augmented state for the bi-

(diffusion) tensor state at iteration step k to be

Xk = [u
(1),t
k ,u

(2),t
k ,v

(1),t
k ,v

(2),t
k ]t (8)

where v
(i)
k i = 1, 2 is the state transition noise vector for

diffusion tensor state D
(i)
k and u

(i)
k = Log

EK(D
(i)
k )

(D
(i)
k )

which is the representation of the state random variable in the

tangent plane at its Karcher expectation(EK(·)). Xk is zero

mean and with covariance matrix denoted by Pa
k. The covari-

ance matrix for the state [u
(1),t
k ,u

(2),t
k ]t is denoted by Pk,DD.

Note that Pa
k is a block-wise diagonal matrix composed from

Pk,DD, Q
(1)
k and Q

(2)
k .

In the prediction stage, 2L + 1 weighted samples from
the distribution of Xt

k are first computed by a deterministic
sampling scheme given below. Here, L = 24 and denotes the
dimension of Xt

k.

Xk,0 = 0, w0 = κ/(L+ κ) (9)

Xk,j = (
√

(L+ κ)Pa
k)j , wj = 1/2(L+ κ) (10)

Xk,j+L = −(
√

(L+ κ)Pa
k)j , wj+n = 1/2(L+ κ) (11)

where wj is the weight for the corresponding sample, κ ∈
R is a parameter to control the scatter of the samples,

and (
√

(L+ κ)Pa
k)j is the j-th column vector of matrix√

(L+ κ)Pa
k. Since samples Xk,j = [u

(1),t
k,j ,u

(2),t
k,j ,v

(1),t
k,j ,v

(2),t
k,j ]t

are generated from the joint distribution of posterior and state

transition at frame k, we can get the samples from the dis-

tribution of prediction in frame k + 1 based on Xk,j through

a two-step procedure. First we can get the samples from

the posterior D
(i)
k,j = Exp

D̂
(i)
k

(u
(i)
k,j) where D̂

(i)
k is the state

estimate from the last iteration (the estimator of EK(D
(i)
k )).

And then the samples from the predicted distribution can be

generated based on D
(i)
k,j and v

(i)
k,j , D(i)

k+1,j = Exp
D

(i)
k,j

(v
(i)
k,j)

where D(i)
k+1,j denotes the j-th sample from the distribution

of the prediction. The predicted mean is computed as the

weighted Karcher mean, D̂(i)
k+1 =

∑̂
jwjD(i)

k+1,j The pre-

dicted covariance of the states is computed in the product

space TD̂(1)
k+1

P3 × TD̂(2)
k+1

P3, Pk+1,DD =
∑

j wjUjU t
j where

U t
j = [LogD̂(1)

k+1

(D(1)
k+1,j), LogD̂(2)

k+1

(D(2)
k+1,j)] is a concatena-

tion of the two vectors obtained from the Log-map of each

predicted sample.

Applying the observation model defined in Equation 7 to

the predicted state samples we get the predicted vector of MR

signals for different magnetic gradients denoted by Sk+1,j .

Because this is in a vector space, we can use standard vector

operations to compute the predicted mean Ŝk+1 as the average

of Sk+1,j . Using the observation noise covariance R, the pre-

dicted observation covariance can be computed as Pk+1,SS =

R+
∑

j wj(Sk+1,j−Ŝk+1)(Sk+1,j−Ŝk+1)
t. Also the cross-

correlation matrix between the observation and the states is

given by, Pk+1,DS =
∑

j wj(Uj(Sk+1,j − Ŝk+1)
t)

In the update step, the Kalman gain is computed as

Kk+1 = Pk+1,DSP−1
k+1,SS. Knowing the Kalman gain we

can update of the states and covariance which are given

by: D̂
(i)
k+1 = ExpD̂(i)

k+1

z
(i)
k+1and Pk+1,DD = Pk+1,DD −

Kk+1Pk,SSKt
k+1where [z

(1),t
k+1 , z

(2),t
k+1 ]

t = Kk+1(Sk+1 −
Ŝk+1), and Sk+1 is the observation (MR signal vector) at

step k + 1.

3. EXPERIMENTS

To validate our tractography, we applied IUKF to HARDI

scans of rat cervical spinal cord at C3 C5. In this experiment,

8 different rats were included 6 of them healthy and 2 in-

jured with the injury in the thoracic spinal cord. The HARDI

scan for each rat was acquired with 1 s0 image (taken with

b closed to zero), and 21 different diffusion gradients with

b = 1000s/mm2, Δ = 13.4ms and δ = 1.8ms. The voxel

size of the scan is 35μm×35μm×300μm, and the image res-

olution is 128x128 in the x−y plane and in the z-direction the

resolution is 24 to 34. All HARDI datasets where aligned into
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Fig. 1. Fiber tracking results on real datasets. Figure (a) is the region of

interest overlayed with the S0 image. Figure (b) & (c) are the fiber tracking

result of a healthy (injured) rat overlayed on S0 where the fibers are colored

by its local direction with xyz being encoded by RGB.

Fig. 2. Biomarkers captured by computing density map for each fiber bun-

dle. Figure (a) & (b) show a sample slice of fiber density maps obtained for

each control and injured rats, respectively. Figure (c) is the region in which

the p-value is less than 0.005, overlaid on the S0 image.

the same coordinate system by a similarity transform before

tracking. To initialize the algorithm, for each scan we first

placed a seed point at each voxel of the grey matter, and then

a 2nd order tensor estimation is employed as an initializa-

tion for the algorithm. In the experiment, various parameters

were set to: the state transition noise variance in Equation 5

Q1 = Q2 = 0.1I, the observation noise variance R = 0.03I
and the size of each tacking step δt = 0.01mm. The algo-

rithm stops if the angle between two consecutive tangent vec-

tors becomes larger than 60 degree or the fiber tract arrives at

the boundary of the spinal cord.

The fiber bundle of interest is the motoneuron which starts

from the gray matter and ends at the boundary of the spinal

cord. To visualize the motoneuron fiber bundle, we took cor-

responding ROIs such that only the fiber passing through the

ROIs are displayed. The results are shown in Figure 2, where

we can find fiber bundles starting from the gray matter and

end at the boundary of the spinal cord. The differences be-

tween the injured and control rats are not easily seen directly.

To visualize the difference between the healthy and injured

rats, we first computed the axonal fiber density map for each

rat by counting the number of fibers passing through the 3-by-

3 neighborhood of each voxel. We then non-linearly deform

the density map to a spinal cord atlas derived from HARDI

data [13] and do voxel-wise t-test analysis. The result are

shown in the Figure 2, where we can find significant differ-

ences between the healthy and the injured rats in the motoneu-

ron region, which demonstrates the effectiveness of our track-

ing method.

4. CONCLUSION

We have presented a novel intrinsic unscented Kalman filter

for simultaneous estimation of multi-tensors and smooth

fiber tracking. The key difference between existing un-

scented Kalman filter based algorithm for tractography and

the method presented here is that our technique makes use

of the group operations on the manifold of diffusion tensors,

which is a Riemannian manifold and not a vector space and

hence vector space operations if used are invalid on such a

space. We tested the algorithm on several data sets includ-

ing real rat spinal cords with and without injury. We also

depicted the differences caused in the tracts due to the injury

and quantified them via axonal density measure. Future work

will involve further testing and quantification on several real

data sets and statistical analysis.
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