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Abstract. This paper proposes a novel method for computing linear basis images
from tensor-valued image data. As a generalization of the nonnegative matrix
factorization, the proposed method aims to approximate a collection of diffusion
tensor images using nonnegative linear combinations of basis tensor images. An
efficient iterative optimization algorithm is proposed to solve this factorization
problem. We present two applications: the DTI segmentation problem and a novel
approach to discover informative and common parts in a collection of diffusion
tensor images. The proposed method has been validated using both synthetic and
real data, and experimental results have shown that it offers a competitive alter-
native to current state-of-the-arts in terms of accuracy and efficiency.

1 Introduction

In this paper, we introduce the novel notion of nonnegative factorization of tensor fields
and its application to the segmentation of diffusion tensor images (DTI). Tensor images
(or tensor fields) abound in medical imaging applications, with well-known examples
such as DTIs, conductivity tensor images (CTI) and elasticity tensors in Elastography.
There is an increasing demand for a principled and versatile method that can auto-
matically extract important features from single as well as multiple tensor images, and
this paper takes a step forward in this direction by investigating the general factorization
problem for tensor fields. Specifically, we formulate the factorization as an optimization
problem, and as the main technical contribution, we present an iterative algorithm that
can efficiently and reliably optimize the objective function and compute good-quality
factorizations.

Matrix factorization in the form of factoring a data matrix V into a product of the
basis matrix W and the coefficient matrix H appears frequently in computer vision and
image processing. Examples include the principal component analysis (PCA) and the
Tomasi-Kanade factorization from multi-view 3D structure recovery. Algebraically, the
factorization attempts to “discover” the linear subspace spanned by the columns of W
that can be used to approximate the data given as the columns of V. Instead of the full
subspace, the linear model can be further constrained by requiring that the data vectors
belong to (or can be approximated by) the cone generated by the columns of W. Since
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a point in a cone can be written as a nonnegative linear combination of the cone’s gen-
erators, this gives rise to the nonnegative matrix factorization (NMF) first introduced in
[7]. Specifically, using images as data, the matrices appeared in an NMF are all required
to have nonnegative components. While the unconstrained matrix factorization admits
a comparatively straightforward solution using linear algebra, nonnegative matrix fac-
torization is generally more difficult to solve as its objective function is non-convex and
there exists no known linear algebraic methods that can compute its solution in closed
form. Nevertheless, the optimization is not particularly involved as the nonnegative con-
straint can be easily enforced, and NMF is almost always solved using an alternating
sequence of nonnegative linear least squares with variables in W and H separately.
More importantly, the nonnegativity constraint has been argued in the original paper [7]
to be more capable, compared with the unconstrained factorization, of capturing fea-
tures that are common among the data. In particular, the columns of the basis matrix W
can be considered as the discovered common parts among the input data, and the coeffi-
cient matrix H provides the weights for reconstructing each input data using these parts.
The power and versatility of NMF have been demonstrated to various degrees by a wide
range of successful applications that include data clustering [2], parts discovery [9] and
MR image analysis [6].

The proposed nonnegative factorization of tensor-valued images is an extension of
the nonnegative matrix factorization method above. In our context, components in the
matrices V and W are represented as symmetric positive semi-definite (PSD) tensors
of rank two and H is the coefficient matrix with nonnegative real components. In par-
ticular, the nonnegativity constraint in our more general setting has now acquired two
different realizations: the nonnegative constraint on the components of H as in the origi-
nal NMF and the generalized nonnegative constraint on the components of W that they
belong to the space of PSD(n) of n × n symmetric positive semi-definite matrices.
Geometrically, this corresponds to replacing the nonnegative real line (intensity values)
with the space PSD(n) (diffusion tensors), and it is their respective cone structures
that permit us to formulate nonnegative factorization using these spaces. While our ex-
tension is easy to understand conceptually, the resulting optimization problem in our
case is considerably more difficult to solve because of the generalized nonnegative con-
straint on W and the dimension of PSD(3). The former requires generalized matrix
inequalities to enforce the constraint [1] and the latter introduces a large number of
variables in the objective function. Therefore, a major portion of this paper is devoted
to an optimization algorithm that can reliably and efficiently compute the factorization.

Having overcome this computational hurdle, we will next show that the proposed
tensor images factorization method can be successfully applied to segmentation prob-
lems for single and multiple DTI images. For a single image, the data matrix V is an
1×n array of PSD tensors, and a direct clustering on the coefficient matrix H gives the
segmentation. For multiple tensor images, the basis matrix W gives as before a “part-
decomposition” of the collection, and the common parts given as the columns of W
can usually be realized as tensor fields with local support. In the current medical imag-
ing literature, algorithms that segment DTI images can be broadly classified into two
categories, the level-set based methods (e.g., [16, 8]) and the methods based on com-
binatorial optimization such as graph cuts [17]. In terms of its underlying motivation
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and numerics, our factorization-based method offers a completely different approach to
the segmentation problem. We have validated the proposed method using both synthetic
and real tensor images. Preliminary segmentation results from single and multiple DTI
images have indicated that the proposed factorization-based approach is a viable and
competitive alternative method for segmenting tensor images.

2 Preliminaries

Given an n × m non-negative matrix V, each of whose column vi represents an input
image, non-negative matrix factorization (NMF) [7] attempts to factor it into two matri-
ces with non-negative components, V ≈ WH, where W denotes the n×r basis matrix
and H denotes the r ×m coefficient matrix. According to the geometric interpretation
elucidated in [3], NMF determines a cone ΣW = {x|x =

∑r
j=1 hjwj , hj ≥ 0} that

approximates the input images with the basis elements (or generators of ΣW) wj given
by the j-th column of W.

For tensor-valued images, there is a d× d symmetric, positive semi-definite matrix
associated to each pixel (or voxel). d = 3 for diffusion tensor images. The mathematics
for nonnegative factorization of tensor images is straightforward as it only requires a
cone structure that is provided by PSD(d), the space of d×d symmetric positive semi-
definite matrices. A collection of m tensor images of size n can be arranged into a

block matrix V =

V11 · · · V1m

...
. . .

...
Vn1 · · · Vnm

, where Vki ∈ PSD(d), k = 1, . . . , n and i =

1, . . . ,m. Each of the m columns represents one tensor image. As before, nonnegative
factorization for tensor images attempts to factor V into a product of the basis matrix
W the coefficient matrix H whose elements are non-negative real numbers:

V ≈ W ∗H =

W11 · · · W1r

...
. . .

...
Wn1 · · · Wnr

 ∗

h11 · · · h1m

...
. . .

...
hr1 · · · hrm

 , (1)

where the blocks Wij in W are matrices in PSD(d), and the blockwise product ∗ is
defined as

W ∗H =


∑r

j=1 W1jhj1 · · ·
∑r

j=1 W1jhjm

...
. . .

...∑r
j=1 Wnjhj1 · · ·

∑r
j=1 Wnjhjm

 . (2)

r in the above equation is the number of basis elements (generators) used in the fac-
torization, and it is clear that our nonnegative factorization reduces to the usual NMF
when d = 1. We remark that the nonnegative factorization can be considered as a gen-
erative model for the collection of input tensor images as each input tensor image is
approximated by a non-negative linear combination of r columns of W, each of which
can be considered as a tensor image. To determine W,H from the data matrix V, we
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formulate a constrained optimization problem that minimizes the cost function

E(W,H) =
1
2

m∑
i=1

n∑
k=1

‖Vki −
r∑

j=1

Wkjhji‖2
F (3)

with the constraints Wkj � 0 and hji ≥ 0, i = 1, . . . ,m, j = 1, . . . , r and k =
1, . . . , n. � denotes matrix inequality and ‖ · ‖F denotes the Frobenius norm.

3 Algorithm and implementation details

In this section, we present an efficient algorithm that solves the constrained optimization
defined above. While the objective function E(W,H) is not convex, it is convex with
respect to the two block variables W and H. A common approach to solve this type of
constrained optimization problem is the block coordinate descent method [10], and in
particular, we can alternatively fix one block variable and improve the other as shown
in Algorithm 1. Grippo et al [5] have shown that every limit point of the sequence

Algorithm 1 Alternating Non-negative Factorization
Initialize H1 ≥ 0.
For t = 1, 2, . . .

– Wt+1 = argmin
W

E(W,Ht), s.t. Wkj � 0, ∀k, j.

– Ht+1 = argmin
H

E(Wt+1,H), s.t. H ≥ 0.

{Wt,Ht} generated by Algorithm 1 is a stationary point of the optimization problem
defined in (3). Since both sub-problems are convex, our algorithm can easily be shown
to be provably convergent. The details for solving the two sub-problems efficiently will
be discussed below.

3.1 Optimization with respect to the basis matrix W

When H is fixed, the optimization problem (3) reduces to a quadratic semi-definite
programming problem with a large number of positive semi-definite matrices as the
constrained variables. This is a challenging optimization problem without readily avail-
able solvers as most available semi-definite programming solvers such as SeDuMi [11]
and SDPT3 [14] require the linear objective functions. Toh et al. [13] proposed an in-
exact primal-dual algorithm to solve a special class of convex quadratic semi-definite
programming problem. However, their algorithm only deals with a single positive semi-
definite matrix and cannot be directly applied to our optimization problem. Instead, we
will exploit the special feature in our problem that d = 3 is a relatively small num-
ber and design a specific algorithm based on primal-dual path-following interior-point
method to solve this subproblem.
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The primal problem is given by

min
W

1
2

m∑
i=1

n∑
k=1

‖Vki −
r∑

j=1

Wkjhji‖2
F

s.t. Wkj � 0, k = 1, . . . , n, j = 1, . . . , r.

(4)

We introduce the d× d symmetric matrices Zkj associated with the matrix inequalities
Wkj � 0, where k = 1, . . . , n, j = 1, . . . , r. The Lagrangian of problem (4) is then

L(W,Z) =
1
2

m∑
i=1

n∑
k=1

‖Vki −
r∑

j=1

Wkjhji‖2
F −

n∑
k=1

r∑
j=1

Tr(ZkjWkj). (5)

If we take the derivative of L(W,Z) with respect to Wkj and set it to zero, we have

Zkj = −
m∑

i=1

(Vki −
r∑

l=1

Wklhli)hji. (6)

Substituting this expression back into the Lagrangian gives the dual problem

max
Z

m∑
i=1

n∑
k=1

−1
2
‖Vki −

r∑
j=1

Wkjhji‖2
F + < Vki −

r∑
j=1

Wkjhji, Vki >


s.t.

m∑
i=1

(
Vkihji −

r∑
l=1

Wklhjihli

)
+ Zkj = 0

Zkj � 0, k = 1, . . . , n, j = 1, . . . , r.

(7)

For primal-dual interior point method, we use the perturbed Karush-Kuhn-Tucker (KKT)
conditions:

Zkj +
m∑

i=1

(Vki −
r∑

l=1

Wklhli)hji = 0

WkjZkj = νkjI

Wkj � 0, Zkj � 0
k = 1, . . . , n, j = 1, . . . , r

(8)

where νkj are positive parameters. Given the current iterate (W,Z), the search direc-
tion (∆W,∆Z) at each interior-point iteration is the solution of the following Newton
system

r∑
l=1

∆Wkl(
m∑

i=1

hlihji)−∆Zkj = Rdkj
:= Zkj +

m∑
i=1

(Vki −
r∑

l=1

Wklhli)hji (9)

HPkj
(∆WkjZkj + Wkj∆Zkj) = σµkjI −HPkj

(WkjZkj + ∆Wkj∆Zkj) (10)



6 Yuchen Xie, Jeffrey Ho, and Baba C. Vemuri

where µkj =< Wkj , Zkj > /d and σ ∈ (0, 1) is the centering parameter. The sym-
metrization scheme HP defined as HP (M) = 1

2 [PMP−1 + P−T MT PT ] is required
here to generate symmetric ∆Wkj and ∆Zkj . Inspired by [12], we choose Pkj =
T
−1/2
kj , where Tkj is the Nesterov-Todd scaling matrix satisfying TkjZkjTkj = Wkj .

The linearization of equation (10) gives

Ekj(∆Wkj) + Fkj(∆Zkj) = Rckj
:= σµkjI −HPkj

(WkjZkj) (11)

where Ekj and Fkj are linear operators. By eliminating ∆Zkj in equations (9) and (11),
we obtain

r∑
l=1

(
m∑

i=1

hlihji)∆Wkl + F−1
kj Ekj(∆Wkj) = Rdkj

+ F−1
kj Rckj

. (12)

Therefore, we just need to solve n linear systems to get ∆W. Each linear system in-
cludes d(d+1)r

2 equations. Because both d and r are small for our problem, these linear
systems can be solved efficiently, and ∆Z can be computed easily using equation (9).
The detail steps of the algorithm is shown in Algorithm 2.

3.2 Optimization with respect to coefficient matrix H

With a fixed W, (3) becomes a convex optimization problem. Since

∂E

∂hji
= −

n∑
k=1

Tr(VkiWkj) +
n∑

k=1

r∑
l=1

Tr(WkjWkl)hli, (13)

setting ∂E
hji

= 0 gives

r∑
l=1

(
n∑

k=1

< Wkj ,Wkl >)hli =
n∑

k=1

< Vki,Wkj > . (14)

Thus we just need to solve a non-negative least squares problem Ar×rHr×m = Br×m

to get hji, where Ajl =
∑n

k=1 < Wkj ,Wkl > and Bji =
∑n

k=1 < Vki,Wkj >,
for all i, j, l. In our implementation, we use the fast active set method proposed by Van
Benthem and Keenan [15] to solve this large-scale nonnegative least squares problem.

Once we have obtained the basis matrix W, we can easily compute the “projec-
tion” of a new diffusion tensor image X = (X1, . . . , Xn)T by solving the following
optimization problem

min
y≥0

n∑
k=1

‖Xk −
r∑

j=1

Wkjyj‖2
F (15)

where each Xk is a diffusion tensor and y = (y1, . . . , yr)T is the nonnegative coeffi-
cient vector. This problem, similar to the subproblem with respect to H above, can also
be efficiently solved using the same fast active set method.
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3.3 Diffusion tensor image segmentation

Because of its relations to K-means [2] and probabilistic latent semantic analysis [4],
nonnegative matrix factorization has been widely used in data clustering, e.g., [19]. In
this section, we formulate the diffusion tensor image segmentation problem as a special
case of our more general nonnegative factorization problem with spatial constraints.

Algorithm 2 Quadratic semi-definite programming for nonnegative factorization
1: Initialization Wkj � 0, Zkj � 0, ∀k, j and τ = 0.9.
2: Convergence test Stop the iteration if the accuracy measure φ is sufficiently small.

φ =

∑n
k=1

∑r
j=1 < Wkj , Zkj >

1 + |pobj|+ |dobj|

where pobj and dobj are values of primal and dual objective functions.
3: Predictor step Compute the predictor search direction (δW, δZ) by choosing σ = 0.
4: Predictor step-length Compute αp = min(1, τα). α is the maximum step length that can

be taken so that for k = 1, . . . , n and j = 1, . . . , r, Wkj +αδWkj and Zkj +αδZkj remain
positive semidefinite.

5: Centering rule Set

σ =

∑
k,j < Wkj + αpδWkj , Zkj + αpδZkj >∑

k,j < Wkj , Zkj >
.

6: Corrector step Compute the search direction (∆W, ∆Z) using

Rckj = σµkjI −HPkj (WkjZkj + δWkjδZkj).

7: Corrector step-length Compute αc similar to step 4 with (δW, δZ) replaced by
(∆W, ∆Z).

8: Update (W,Z) to the next iterate (W+,Z+).

W+
kj = Wkj + αc∆Wkj , Z+

kj = Zkj + αc∆Zkj .

9: Update the step-length parameter by τ+ = 0.9 + 0.08αc.

Specifically, given a diffusion tensor image of size m, we arrange the m tensors in a
row to form the data matrix V = (V1, . . . , Vm). The original nonnegative factorization
problem is modified as

min
W,H

1
2

m∑
i=1

‖Vi −
r∑

j=1

Wjhji‖2
F +

λ

2

∑
(k,l)∈Ω

r∑
j=1

(hjk − hjl)2 (16)

with nonnegative constraints Wj � 0 and hji ≥ 0, for all i, j. The first term is simply
the objective function in (3) given V as a row vector. The second term is the spa-
tial smoothness (soft) constraint that requires neighboring pixels to have similar coeffi-
cients, and in the equation above, Ω denotes the edge set of the discrete image graph,
and λ the coupling parameter. The optimization problem (16) can be solved using the
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same alternating method discussed above as the second term is also quadratic in H.
Once the coefficient matrix H has been determined, we cluster the columns of H to
produce the diffusion tensor image segmentation. In our implementation, we use K-
means for this last clustering step.

4 Experiments

In this section, we present two sets of experimental results. The first experiment is on
diffusion tensor image segmentation using the segmentation algorithm outlined in the
previous section. For the second set of experiments, we work with multiple images,
and the results demonstrated that, as for scalar-valued images, meaningful parts can be
discovered or detected using nonnegative factorization.

4.1 Diffusion tensor image segmentation

Fig. 1. Left: Input tensor field without noise. Right: Segmentation accuracy vs. different levels
of added Gaussian noise N(0, σ) with covariance σ.

Synthetic Tensor Images In this experiment, we test the accuracy of the segmenta-
tion algorithm using synthetic tensor images with various levels of added noise. We first
generate the 32× 32 tensor image T shown in Figure 1 that contains only two tensors:
diagonal matrices diag(0.5, 0.25, 0.25) and diag(0.25, 0.5, 0.25), and this defines the
ground truth of the segmentation. Different levels of Gaussian noise N(0, σ) are added
to the tensor image T to generate noisy tensor images, and we compare the segmenta-
tion accuracy of our method with the segmentation algorithm based on clustering the
pixels using K-means (on the tensors). In this experiment, the segmentation accuracy
is defined by the percentage of correctly segmented pixels, and the comparison across
different noise levels is plotted in Figure 1. The result clearly shows the robustness of
our method when compared with K-means, especially in the presence of substantial
amount of noise.
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Fig. 2. First Row: Spinal cord of a rat. Second Row: Corpus callosum of a rat. Third Row:
Hippocampus of a rat. Columns (a): Diffusion tensor images. (b): Segmentation results using
K-means. (c): Segmentation results using our method. Segments are color-coded.

Diffusion Tensor Images We next present segmentation results on three real diffu-
sion tensor images shown in Figure 2. These are DTI images of the spinal cord, corpus
callosum and an isolated hippocampus of a rat. The data were acquired using a PGSE
with TR=1.5s, TE=28.3ms, bandwidth= 35Khz. Twenty-one diffusion weighted images
with a b-value of 1250s/mm2 were collected. The sizes of the regions of interest for rat
spinal cord, corpus callosum and hippocampus are 71 × 61, 101 × 74 and 71 × 39,
respectively. In this experiment, the number of clusters for these images are four, eight
and seven, respectively, and the number of basis elements (columns in W) is set to five
for all three images. Again, we compared our method with the K-means based segmen-
tation and the results consistent demonstrate that our method can produce anatomically
more accurate and meaningful segmentation than the straightforward K-means cluster-
ing. Finally, we note that both algorithms use K-means for clustering pixels. However,
in our method, K-means is applied only to the coefficient vectors in H, while in the
comparison method, K-means is applied directly to the tensors. While the clustering
power of the nonnegative factorization for matrices are well-known for scalar-valued
data (e.g., [2]), our experimental results provide the first convincing evidence of its
clustering power for tensor-valued data as the two sets of experiments have shown that
there is no reasons to expect that a direct clustering on tensors would produce desired
segmentation results. However, direct clustering on coefficient vectors does yield satis-
factory results.
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4.2 Nonnegative factorization with multiple tensor fields

Fig. 3. (a) Visualization of the data matrix V, each of whose columns represents a 5 × 3 tensor
image. (b) Visualization of the basis matrix W, each of whose columns represents a basis tensor
image.

For a suitable collection of images, it is well-known that NMF has the ability to
automatically determine similar decompositions of the images into their common parts
and provide part-based representations for the images in the collection [3]. In this ex-
periment using synthetic data, we show that nonnegative factorization also has similar
capability for tensor images. Twenty-seven tensor fields with size 5× 3 (15 pixels) are
generated and form the columns of the data matrix V as shown in Figure 3(a). We fac-
tor V into the coefficient matrix H and the basis matrix W shown in Figure 3(b). Our
factorization algorithm correctly determines the nine basis elements (columns of W)
required to form the data matrix V, and the coefficient matrix returned by our algorithm
is a sparse matrix. Furthermore, the L2 factorization error is less than 8.57× 10−10.

Finally, we present a preliminary result on applying our nonnegative factorization
method to automatically discover and segment anatomically important regions from a
collection of 53 rat brain diffusion tensor images. In the preprocessing step, all images
are aligned using similarity transforms, and in each image, a region of interest of size
46×27×7 is manually selected. The left column of Figure 4 displays five sample slices
from the input 3D diffusion tensor images. We apply the factorization algorithm with
r = 5 (five basis elements) to this collection of DTIs, and one sample slice from each of
the five basis images found by the algorithm is shown on the right column in Figure 4.
Important anatomical regions such as white matter, putamen and nucleus accumbens
are clearly represented in the five basis images.

5 Conclusions

This paper introduces the novel notion of nonnegative factorization of single and multi-
ple tensor-valued images. The well-known method of nonnegative matrix factorization
is extended to tensor-valued data, and an algorithm is proposed to efficiently and reli-
ably solve the new factorization problem formulated as an optimization problem with a
non-convex objective function. We have formulated a new approach to DTI segmenta-
tion using the proposed nonnegative factorization, and experimental results have shown
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Fig. 4. Left column: Five sample slices from 53 input rat brain diffusion tensor images. Right
column: Sample slices from the five basis tensor images produced by the proposed nonnega-
tive factorization algorithm. We have enhanced the anisotropy for better visualization. The first,
second and fourth basis images clearly include white matter, putamen and nucleus accumbens,
respectively.
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that our algorithm offers a competitive alternative to currently available methods in
terms of its accuracy and efficiency. Perhaps more importantly, our work has demon-
strated the usefulness and versatility of the notion of nonnegative factorization, now
in the more general setting of tensor-valued images. We believe that this simple yet
powerful notion will find its rightful place in the analysis of tensor-valued images. For
example, it could potentially offer a new and effective approach to simultaneously an-
alyze a large number of diffusion tensor images, an essential task in group studies and
other applications, that can currently be achieved using only a limited number of avail-
able tools, such as the standard statical analysis in Euclidean space or principal geodesic
analysis on Riemannian manifolds [18].
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