
Mixture of Segmenters with Discriminative

Spatial Regularization and Sparse Weight
Selection�

Ting Chen1, Baba C. Vemuri1,��,
Anand Rangarajan1, and Stephan J. Eisenschenk2

1 Department of CISE, University of Florida, Gainesville, FL, USA
{tichen,vemuri,anand}@cise.ufl.edu

2 Department of Neurology, University of Florida, Gainesville, FL, USA
stephan.eisenschenk@neurology.ufl.edu

Abstract. This paper presents a novel segmentation algorithm which
automatically learns the combination of weak segmenters and builds a
strong one based on the assumption that the locally weighted combina-
tion varies w.r.t. both the weak segmenters and the training images. We
learn the weighted combination during the training stage using a dis-
criminative spatial regularization which depends on training set labels.
A closed form solution to the cost function is derived for this approach.
In the testing stage, a sparse regularization scheme is imposed to avoid
overfitting. To the best of our knowledge, such a segmentation tech-
nique has never been reported in literature and we empirically show that
it significantly improves on the performances of the weak segmenters.
After showcasing the performance of the algorithm in the context of
atlas-based segmentation, we present comparisons to the existing weak
segmenter combination strategies on a hippocampal data set.

1 Introduction

Brain MR image analysis and its associated application in the diagnosis and
treatment of brain-based diseases has attracted immense attention in the past
two decades. The segmentation of brain neuroanatomy is one of the key steps in
medical image analysis. For example, researchers are interested in the study of
hippocampal structures due to the critical role they play in many neuro-disorders
including dementia, epilepsy and schizophrenia. In order to avoid the tedium in-
volved in manual segmentation, a technique that is able to automatically segment
the hippocampi from 3D brain MR scans is of great clinical interest.

Several techniques have been proposed in the literature to segment the hip-
pocampus. One direct approach in [1] seeks to build an atlas from the training
images with manual labels and deform it to the test image using a deformable
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registration. However, it has limitations in accuracy for segmenting small struc-
tures like the hippocampus with low contrast intensity boundaries. Alternatively,
there exists a class of methods that achieve more robustness and full automation
by extracting features from the image at each voxel and resorting to machine
learning techniques to label the voxel. In [2], Golland et al. use the support vec-
tor machine (SVM) to classify the features chosen by PCA from a large feature
set. In [3], Morra et al. adopt Adaboost to select the features and resort to the
SVM for classification. Both frameworks obtain relatively good approximation
to the boundary of the hippocampus and the feature selection method simplifies
the experts’ effort in choosing informative features from a large feature set. How-
ever, one still needs to develop a very large feature pool containing potentially
useful features,an non-trivial task in general.

Recently, it was shown that combining multiple atlas based segmentations im-
proves the segmentation accuracy [4,5]. As one of the most popular combination
strategies, majority voting was shown to improve the accuracy and robustness
of weak hypotheses. In [4], Artaechevarria et al. propose an image segmentation
algorithm that combines multiple atlas-based segmenters based on weighted vot-
ing with the weights estimated from the local similarity between each atlas and
the test image. Due to this specific design, the weak segmenters for this algo-
rithm are limited to atlas-based segmentation. Besides, in order for the voting
based technique to work well, a sufficiently large number of atlases are needed
and a robust registration algorithm is required so as to have a relatively accurate
segmentation for each atlas. A different combination strategy called SuperDyn
was proposed by Khan et al. [5], wherein supervised learning was used for com-
puting the weighted combination. Subsequently, dynamic information based on
registration accuracy between the atlas and the test image was employed for the
weight selection. SuperDyn independently estimates the weights for each weak
segmenter at each voxel. However, this is clearly inadequate since it has been
known for long that strong spatial dependencies exist in most real images [6].
Moreover, the aforementioned dynamic selection also restricts this technique to
atlas-based weak segmenters.

In this paper, we propose a novel segmentation algorithm dubbed SegMix
which is different from all of the aforementioned frameworks. Spatial smooth-
ness and boundary discontinuities in the anatomical structures are explicitly
incorporated into a discriminative regularizer in the training stage, resulting in
a general technique capable of utilizing a vast variety of weak segmenters. Seg-
Mix assumes that the combination weights depend not only on the weak learners
but also on the training data. This is analogous to a medical consultation carried
out by a group of doctors on a number of patients. It is well-justified to assume
that each patient’s personal condition has a different effect on the experts’ final
decision. We carefully treat the problem of overfitting (which can occur from
having too many weights) by utilizing the previously mentioned spatial weight
regularization and via a novel non-parametric testing sieve. This makes SegMix
substantially and thematically different from the other combination strategies,
e.g. SuperDyn and Voting, which basically assume that the weights only vary
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w.r.t. the weak segmenters. Due to this novel aspect of our framework, combining
a very small number of weak segmenters can lead to dramatically significant im-
provements which is validated in our experiments. Furthermore, a novel scheme
is imposed in the testing phase, wherein a strong segmenter is constructed by
approximating the test image with a sparse combination of the training data
and only choosing the learned weights corresponding to those sparsely selected
training images. Intuitively speaking, in the training stage, we use a cooperation
mechanism on the weak segmenters so as to achieve the best segmentation for
each training image, while in the testing phase, we use a competition mecha-
nism to select only the relevant images from the training set for a particular
test image. The result is an algorithm driven by “co-opetition” which uses the
previously learned cooperation skills of the competitively selected training data
to let the weak segmenters collaborate and obtain a strong segmentation. Note
that as more expert driven manual delineations become available, they can be
used as weak segmenters in our framework.

2 Methodology

2.1 The Segmentation Mixture Setup

In this section, we present the methodology of our algorithm. We begin with
illustrating the basic framework of the technique in Fig.1. In the training stage,

Fig. 1. Framework of the proposed algorithm

the optimal locally weighted
combination of the weak seg-
mentations are estimated to
best approximate the ground
truth label for each training
image. As shown in the fig-
ure, the weight matrix Wnt is
associated with the nth train-
ing image and tth weak seg-
menter. Since we compute lo-
cal weights, the spatial in-
teractions among voxels are
modeled closely following the
Discriminative Random Field

(DRF) [6]. In the testing stage, we compute the sparse combination of the train-
ing images to approximate the test image and only the learned weights associated
with those selected training images are used to construct the strong segmenter
for that particular test image. The figure shows an example of picking I2 and
IN as the sparse representation of the test image and only the weights associ-
ated with them, W21, . . . W2T and WN1, . . . WNT , are used to construct the final
strong segmenter for test image Y .

Before getting into the details of the algorithm, we first introduce two key
terms that will be used in the rest of this paper.
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Signed Distance Functions (SDF) are used to represent the shape of the
structure in the segmentation. Each weak segmentation output is represented by
a SDF and the locally weighted combination of them corresponds to a strong
segmenter. Several techniques exist in literature for linear combination of SDFs.
In [7], Pohl et al. embed SDFs into the linear space of LogOdds, where addition
and scalar multiplication are in closed form, while in [8] an SDF is mapped to
the square-root density space via a Schröinger wave function, where a variety of
Riemannian operations are easily computed. However, we will resort to a simpler
idea pointed out by Leventon et al. in [9]. They claim that using the signed
distance transform shape representation is tolerant to slight misalignment and
hence a rough alignment of the data during pre-processing will avoid solving for
the general correspondence problem in SDF combination.

A Neighborhood Graph G is computed for each training data to store the
spatial interactions and dependencies between voxels. Given a training sample,
let L(x) be the signed distance transform of the label image and M be the number
of voxels. The M × M -dimensional neighborhood graph matrix G is computed
from the following DRF formulation: G(i, j) = exp(−||(L(xi)−L(xj))||22), where
j ∈ N (i). In 3D, the neighborhood region of the ith voxel N (i) is computed
through 6, 18 or 26-connectivity. This neighborhood graph will be used to gate
the distance between the weights corresponding to the ith and jth voxels.

2.2 Training Stage: Discriminative Spatial Weight Regularization

Our segmentation algorithm takes as input a set of weak segmentation results
and combines them via a regression model. Assume there are T weak segmenters
and the outputs of them are binary images bt(x), t = 1, 2, . . . , T distinguishing
the structures from the background. For a given training image I(x), Φt(x) is
the signed distance transform computed from the tth weak segmentation output
bt(x) and L(x) is the signed distance transform of the ground truth label image,
representing the true segmentation of I(x). The algorithm assumes that L(x) is
the locally weighted combination of Φt(x).

Since the parameters to be optimized depend on both the voxel locations
and the weak segmenters, we solve this minimization problem voxel-wise by re-
arranging each Φt(x) into a column vector and stacking them together column
by column in the M×T matrix Φ̄, where M is the number of voxels in the image.
Let the column vector l be the re-arrangement of L(x) and denote column vector
φi as taken from the ith row of Φ̄, li as the ith entry of l and column vector wi

as the weights associated with φi.
It is well-justified to assume that the weights wi and wj are expected to be

similar if the jth voxel is in the neighborhood of the ith voxel. We therefore adopt
a regularization term based on the pre-computed matrix G, which captures the
similarity of the labels within the neighborhood. We eventually formalize our
cost function in the following:

w∗ = arg min
w

M∑
i=1

||wi · φi − li||22 + λ
M∑

i,j=1

G(i, j)||wi − wj ||22.
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A closed form solution can be derived for this objective function. We start by
expanding the cost function and get

E({wi}) =
M∑
i=1

wt
iφiφ

t
iwi +

M∑
i=1

l2i − 2
M∑
i=1

liw
t
iφi

+ λ
M∑

i,j=1

G(i, j)(wt
iwi + wt

jwj − 2wt
iwj).

With the following notations: (1) Hi = φiφ
t
i, (2) W t = [wt

1, . . .w
t
M ], (3)

Bk = Hk + 2λ(
∑

i=k,j �=1

G(i, j) +
∑

i�=1,j=k

G(i, j))IT×T , (4) pt = [l1φt
1, . . . lMφt

M ]

and after some algebra, the cost function is re-arranged into a matrix form:

E = W t

⎛
⎜⎜⎝

B1 −2λG(1, 2)IT×T . . . −2λG(1, N)IT×T

−2λG(2, 1)IT×T B2 . . . −2λG(2, N)IT×T

. . . . . . . . . . . .
−2λG(N, 1)IT×T −2λG(N, 2)IT×T . . . BN

⎞
⎟⎟⎠ W

− 2ptW +
N∑

n=1

l2n.

We take the derivative of E w.r.t. W and set the result to 0 in order to solve
for the weights. We then have ∂E

∂W = (Dt + D)W − 2pt = 0, with D being the
matrix in the equation above that contains Bk as diagonal. The problem is finally
reduced to solving the following linear system (Dt +D)W = 2pt. Note that since
Dt + D is a sparse matrix, we finally solve a sparse least-squares problem which
can be efficiently performed.

2.3 Testing Stage: Sparse Linear Combination

Assume there are N training images and for each image, we solve for the local
weights W to combine the weak segmenters. We denote by Wnt, the weight
matrix for the nth training image and the tth weak segmenter, which is basically
a single matrix involving the re-arrangement of W that we solved for in the
training stage. To avoid overfitting, in the testing stage, not all the training
results are used. This is similar to the situation when a new patient comes in
for medical consultation, we expect that a good strategy for the experts involves
searching for useful relevant case studies from the old patients in order to arrive
at a consensus diagnosis. Therefore, only a subset of the trained parameters
are helpful in testing. Several techniques can be used to achieve this goal, for
instance the K-Nearest Neighbor (kNN) and the Sparse Representation methods.
The kNN based search for the most similar cases to represent the testing data
will potentially fail when all the training images differ from the test sample.
Besides, one has to resort to a relatively complicated data structure for fast kNN
implementation when the feature dimension is high. Recently, sparsity has been
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investigated for feature selection [10]. Following this philosophy, we compute the
optimal sparse combination of the training images to approximate the test data.

Formally, let A be a matrix with N columns where the ith column contains
the ith training image and let Y be the given test image. To obtain a sparse
combination of training set images, we use an L1 norm regularizer. The problem
is formalized as follows: γ∗ = arg minγ ||Aγ−Y ||22 +α||γ||1, which can be solved
using existing techniques, such as LASSO. The final strong segmenter is then
given by S(x) =

∑N
n=1

∑T
t=1 γnWnt(x)Φt(x).

3 Experiments

In this section, we empirically validate our SegMix algorithm and compare it
with the widely used voting based methods. Our algorithm significantly im-
proves the weak segmentation results given a small number of low-accuracy weak
segmenters.

Hippocampus Data Set: This experiment is performed on a hippocampal data
set containing 60 brain MRI (T1) images, with the right hippocampi manually
segmented by an expert neurologist. We divide the data set into 2 groups. The
first group contains 20 images used in building the multiple atlases. 10-fold cross
validation is applied to the remaining 40 images. The original brain images are
first corrected for intensity inhomogeneity and normalized, then registered to the
same coordinate system using a similarity transformation. Since the hippocampi
are within a certain region of the brain, we therefore define a bounding box that
approximately encloses each hippocampus and only take these ROIs as the input
to our segmentation algorithm. The size of ROI is 56 × 39× 30. We extract the
ROI for each test image by first deforming the brain MRI scan to a labeled brain
template and finding the ROI based on the template information.

Weak Segmenters: Note that any segmentation method is applicable as a weak
segmenter within our framework. However, in order to demonstrate the robust-
ness and performance of our algorithm and compare it to the existing multi-
atlas segmentation methods, we use atlas-based segmentation [1] as the weak
segmenter. We first cluster the 20 images into a set of groups based on the
hippocampal shape information from the labels. The signed distance transform
representation of each shape is mapped to the square-root density space via a
Schrödinger wave function [8]. Hence, each shape corresponds to a single point
on the high dimensional sphere and the similarity between the shapes is com-
puted intrinsically using the geodesic distance on the unit sphere. Armed with
this intrinsic similarity measure, any clustering method may be used here. We
employ affinity propagation [11] since it does not require the number of clusters
to be specified. We get 5 clusters and the atlases/centers for each group are used
for the weak segmentations.

Performance Measure: The evaluation metrics for measuring the performance
of the algorithm used in this paper include the similarity index (known as Dice
coefficient) SIM= 2V(A∩B)

V(A)+V(B) , which computes the overlap of two volumes and
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the difference index DIF= 2|V(A)−V(B)|
V(A)+V(B) , which measures the size difference of the

two volumes. Here V(·) computes the volume. A good segmentation has larger
overlap with the ground truth hence higher similarity index, but lower difference
index.

Experiment Setting: The free parameters involved in our SegMix algorithm
include λ and α for the regularization in the training and testing stages respec-
tively. We (empirically) discovered that the algorithm is not very sensitive to
the particular choice of λ and α, so we set λ = 0.5 and α = 0.5 throughout
the comparison experiments. An 18-connected neighborhood is used for com-
puting the graph G. The nonrigid registration algorithm used for atlas-based
segmentation is Demons, where we use all the default parameter settings, i.e.
all the registrations are performed with the same parameters. Due to the use of
standard defaults, atlas-based segmentation leads to low-accuracy for each weak
segmenter. However, the experimental results indicate that SegMix significantly
improves on those weak segmentations.

Experimental Results: To validate our proposed algorithm, the experiments
are performed on the 3D hippocampal MRI images using (1) SegMix, (2) Global
Weighted Voting (GWV) and (3) Local Weighted Voting (LWV)[4] with 5 weak
segmenters. In the following table, we list the average performance evaluation
for the 10-fold cross validation of the 40 images.

Table 1. The average SIM and DIF indices for SegMix, GWV and LWV

weak SIM final SIM Increased weak DIF final DIF Decreased

SegMix 0.68 ± 0.04 0.80 ± 0.03 17.65% 0.42 ± 0.10 0.09 ± 0.06 78.57%

GWV 0.68 ± 0.04 0.73 ± 0.04 7.35% 0.42 ± 0.10 0.37 ± 0.11 11.90%

LWV 0.68 ± 0.04 0.74 ± 0.04 8.82% 0.42 ± 0.10 0.39 ± 0.10 7.14%

Since better segmentation corresponds to larger SIM but smaller DIF, we
show the increased SIM value and decreased DIF value w.r.t. the weak segmen-
tations. Due to the low accuracy and limited number of the weak segmenters,
the performance of the voting-based methods are poor as expected. We also
present the SIM and the DIF values for both the weak segmentations and the

0 5 10 15 20 25 30 35 40
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0.2

0.4

0.6

0.8

1

weak SIM
final SIM
weak DIF
final DIF

Fig. 2. The figure shows the SIM and DIF for each image
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final strong segmentation and show the improvements of our techniques w.r.t.
the weak segmenters for each test image in Fig.2.

4 Conclusion

In this paper, we introduced a novel weak segmentation combination strategy
based on the assumption that the locally weighted combination varies w.r.t. both
the weak segmenters and the training images. We learned the weighted combi-
nation during the training stage using a discriminative spatial regularization
which depends on training set labels. In the testing stage, a sparse regulariza-
tion scheme was imposed to avoid overfitting. The experimental results indicated
that our algorithm not only outperforms the voting based methods but also sig-
nificantly improves the performances of the weak segmenters.
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