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ABSTRACT

This paper exploits the power of optimal sampling lattices
in tomography based reconstruction of the diffusion propaga-
tor in diffusion weighted magnetic resonance imaging (DW-
MRI). Optimal sampling leads to increased accuracy of the
tomographic reconstruction approach introduced by Pickalov
and Basser [1]. Alternatively, the optimal sampling geome-
try allows for further reducing the number of samples while
maintaining the accuracy of reconstruction of the diffusion
propagator. The optimality of the proposed sampling geome-
try comes from the information theoretic advantages of sphere
packing lattices in sampling multidimensional signals. These
advantages are in addition to those accrued from the use of
the tomographic principle used here for reconstruction. We
present comparative results of reconstructions of the diffusion
propagator using the Cartesian and the optimal sampling ge-
ometry for synthetic and real data sets.

Index Terms— Optimal Sampling Lattices, Diffusion
Propagator, DW-MRI, Tomography

1. INTRODUCTION

Diffusion MRI is a non-invasive imaging technique that ex-
hibits sensitivity to Brownian motion of water molecules
through tissue in vivo. Water molecules exhibit preferred di-
rectional diffusion through tissue rich in white matter fibers.
This directional preference allows one to infer connectivity
patterns as well as changes in them over time that can be used
in various clinical applications. Diffusion tensor MRI (DT-
MRI or DTI), introduced by [2], gives a relatively simple way
of characterizing diffusional anisotropy and predicting the lo-
cal fiber orientation within the tissue from diffusion weighted
MRI data. DTT assumes that the diffusion propagator function
is characterized by an oriented Gaussian probability distribu-
tion function. It is now well known that this model fails to
capture complex geometries caused by crossing, kissing or
splaying fibers that result in orientational heterogeneity [3] in
avoxel. This has spurred the development of improved acqui-
sition techniques and reconstruction methods. By sampling
the diffusion signal on a 3D Cartesian lattice, the g-space
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imaging (QSI) technique, also referred to as diffusion spec-
trum imaging (DSI) [4], uses the Fourier relation between the
diffusion signal and the diffusion propagator (probability den-
sity function (PDF)) P(r) [5]: S(q) = So [zs P(r) e 4™dr
, where r is the displacement vector, q = YJdG, = is the
gyromagnetic ratio, ¢ is the duration of diffusion gradient
and G is the diffusion gradient. The sampling burden in
QSI however makes the acquisition time-intensive and limits
its widespread application. In [3], Tuch et al developed a
clinically feasible approach called high angular resolution
diffusion imaging (HARDI), in which apparent diffusion co-
efficients, D,,,, are measured along many directions. In the
presence of intra-voxel heterogeneity, several studies pro-
posed to represent the diffusivity function using higher order
Cartesian tensors leading to a generalization of DTI [6, 7].
Another class of techniques attempt to capture a compro-
mised version of P(r), the so called g-ball imaging (QBI)
method, in which the radial integral of the displacement
PDF is approximated by the spherical Funk-Radon transform
[3, 8]. Finally, another class of methods that approximate
the intra-voxel heterogeneity using a deconvolution approach
assuming a continuous distribution to capture the mixing
density associated with the fiber population within a voxel,
details of can be found in [9, 10].

In this paper, we propose a model-free approach to recon-
struction of the diffusion propagator at each voxel. The ap-
proach builds on the work in Pickalov and Basser [1], where
in they exploit the Fourier transform relationship between
P(r) and S(q) to develop a tomographic reconstruction of
the propagator at each voxel. By interpolating a relatively
small number of samples from the DW signal in the q-space
onto a regular grid, their approach allows for a tomographic
reconstruction of P(r) using the Fourier transform.

Since P(r), at each voxel (tile), may contain anisotropic
features in any arbitrary direction, it behooves us to choose
a tiling of the space where each tile captures the maximum
radial content of P(r). Optimal tiling of the space results
in voxels that admit a larger inscribing sphere compared to
the traditional Cartesian tiling with cubic voxels. The main
idea in this paper exploits optimal tiling where each voxel is a
rhombic dodecahedron and admits a larger inscribing sphere;
hence, a better resolution of P(r) (i.e., the one with a larger
radius r) is available with the same sampling density as with
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cubic Cartesian tiling. The rhombic dodecahedral tiling cen-
ters form the Face Centered Cubic (FCC) lattice which is
the densest sphere packing lattice in 3-D. As we will see in
the Section 2, this amounts to optimal sampling of the g-space
on a Body Centered Cubic (BCC) lattice which is the key con-
tribution of our work. The optimal sampling in g-space al-
lows us to achieve a better reconstruction due to significantly
smaller ghosting effects in the reconstructed P(r).

Additionally, by using a significantly reduced sample set,
we can maintain the same accuracy as one obtained using a
Cartesian sampling lattice. We present evidence of these ad-
vantages via experiments on synthetic data as well as a real
DW-MRI data.

2. OPTIMAL SAMPLING LATTICES

When sampling a multi-D signal on a given lattice, the spec-
trum of the sampled signal is replicated on the reciprocal
lattice, where the original lattice and reciprocal lattice are
Fourier transform pairs (in the distributional sense). The
spectrum of the signal is contained in the Brillouin zone
which is the Voronoi cell of the reciprocal lattice. The multi-
D version of the Nyquist frequency is the boundary of the
Brillouin zone. The Cartesian lattice is the reciprocal of it-
self. While in 2-D hexagonal lattice is also reciprocal to itself,
in 3-D the BCC and FCC lattices are reciprocal to each other.

When it comes to sampling multi-dimensional signals,
the Cartesian lattice is almost always the discretization of
choice due to its simplicity; moreover, most of the 1-D signal
processing algorithms can easily be extended to 2-D or 3-D
or higher dimensions by a tensor-product approach. How-
ever, the Cartesian lattice has been known to be an inefficient
lattice from the sampling-theory point of view. Petersen and
Middleton [11] were among the first people to discover the
superiority of sphere-packing and sphere-covering lattices
for sampling multi-dimensional signals. In particular they
have demonstrated that the Cartesian lattice is very inefficient
for sampling multi-dimensional signals, especially in three-
dimensions and higher. From an information theoretic point
of view these lattices are the the ideal lattices for sampling
stationary isotropic random processes [12].

In the 2-D setting the hexagonal lattice is the best sam-
pling lattice since its reciprocal lattice, which happens to be
the dual hexagonal lattice, allows for the best packing of 2-D
with discs. When compared to the commonly-used Cartesian
lattice with the same sampling density, the hexagonal lattice
allows for about 14% more information to be captured in the
spectrum of the underlying signal. For the case of g-space
sampling the spectrum of the sampled signal is P(r) which
is contained inside the pixel in the space domain which is
the Voronoi cell (tiling) of the dual lattice. This is illustrated
in Figure 1 as the area of inscribing disc to the Brillouin zone
of the hexagonal lattice (i.e., hexagon) is larger than the area
of inscribing disc to the Brillouin zone of the Cartesian lattice
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Fig. 1. Firstrow: A square and a hexagon pixels with unit area
corresponding to the Brillouin zone of Cartesian and hexag-
onal sampling in g-space. The area of inscribing disc to a
square is about 14% less than the area of the inscribing disc
to the hexagon. Second row: In 3-D, this difference is about
30%, comparing a cubic voxel to rhombic-dodecahedron, the
voxel of the FCC lattice, with the same volume.

(i.e., square), while the two Brillouin zones have the unit area.

In a 3-D setting, the optimal sampling lattice is the BCC
lattice whose reciprocal lattice (i.e., the FCC lattice) is the
densest sphere packing lattice. The sampling efficiency of the
BCC lattice, when compared to the commonly-used Carte-
sian lattice is about 30% higher. Therefore, when sampling
g-space E(q) on a BCC lattice, the P(r) is contained in
rhombic dodecahedral voxels which admit a larger inscrib-
ing sphere than the commonly used Cartesian voxels. The
inscribing sphere to the rhombic dodecahedral voxel is about
30% larger than that of the cubic voxel while the two voxels
are of the same unit volume. Therefore, when reconstruct-
ing P(r) on each individual voxel, a reconstruction based on
BCC sampling of g-space yield larger resolution of r while
preventing the ghosting artifacts. The ghosting artifacts is
the space-domain equivalent of aliasing. When sampling the
g-space signal in frequency space with a coarse sampling
rate, the replicas in the space domain bleed into the main
voxel area. For a given fixed sampling resolution in g-space,
the ghosting artifact is smaller for the thombic dodecahedral
voxel compared to the commonly-used cubic voxels. This is
due to the optimal sphere packing of the FCC lattice (with a
rhombic dodecahedral voxel) compared to the Cartesian lat-
tice (with a cubic voxel).

3. ALGORITHM AND IMPLEMENTATION

The algorithm proposed by Pickalov and Basser [1] is a modi-
fied version of the iterative procedure presented by Gerchberg
and Papoulis (G-P). They assume the original data samples
lie on radial lines in g-space. On each radial line, several



samples are available corresponding to different radii. Using
an interpolator/extrapolator, they obtain the data values on a
Cartesian lattice in the g-space. By imposing some constrains
both in the g-space and displacement probability -space, their
algorithm runs iteratively via the use of direct and inverse
Fourier transforms. In each iteration, the original sampled
data is imposed into the g-space values to reinforce the con-
sistency between the reconstructed P(r) and the true diffu-
sion propagators implied by the data samples.

As we saw in Section 2 we can increase the accuracy of
reconstruction by changing the g-space sampling from the
Cartesian lattice to the BCC lattice. Therefore, we push the
radially sampled data, on to the BCC lattice together with
an approach similar to the algorithm of Pickalov and Basser.
Since our purpose is to investigate the theoretical advantages
of the optimal lattice, we took the same radial samples from
E(q) and pushed them into both Cartesian and BCC lattices
with the same number of lattice points. While there are sev-
eral esoteric interpolation methods [13] for interpolation into
the BCC and Cartesian lattices, we used an identical inter-
polant in both cases to ensure that the only difference in the
two reconstructions is the sampling geometry. Therefore, we
used a cubic spline interpolant in both cases, even though in
our experiments, other interpolants resulted in similar results.

After the Cartesian and BCC re-sampling of the g-space
data, the P(r) reconstruction is obtained through a direct
Fourier transform. While the usual FFT algorithm is suitable
for Cartesian sampling, the we employed the modified FFT
algorithm [14] for the BCC sampled data. In order to evaluate
our method the accuracy of reconstruction in each case was
measured by comparing the reconstructed signal from the true
synthetic signal by the means of sum of squared errors (SSE).
For the synthetic data some visual comparison is insightful
and discussed in Section 4.

4. EXPERIMENTS

We now present propagator reconstruction experiments using
the BCC and Cartesian lattices in a synthetic dataset (Fig-
ure 2) and a real dataset (Figure 3) from a rat optic chiasm.

N, (10 9 8 1 6
Cartesian(x10 ) | 2.19 231 2.63 334 4.04
BCC(x107%) 0.60 0.68 0.87 138 256

Table 1. SSE comparison of reconstructions from different
lattices with IV,,, Ny = 12, Ny = 13, a = 90°

For our synthetic data experiments, we generated samples
from a mixture of two Gaussian functions in the 3-D q-space
and examined the SSE between reconstructions and the true
signal. In the experiments, data samples are distributed on
radial lines along (7, 0, ¢) in the spherical coordinate system.
The number of samples along each radial line is denoted by
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Ny, N, | 12,13 11,12 10,11 9,10 89
Cartesian(x107°) | 2.19 391 6.67 540 3.36
BCC(x107°) 060 137 383 281 297

Table 2. SSE comparison of reconstructions from different
lattices with Ny, Ny, N, = 10,0 = 90°

o | 90°  80° 70°  60°  50°
Cartesian(x107°) | 2.19 375 4.16 4.04 292
BCC(x107%) 0.60 1.05 1.60 2.09 1.69

Table 3. SSE comparison of reconstructions from different
lattices with o, N,. = 10, Ng = 12, Ny = 13

N,., of 6 values by Ny, and the ¢ values by NN, respectively.
« denotes the angle between the two Gaussian components.

Table 1 reports the SSE differences between the BCC and
Cartesian reconstructions with fixed & = 90° and varying
N,.. Tt is evident from the errors that the BCC-based recon-
struction yields smaller errors despite the same sampling rate
N, as in the Cartesian-based reconstruction; this remains to
be the case even for varying sampling resolutions. Similarly
by changing the sampling resolutions in Ng and Ny, the ad-
vantages of BCC reconstruction is maintained (see Table 2).
Table 3 depicts the comparison between BCC and Cartesian
reconstructions by varying the angle between the two Gaus-
sian components simulating various angles of fiber-crossings.
Table 4 compares the reconstructions under additive Rician
noise of different noise levels 0. We can clearly see that un-
der all the test conditions, reconstructions from BCC lattice
achieve smaller errors compared to reconstructions from the
Cartesian lattice. Also, Table 1 and Table 2 show that a recon-
struction based on a smaller number of BCC samples (e.g.,
N, = 6) in the g-space is comparable to a reconstruction
with larger number of Cartesian samples (e.g., IV, = 8) in the
g-space. This suggests a strategy to further reduce the sample
size of F(q) and reduce the acquisition time.

For N, = 10, Ng = 12, Ny = 13, a = 80 and 0 =
0, Figure 2 shows the isosurfaces of the reconstructed P(r)
from Cartesian and BCC lattices respectively. We can see that
the isosurface of P(r) from Cartesian lattice exhibits some
ghosting artifacts at the tips due to leakage from ghosts in the
neighboring period. The reconstruction from BCC lattice is
not influenced by the ghosting artifacts since when we take
samples on BCC lattice in g-space, the distance between the
reconstructed P(r) and its nearest ghost replica is larger than

o K 0.02 0.04 0.06 0.08
Cartesian(x107°) | 219 257 351 479 6.78
BCC(x107?) 0.60 105 231 384 6.28

Table 4. SSE comparison of reconstructions from different
lattices with o, N, = 10, Ng = 12, Ny = 13, a = 90



that derived from Cartesian lattice. Theoretically, the larger
distance implies less influence from the ghost replica.

We now present an experiment with real data from a rat
optic chiasm, which contains samples measured with 46 dif-
ferent directions with just one b value. Since our algorithm
needs samples with different b values, for interpolation pur-
poses, we used the high rank tensor model in [7] to process
the data and get the values for different bs via re-sampling.
Figure 3 depicts the probability maps reconstructed from the
Cartesian and BCC lattices respectively. A close examination
depicts that the reconstruction from Cartesian lattice appears
distorted compared to the BCC reconstruction. This is due to
the resilience of the BCC sampling (of g-space) to the ghost-
ing artifacts that distort the reconstruction of P(r).

BCC

Cartesian

Fig. 2. Visual comparison of the reconstructed P(r). Row 1:
(91, 92) = (200, 1000), Row 2:(91, 92) = (50, 850). (91,92)
are the directions of the two Gaussian components.

5. CONCLUSIONS

This paper introduces the use of optimal sampling in the
tomographic reconstruction of the diffusion propagators in
DW-MRI. Through comparisons with the traditional Carte-
sian sampling, we demonstrated that the BCC sampling of
the g-space leads to significant improvements in the accuracy
of the reconstruction of the diffusion propagator. We also
showed that less number of samples on a BCC lattice are
required to reconstruct with the same accuracy obtained on a
Cartesian lattice.
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