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Abstract This paper presents a novel and robust technique
for group-wise registration of point sets with unknown cor-
respondence. We begin by defining a Havrda-Charvát (HC)
entropy valid for cumulative distribution functions (CDFs)
which we dub the HC Cumulative Residual Entropy (HC-
CRE). Based on this definition, we propose a new measure
called the CDF-HC divergence which is used to quantify the
dis-similarity between CDFs estimated from each point-set
in the given population of point sets. This CDF-HC diver-
gence generalizes the CDF Jensen-Shannon (CDF-JS) diver-
gence introduced earlier in the literature, but is much simpler
in implementation and computationally more efficient.

A closed-form formula for the analytic gradient of the
cost function with respect to the non-rigid registration pa-
rameters has been derived, which is conducive for efficient
quasi-Newton optimization. Our CDF-HC algorithm is es-
pecially useful for unbiased point-set atlas construction and
can do so without the need to establish correspondences.
Mathematical analysis and experimental results indicate that
this CDF-HC registration algorithm outperforms the previ-
ous group-wise point-set registration algorithms in terms of
efficiency, accuracy and robustness.
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1 Introduction

Point-set registration is a widely encountered problem in
several fields namely, computer vision, computer graphics,
medical imaging and pattern recognition. In computer vi-
sion, it is encountered in image mosaicing to form panora-
mas and in computer graphics it is required for fusing 3D
range data sets obtained from different vantage points to
form a 3D model. In medical imaging, registration is nec-
essary to match landmarks in volume (MRI, CT etc.) scans
for the purposes of disease diagnosis or in the construction
of image/shape atlases. Finally, in pattern recognition, point
pattern matching is used to correlate feature clusters to as-
sess the similarity between them.

The key problem in point-set registration regardless of
the dimension in which the points are embedded in is to es-
timate the transformation between the coordinates used to
represent the points in each set. The transformation may be
characterized as being linear or nonlinear, parameterized or
non-parameterized. The literature has many techniques to
solve for the linear and nonlinear transformations required
to register the point sets. Below, we briefly discuss some of
the prominent methods and then establish motivation for the
work reported here.

The prior work in point-set registration can be traced
back to Baird’s effort in 1985 (Baird 1985), wherein a tech-
nique was proposed for pair-wise shape registration under
a similarity transformation. He constructed a linear pro-
gramming model to solve for the registration parameters
and made effective use of the feasibility-testing algorithms,
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such as the Simplex algorithm and the Soviet ellipsoid algo-
rithm, to allow for a systematic search for the correspon-
dences. Theoretical analysis indicated that the runtime of
the algorithm is asymptotically quadratic in the number of
points n, but in practice it is linear in n for n < 100. How-
ever, rigid registration is too restrictive a requirement. Since
then, abundant research on pair-wise non-rigid point-set reg-
istration can be found in literature. For instance, Belongie
et al. (2002) aimed at non-rigidly registering two shapes
represented by points using shape contexts, by first solv-
ing for the correspondences. Their method is more tuned
to shape indexing than registration. Chui and Rangarajan
(2003) proposed a method that jointly recovers the corre-
spondence and the non-rigid registration between two point
sets via deterministic annealing and softassign. Their work
requires outlier rejection parameters to be specified and the
use of deterministic annealing frequently results in a slow
to converge algorithm in practice. Note that these two previ-
ously discussed non-rigid registration methods employ non-
rigid spatial mappings, particularly thin-plate splines (TPSs)
(Bookstein 1989; Rohr 2001) as the deformation model. In
recent work, Glaunes et al. (2004) attempt solving the point-
set matching problem in a diffeomorphism setting. This suc-
cessfully overcomes the drawbacks such as local folds and
reflections induced by spline based models as in (Wahba
1990). However, it requires a large amount of computation
in 3D due to the need to compute a spatial integral. Further-
more, the method has not been extended to the group-wise
setting.

Alternatively, there exists a class of methods that achieve
more robustness with unknown correspondences in the pres-
ence of outliers. The general idea for this class of methods is
to represent each point-set by a probability density function
and compute the dis-similarity between them using an infor-
mation theoretic measure. This class of methods is closely
related to our work reported here. The most illustrative ex-
ample is the method proposed in Wang et al. (2002), who
attempted minimizing the relative entropy between two dis-
tributions estimated from the point sets w.r.t. the registration
parameters, so as to register the two point sets. The main
drawback of this approach is that only rigid pair-wise regis-
tration problem is addressed. Besides this, Tsin and Kanade
(2004) proposed a Kernel Correlation (KC) based point-set
registration algorithm by maximizing the kernel correlation
cost function over the transformation parameters, where the
cost function is proportional to the correlation of the two
kernel densities estimated. Jian and Vemuri (2005) modeled
each of the point sets as a Gaussian mixture model (GMM)
and minimized the L2 distance over the space of transforma-
tion parameters, yielding the desired transformation. While
the method has attractive speed and robustness properties,
the L2 distance is not a divergence measure and the over-
lay of the point-sets is not modeled, making it difficult to

extend this to the unbiased registration of multiple point-
sets.

To summarize, in all the techniques discussed thus far,
one of the two given point sets is fixed as a reference
which definitely leads to a bias in the deformation toward
the chosen data set. Moreover, all the point-set registration
methods mentioned above are designed to achieve pair-wise
point-set registration, and are not easily generalizable to
achieve group-wise registration of multiple point sets. Con-
sidering group-wise alignment algorithms, most of the ef-
forts were dedicated to group-wise image registrations, i.e.
constructing image atlas. For instance, in (Rohlfing et al.
2001; Twining et al. 2006; Lorenzen et al. 2006; Sabuncu
et al. 2007), several non-rigid group-wise image registration
methods were proposed. However, it is a nontrivial task to
extend these elegant techniques to group-wise point-set reg-
istration. Therefore, we will not further discuss these im-
age based methods in this paper and only focus on point-
set atlas construction instead. Before moving to group-wise
point-set registration, we need to briefly mention that rather
than the feature point representation scheme, shape repre-
sentation using curves or surfaces (Sebastian et al. 2000;
Klassen et al. 2004) has also received attention in the liter-
ature. Since statistical shape analysis in curve/surface space
is very difficult, methods using this representation have usu-
ally resorted to computing means etc. of spline parame-
ters (used for curve/surface representation) (Blake and Isard
1998) which is an extrinsic approach.

A 2D average shape modeling technique with automatic
shape clustering and outlier detection was proposed by Duta
et al. (2001). Their matching method took the point sets ex-
tracted from the shape contours as input and performed pair-
wise registration of two point sets without any requirements
of setting the initial position/scale of the two objects or any
manually tuned parameters. However, the Procrustes analy-
sis procedure imposed in their model requires the knowl-
edge of correspondences. In (Chui et al. 2004), a group-wise
point-set registration algorithm was proposed as a general-
ization of (Chui and Rangarajan 2003), but this method has
the same shortcomings as (Chui and Rangarajan 2003) in
that an explicit correspondence problem needs to be solved.
Furthermore, the method is slow due to the use of deter-
ministic annealing. In the recent past, several research ar-
ticles on group-wise point-set registration have been pub-
lished by Wang et al. (2008, 2006). The main strength of
their work is in simultaneously group-wise registering the
data and computing the mean atlas shape for multiple unla-
beled point sets without choosing any specific data set as a
reference or solving for correspondences, thus yielding an
unbiased group-wise registration as well as an atlas. Their
approach is to minimize the JS divergence among the PDFs
in (Wang et al. 2008) (or CDFs in Wang et al. 2006), es-
timated from the given population of point sets, with TPSs
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adopted as the deformation model. The main claim in (Wang
et al. 2006) is that the CDF-JS is more immune to noise
than PDF-JS because of the robustness property of the CDF
(being an integral measure). However, the main bottleneck
in their CDF-based work is the computational cost and the
complexity in implementation, since they use cubic spline
Parzen windows to estimate the PDF and CDF. Hence, a nu-
merical approximation is involved in CDF estimation and
extensive computation is involved in CDF entropy estima-
tion since the entropies and their derivatives are not available
in closed form. Unlike their work, in this paper we general-
ize the CDF-JS and develop an algorithm that is computa-
tionally much faster and more simple and accurate from an
implementation perspective (than the work in Wang et al.
2006), without losing the inherent statistical robustness or
accuracy in CDF based models. We will compare the com-
putational complexity of CDF-JS and CDF-HC in Sect. 4
and show that CDF-HC tremendously reduces the complex-
ity compared to CDF-JS. We also demonstrate the robust-
ness and accuracy of the CDF-HC method by showing a set
of experimental results on CDF-HC, CDF-JS and PDF-JS
methods.

The rest of the paper is organized as follows: In Sect. 2,
we present the definition of CDF-HC divergence and intro-
duce our point-set registration model. Section 3 contains of
the description of a novel technique for estimating the em-
pirical CDF-HC which is used for the implementation of our
algorithm. The algorithm is then analyzed and validated ex-
perimentally in Sect. 4 and we present concluding remarks
in Sect. 5.

2 Point Pattern Registration Model

In this section, we present the details of our proposed non-
rigid point-set registration model. The basic idea is to model
each point-set by a survival function (complement of a
cumulative distribution function abbreviated as CDF), and
then quantify the distance between these probability dis-
tributions via an information-theoretic measure. This dis-
similarity measure is then optimized over the space of co-
ordinate transformation parameters. We will begin with de-
riving this new dis-similarity measure, namely the CDF-HC
divergence.

2.1 Definition of CDF-HC divergence

The CDF-HC divergence in our paper parallels the defini-
tion of CDF-JS (Wang et al. 2006) and is defined over the
Havrda-Charvát (HC) Cumulative Residual Entropy (HC-
CRE), the definition of which will be given later. For con-
venience, we reproduce the definition of CRE, CDF-JS and
Havrda Charvát differential entropy (HC) here,

Definition 1 (CRE, Wang et al. 2003) Let X be a random
vector in Rd , the CRE of X is defined by

E (X) = −
∫

Rd+
(P (|X| > λ) logP(|X| > λ))dλ (1)

where X = {x1, x2, . . . , xd}, λ = {λ1, λ2, . . . , λd}, and |X| >
λ means |xi | > λi , Rd+ = {xi ∈ Rd ;xi ≥ 0; i ∈ {1,2, . . . , d}}.

Definition 2 (CDF-JS, Wang et al. 2006) Given N cumula-
tive probability distributions Pk , k ∈ {1, . . . ,N}, the CDF-JS
divergence of the set {Pk} is defined as

JS(P1,P2, . . . ,PN) = E
(∑

k

πkPk

)
−

∑
k

πk E (Pk) (2)

where 0 ≤ πk ≤ 1,
∑

k πk = 1, and E is the Cumulative
Residual Entropy (CRE) defined in (Wang et al. 2003).

Definition 3 (HC, Havrda and Charvát 1967) The Havrda
Charvát entropy is defined as

Hα(X) = −
n∑

i=1

(α − 1)−1(pα(xi) − p(xi)) (3)

where x1, . . . , xn are possible values for the random variable
X, p denotes the probability mass function of X and α is its
inherent parameter.

Now we define HC-CRE by replacing the density func-
tion in Eq. 3 with the survival function. This definition par-
allels the Cumulative Residual Entropy E which is based on
CDFs.

Definition 4 (HC-CRE) Let X be a random vector in Rd :
We define the HC-CRE of X by

E H(X) = −
∫

Rd+
(α − 1)−1(P α(|X| > λ) − P(|X| > λ))dλ

(4)

where X, λ, and Rd+ are defined as in Definition 1.

Note that we borrow the notation |X| > λ and its defin-
ition from (Wang et al. 2003), wherein |X| > λ is taken to
mean that |xi | > λi for each i. Since the CDF in 2D and
above depends on the axis directions, we appear to have
a problem. However, our CDF-HC formulation is indepen-
dent of the axis definition, that is, any type of definition for
|X| > λ out of all the 2d permutations is equivalent to each
other, because the estimated cumulative distribution func-
tions are equivalent after coordinate axis reflection of X.
Again, in this paper we only refer to |xi | > λi as the defi-
nition of |X| > λ for the simplicity of discussion.

The relationship between HC-CRE and CRE is straight-
forward. We now show that the HC-CRE approaches CRE
as α tends to 1.
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Property 1 (Convergence)

lim
α→1

E H(X) = E (X). (5)

Proof We use the familiar L’Hôpital rule for the limit. We
take the derivative of the numerator and denominator with
respect to α and evaluate the limit as α tends to one.

lim
α→1

E H(X)

= lim
α→1

−
∫

P α(X > λ) − P(X > λ)

α − 1
dλ

= lim
α→1

−
∫

P α(X > λ) logP(X > λ)dλ

= −
∫

P(X > λ) logP(X > λ)dλ

= E (X). �

Based on HC-CRE, we define the CDF-HC divergence
between N probability distributions Pk , k ∈ {1,2, . . . ,N}.
Henceforth in this paper we will consider X to be in the R+
domain and write X instead of |X|.

Definition 5 (CDF-HC divergence) The CDF-HC diver-
gence is defined as

HC(P1,P2, . . . ,PN)

= E H

(∑
k

πkPk

)
−

∑
k

πk E H(Pk). (6)

We can rewrite HC(P1,P2, . . . ,PN) by substituting
Eq. 4 into Eq. 6 to get a simplified version of Definition 5.

Property 2 (Simplification) Let P be the convex combina-
tion of {Pk}: P = ∑

k πkPk . We can simplify HC to be

HC(P1,P2, . . . ,PN)

= −(α − 1)−1
(∫

Rd+
P α(X > λ)dλ

−
∑

k

πk

∫
Rd+

P α
k (Xk > λ)dλ

)
. (7)

We use this simplified CDF-HC divergence formula in all
our computations and implementations.

2.2 Group-Wise Point-Set Registration Model

Denote the N point sets to be registered as X̄k, k ∈
{1,2, . . . ,N}. Each point-set X̄k consists of points x̄i

k ∈
Rd, i ∈ {1,2, . . . ,Dk}, Dk being the number of points in
the point-set X̄k . Assume each point-set X̄k is related to

the finally registered data Xk via an unknown transfor-
mation function fk , and let μk ∈ RDk × Rd be the set
of transformation parameters associated with each func-
tion fk , i.e. Xk = fk(X̄k) and each Xk consists of points
xi
k ∈ Rd, i ∈ {1,2, . . . ,Dk}.

To group-wise register all the given N point sets, we
need to recover the transformation parameters μk , k ∈
{1,2, . . . ,N}. This problem can be modeled as an optimiza-
tion problem with the objective function being the CDF-HC
divergence between the N survival functions computed from
the deformed point sets, represented as Pk = P (Xk), k ∈
{1,2, . . . ,N}.

The group-wise registration problem a.k.a. the atlas con-
struction problem can now be formulated as,

min
μk

HC(P1,P2, . . . ,PN) + η

N∑
k=1

‖Lfk‖2

= min
μk

(
E H

(∑
k

πkPk

)
−

∑
k

πk E H(Pk)

)

+ η

N∑
k=1

‖Lfk‖2. (8)

In Eq. 8, a standard regularization of the transformation
functions {fk} is used. The parameter η is a positive con-
stant, which acts as the trade off between the two energies.
It prevents the data set from collapsing into a single point.
By tuning η, we can control the degree of deformation, the
demonstration of which is shown in the experiment.

Let L denote the regularization operator. For example, L

could be a differential operator such as a second order linear
differential operator corresponding to the thin-plate spline
(TPS). In our implementation, we choose TPS as the non-
rigid deformation. Given a set of control points in Rd , we
write TPS as a general non-rigid mapping f : Rd → Rd ,
such that f (x) = WU(x) + A[x; I], where A[x; I] is the
affine part of the TPS transformation and the non-rigid part
is determined by the transformation parameters stored in the
d × n matrix W . Here U(x) is an n × 1 vector consist-
ing of n basis functions Ui(x) = U(x,xi ) = U(‖x − xi‖).
Let r = ‖x − xi‖. Then U(r) is the reproducing kernel
of the thin-plate spline. Note that there exists a boundary
condition PWT = 0 (Rohr 2001) for TPS, where P is a
(d + 1) × n matrix with the first column being ones and
the rest of the columns being the coordinates of the points
in the point-set. This condition ensures that the non-rigid
part of the transformation is zero at infinity. Using the con-
straint that W lies in the null-space of P , the dimension
of W is reduced to (d + 1) × d . Hence, the TPS transfor-
mation parameter μk = [A,W ] is a d × n matrix. There-
fore, the objective function for non-rigid registration can
be formulated as an energy functional in a regularization
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framework, where the bending energy of the TPS warping
is explicitly given by trace(WKWT ), with K = (Kij ), and
Kij = U(xi ,xj ) depending on the spline kernel and the con-
trol point sets.

Having introduced the objective function and the trans-
formation model, the task now is to design an efficient way
to estimate the empirical CDF-HC divergence and derive the
analytic gradient of the estimated divergence in order to ef-
ficiently achieve a good (albeit suboptimal) solution.

3 Estimating the Empirical CDF-HC

In this section, we propose a technique for estimating the
empirical CDF-HC. As mentioned previously, in (Wang
et al. 2006) the Parzen window technique is used. Specifi-
cally a cubic spline Parzen window is used to estimate the
smoothed probability density function p of a given point-
set. The cumulative residual distribution function is com-
puted by integrating over p. This is a constructive method
and requires numerical integration which can impact perfor-
mance (as we will see in the experiments). However, in this
paper, we present a novel technique to construct the CDF
surface using the Dirac Mixture Model (DMM) which is
computationally faster and simpler from an implementation
perspective. We then derive the analytic gradient of CDF-
HC, when the parameter α for HC equals to 2. Without
loss of generality, we only discuss the derivation for the 2D
case, since the derivation can be easily extended to the 3D
case.

3.1 The Dirac Mixture Model

Mixture models (McLachlan and Basford 1988) have been
an effective tool for modeling shapes (Jian and Vemuri 2005;
Wang et al. 2008; Cootes and Taylor 1999), especially when
the shapes are represented by feature points or landmarks.
Here we resort to the Dirac Mixture Model for computing
the cumulative residual function for a given point-set Xk .
The DMM is obtained by constructing a Dirac Delta func-
tion for each point in the given point-set. A DMM is defined
as a convex combination of Dirac Delta functions D(xi

k|mi),
where mi is the mean vector of xi , i ∈ 1,2, . . . ,Dk . The
probability density function is explicitly given as p(xi

k) =∑Dk

i=1 φi D(xi
k|mi), where φi are the weights associated with

the component functions. For each component, the mean
vector is given by the location of each point. Without prior
information, we can assume each component has the same
weight 1

Dk
. The spatial transformation used in registration—

the TPS in our case—is applied to the mean vector which
coincides with the location of the points.

From the DMM’s use of Dirac delta functions, we see
that each such delta function can be integrated to obtain a

Heaviside Step function for each point, that is by construct-
ing a transformed Heaviside Step function Hi for every
point xi ∈ Rd, i ∈ {1,2, . . . ,Dk}. The CDF surface for the
point-set Xk is achieved by summing up all the Hi func-
tions.

Pk(Xk > λ) = 1

Dk

Dk∑
i

H i(x,xi ) (9)

where the definition of H(t, t0) in one-dimension is given
by

H(t, t0) =
{

1, t ≤ t0,

0, t > t0.
(10)

The separability of the Heaviside function in higher di-
mensions allows us to turn the multi-dimensional Heavi-
side function into the multiplication of one-dimensional H s.
Also note that the integral of H(t, t0), from 0 to ∞, is t0.
This simple but important property will be used in gradient
computation in the next subsection.

3.2 Gradient Computation

Now we will derive the analytic gradient of CDF-HC when
α = 2. Note that it is the only case for which CDF-HC has
a concise expression for estimating the CDF and a closed
form solution for the gradient of the cost function. This will
have ramifications in the optimization strategy since CDF-
HC is not available in closed form for α �= 2. Therefore, we
mainly focus on α = 2 in this paper.

Let α = 2 in Eq. 7. We get

HC(P1,P2, . . . ,PN)

= −
∫

Rd+
P 2(X > λ)dλ

+
∑

k

πk

∫
Rd+

P 2
k (Xk > λ)dλ. (11)

We begin by deriving the detailed formula for each term
of this equation. Take the 2D case with d = 2 and xi =
[xi, yi] as an example in our discussion. First, we compute
the second term of Eq. 11. Since the Heaviside Function is
separable, for a given point-set Xk , we have

Pk(Xk > λ) = 1

Dk

Dk∑
i=1

H(x,y, xi, yi)

= 1

Dk

Dk∑
i=1

H(x,xi)H(y, yi). (12)
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Hence,

P 2
k (Xk > λ)

= 1

Dk
2

Dk∑
i=1

H(x,y, xi, yi)

Dk∑
j=1

H(x,y, xj , yj )

= 1

Dk
2

∑
i,j

H(x,min(xi, xj ))H(y,min(yi, yj )). (13)

Now, we compute the first term, i.e. the convex combina-
tion term, of Eq. 11. Recall that

P(X > λ) =
N∑

k=1

πkPk(Xk > λ). (14)

We have

P 2(X > λ)

= (π1P1(X1 > λ) + · · · + πNPN(XN > λ))2

=
∑

k

(πkPk(Xk > λ))2

+
∑
l �=s

πlπsPl(Xl > λ)Ps(Xs > λ). (15)

The first part of Eq. 15 coincides with Eq. 13. For the second
part, we have a similar expression, i.e.

Pl(Xl > λ)Ps(Xs > λ)

= 1

Dl

Dl∑
i=1

H(x,y, xi, yi)
1

Ds

Ds∑
j=1

H(x,y, xj , yj )

= 1

DlDs

∑
i,j

H(x,min(xi, xj ))H(y,min(yi, yj )) (16)

where

min(x, y) = − 1

β
log(e−βx + e−βy). (17)

Note that we employ an analytical form of the min opera-
tor in our previous expressions so that we get the analytical
gradient.

∂ min(x, y)

∂x
=

{
e−βx

e−βx+e−βy , x �= y,

1, x = y
(18)

which is later used in this paper. It is obvious that the two
equations, Eq. 13 and Eq. 16, share a uniform expression
g(x, y) except for a scaling constant c.

g(x, y) = c
∑
i,j

H(x,min(xi, xj ))H(y,min(yi, yj )) (19)

where c is a stand-in for the two different constants 1
Dk

2 or
1

DlDs
. Since we are working in 2D Euclidean space, the in-

tegral in Eq. 11 is replaced with the 2D integral in the R2+
domain.

HC(P1,P2, . . . ,PN)

= −
∫ ∫

R2+
P 2(X > λ)dλxdλy

+
∑

k

πk

∫ ∫
R2+

P 2
k (Xk > λ)dλxdλy. (20)

Since the Heaviside function has a straightforward integral
expression, we compute the 2D integral of the expression as

G(X) =
∫ ∞

0

∫ ∞

0
g(x, y)dxdy

=
∫ ∞

0

∫ ∞

0
c
∑
i,j

H(x,min(xi, xj ))

× H(y,min(yi, yj ))dxdy

= c
∑
i,j

∫
H(x,min(xi, xj ))dx

∫
H(y,min(yi, yj ))dy

= c
∑
i,j

min(xi, xj )min(yi, yj ). (21)

Therefore, the key issue remaining is to derive the ana-
lytic gradient for G(X), since the cost function is a linear
combination of G(X). We use the chain rule to get

∂G(X)

∂μk

= ∂G(X)

∂Xk

∂Xk

∂μk

(22)

where

∂G(X)

∂Xk

=
[
∂G(X)

∂x1
k

, . . . ,
∂G(X)

∂xDk

k

]
,

∂G(X)

∂xi
k

=
[
∂G(X)

∂xi
k

,
∂G(X)

∂yi
k

]

and

∂G(X)

∂xi
k

= c
∑
i,j

min(yi, yj )
∂ min(xi, xj )

∂xi

.

Note that in Eq. 13, xi and xj refer to the x-coordinates of
points from the same point-set, whereas in Eq. 16, they refer
to the x-coordinates from different point sets.

Let Bk be the TPS basis matrix computed in advance
from the given point-set X̄k . The first three columns of Bk
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span the affine basis and the remaining columns span the
nonlinear warping basis. The transformation therefore can
be formed as Xk = Bkμk . Hence,

∂Xk

∂μk

= B ′
k. (23)

Finally, we produce the gradient of the objective function as
follows,

∂HC

∂μk

= ∂HC

∂Xk

∂Xk

∂μk

=
[
∂HC

∂x1
k

,
∂HC

∂x2
k

, . . . ,
∂HC

∂xDk

k

]
B ′

k (24)

where

∂HC

∂xi
k

= ∂

(
−

∑
π2

k

∫ ∫
P 2

k (Xk > λ)dxdy

−
∑
l �=s

πlπs

∫ ∫
Pl(Xl > λ)Ps(Xs > λ)dxdy

+
∑

k

πk

∫ ∫
P 2(Xk > λ)dxdy

)/
∂xi

k

= −
∑

π2
k

1

Dk
2

∑
i,j

min(yi, yj )
∂ min(xi, xj )

∂xi

−
∑
l �=s

πlπs

1

DlDs

∑
i,j

min(yi, yj )
∂ min(xi, xj )

∂xi

+
∑

k

πk

1

Dk
2

∑
i,j

min(yi, yj )
∂ min(xi, xj )

∂xi
. (25)

The expression is also similar with ∂HC

∂yi
k

. The above deriva-

tion is directly extensible to higher dimensions as a result of
the separability of the Heaviside Function.

We can see that the equation for the objective function
Eq. 21 and gradient Eq. 24 are simple to implement and
computationally fast. With the analytical gradient being ex-
plicitly derived, we can use the gradient-based numerical
optimization methods such as quasi-Newton (Nocedal and
Wright 1999) to yield a good solution. Meanwhile, and
from the overall perspective, robustness is achieved by us-
ing a CDF based objective function. Note that our algo-
rithm can also be applied to yield a biased registration if
we fix one of the data sets as the model and estimate the
transformation from the scene data sets to the model. In
the next section, we will use this “byproduct”—a biased
group-wise registration—to propose a series of comparison
experiments, by taking the fixed model data set as ground
truth.

4 Complexity Analysis and Experimental Results

We first briefly analyze the computational complexity of
both CDF-JS and CDF-HC algorithms and show that our
model greatly reduces the computational complexity—in
terms of CDF estimation—and thus increases the efficiency
of the overall approach. Next, we show a demonstrative ex-
ample of 2D atlas construction and illustrate the effect of
the regularization parameter η by showing the group-wise
registration results for a variety of η. To demonstrate the ac-
curacy and robustness of our CDF based method over the
corresponding PDF based approach, a set of comparison ex-
periments were carried out on both synthetic and real 2D
data sets. Finally, we show the results of group wise 3D

registration and a non-rigid group wise registration assess-
ment method is proposed to evaluate the registration without
knowing the ground truth.

4.1 Computational Complexity Analysis

Here, we compare the computational complexity for the ob-
jective functions of CDF-JS and CDF-HC. Without loss of
generality in the mathematical analysis, we assume there
exist N point sets with dimension d , each consisting of n

points. Also we assume the weights (i.e. πk in Definition 1
and 4) for all the point sets to be equal to 1

N
. Since both

methods use TPS as the non-rigid transformation model, we
only compare the complexity of the information theoretic
measure part of their cost functions, since the TPS regular-
ization part has the same computational complexity. Taking
the d = 2 case as an example, we reproduce the cost func-
tions for CDF-JS (Eq. 7 in Wang et al. 2006 but using our
notation) and CDF-HC here:

CDF-JS:

C(P1,P2, . . . ,PN)

= −
Nλx∑
λx

Nλy∑
λy

P logP + 1

N

N∑
k=1

Nλx∑
λx

Nλy∑
λy

Pk logPk (26)

where Pk = ∑n
i=1 	(xk

i )	(yk
i ), P = 1

N

∑N
k=1 Pk and 	()

is the cumulative residual function of the cubic spline kernel
used to compute CDF-JS.

CDF-HC:

HC(P1,P2, . . . ,PN)

= −
∫ ∫

R2+
P 2dλxλy + 1

N

N∑
k=1

∫ ∫
R2+

P 2
k dλxλy (27)

where P = 1
N

∑N
k=1 Pk and

∫ ∫
R2+ Pk1Pk2dλxλy =∑n

i=1
∑n

j=1 min(xi, xj )min(yi, yj ).
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Fig. 1 Unbiased group-wise
non-rigid registration via
CDF-HC on real CC data sets.
The first and second rows and
the leftmost image in the third
row show the deformation of
each point set to the atlas. The
initial point set is denoted with
‘+’ and the deformed one ‘·’.
The middle image in the third
row shows the superimposed
point sets before registration.
The rightmost image in the third
row shows the superimposed
point sets after registration

Fig. 2 Unbiased group-wise
non-rigid registration via
PDF-JS and CDF-HC on CC
data sets, with the seventh being
the outlier. We denote the inliers
with ‘·’ and the outlier with ‘+’

Since the computational complexity for the functions
	(), min() and log() do not depend on the number of the
inputs, it is valid to assume that those functions have a
fixed O(1) cost. Therefore, it is clear that the complexity
for the CDF-JS algorithm is O(NλNγ Nn) and the com-
plexity for the CDF-HC algorithm is O(Nn2). Since in the
Parzen window estimation, Nλ and Nγ are the number of
discrete coordinate values in the x and y axis respectively,
we thus have NλNγ 
 n and, consequently, we conclude
that the computational complexity for CDF-JS is asymptot-
ically much larger than that for CDF-HC. (As a brief aside,
we would also like to mention that our experience with both
algorithms—CDF-JS and CDF-HC—has been overwhelm-
ingly in favor of the latter, but this perspective is driven by
our choice of quasi-Newton-based optimization algorithms
and the fact that the objective function and gradient are
available in closed form for α = 2 for CDF-HC.)

4.2 Group-Wise Registration for Atlas Construction

In this section, we first show a demonstrative example of our
CDF-HC algorithm for unbiased 2D atlas construction on a

real Corpus Callosum (CC) data set. In this experiment, we
manually extracted 63 points on the outer contour of the CC
from seven normal subjects. Our algorithm can simultane-
ously align multiple shapes into a mean shape as shown in
Fig. 1. Next, we perturbed the seventh data set and added
outliers to it (as shown in the first figure of Fig. 2, denoted
by ‘+’). The registration results of both PDF-JS and CDF-
HC are shown in the Fig. 2. We found that the CDF-HC
method can better register the outlier shape to the emerg-
ing mean shape. In these experiments, the initialization of
the non-rigid registration parameters are simply [I;0] for
all the affine parts and 0 for all the non-rigid ones. All the
experiments in this paper were implemented in MATLAB®
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton method of optimization with a mixed quadratic and
cubic line search procedure. This quasi-Newton method uses
the BFGS formula for updating the approximation of the
Hessian matrix. When analytic gradients are used, (and this
is the base case for our approach with α = 2) cubic line
searches are preferred. When numerical approximation of
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Fig. 3 Examples of different
regularization parameters of
TPS that produce a relatively
stable atlas

Fig. 4 Registration performed
using different values of α. In
all these experiments, the
numerical gradient was used

the gradients is used, the quadratic line search method is
preferred since it requires fewer gradient evaluations.

Our algorithm requires us to choose a good value of the
regularization parameter η. To illustrate the effect of regis-
tration via altering η, we finally construct a set of atlases for
different η. The same Corpus Callosum data sets were used
in this experiment. Figure 3 shows the atlas with different η.
Experimental results indicate that the η that produce rela-
tively stable atlas is in the range of [0.000005,0.00005]—an
order of magnitude range.

In the next set of experiments, we examined the (anec-
dotal) variability w.r.t. α. In these experiments, we used the
numerical gradient in the BFGS quasi-Newton method even
for α = 2 for the sake of a fair comparison. While it is diffi-
cult to reach a conclusion, we observed that the optimization
process was much longer especially since each result had to
be obtained for the best setting of the regularization para-
meter. The increased difficulty of the optimization—due to

the absence of the analytical cost function and gradient—
appeared to narrow the range (of regularization parameter
values) over which we obtained good registrations. We ob-
served a deterioration of the quality of the registration results
as α is increased beyond 3.

To demonstrate the accuracy and robustness to noise of
our algorithm over CDF-JS and PDF-JS, we designed the
following procedure to perform a biased 2D atlas construc-
tion on synthetic data sets with and without outliers using
both methods. We first manually extract 113 points on the
outer contour of the Beijing 2008 Olympic Logo,1 namely
point set B , and randomly generate 6 sets of TPS transfor-
mation parameters. We then applied these transformations
to B to get 6 randomly transformed data sets (as shown in
the first figure in Row number 1 of Fig. 5, indicated by ‘+’).
The same procedure was applied to a fish shape taken from

1This dataset is available at http://en.beijing2008.cn/en_index.shtml.

http://en.beijing2008.cn/en_index.shtml
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Fig. 5 Biased group-wise non-rigid registration via CDF-JS, PDF-JS
and CDF-HC on Olympic Logo and 2D fish data sets. The initial point
sets are denoted with ‘+’ and the deformed ones ‘·’. From left to right:
The first column shows the superimposed point sets before registration.

The second column shows the superimposed point sets after registra-
tion using the CDF-JS method, the third shows the same except with
PDF-JS and the last column shows the results after CDF-HC registra-
tion

GatorBait 100,2 namely point-set F , so as to get another
6 non-rigid transformed data sets (the first figure in Row
number 2 of Fig. 5, indicated by ‘+’), each containing 150
points. We also disturb the data sets with 10 randomly gener-
ated point jitter for each of the fish data sets. The CDF-HC,
CDF-JS and PDF-JS algorithms are used for group-wise
registration of the 6 newly created data sets to the original
B or F . For all three methods, we use the same initializa-
tion for the optimization parameters, that is we initialize the
affine portion with [I;0] and 0 for the non-rigid parameters.
By implementing the above procedure, we established the
ground truth atlases for both Olympic Logo and fish data
sets, i.e. B and F , and hence we are able to compare the
three methods with the same fixed ground truth.

The Kolmogorov-Smirnov (KS) statistic (Feller 1948)
was computed to measure the difference between the CDFs
of the ground truth point-set and the newly registered point
sets. A natural question to ask at this juncture is why we
are using a different statistic to gauge registration accuracy.
The reason is simple. We do not want to use the same reg-
istration measure—the HC divergence—to also gauge the
registration accuracy. Furthermore, the HC divergence is
not an established measure (though we’re toiling as hard as
we can to change that) whereas the KS statistic is extremely
well known and widely used (albeit usually for significance

2This dataset is available under the terms of the GNU General
Public License (GPL version 2) at http://www.cise.ufl.edu/~anand/
GatorBait_100.tgz.

testing). Note that here we are not doing statistical signifi-
cance tests but instead using the KS-statistic as a measure of
the dis-similarity between two underlying probability dis-
tributions. While the one-dimensional KS-statistic denoted
as D(1) is independent of the special form of the distrib-
ution this is not true in higher dimensions. A popular 2D
extension D(2) was proposed by Peacock (1983), wherein
he showed that for most cases, Peacock’s version of the
2D KS statistic was sufficiently distribution-free. Later in
(Gosset 1987), Gosset generalized D(2) and proposed a 3D
KS statistic D(3). Note that in 2D, there are 3 independent
directions (4 directions in total) to perform the cumulative
integration and in 3D there are a total of 8 such directions.
The procedures by Peacock and Gosset were to adopt the
largest differences between the two empirical cumulative
distribution functions (eCDF), among all the 4 or 8 cumula-
tive directions in 2D and 3D respectively.

In this experiment, we constructed the 2D/3D eCDFs
from the point-sets following the formulae proposed in
(Gosset 1987). An example of the 2D eCDF computed from
one of the 4 directions is shown in Fig. 6. We computed the
KS-statistic between eCDFs from the ground truth and the
registered point sets. Let Fg be the eCDF of the ground truth
and Fk be the eCDF estimated from the kth registered point
set. The average difference of the eCDF between the ground
truth point-set and registered point-sets are evaluated using
1
N

∑N
k=1 D(2)(Fg,Fk). The KS-statistics for both Olympic

Logo and fish data sets are presented in Table 1 and the
registration results are shown in Fig. 5. They clearly indi-

http://www.cise.ufl.edu/~anand/GatorBait_100.tgz
http://www.cise.ufl.edu/~anand/GatorBait_100.tgz
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Fig. 6 Example meshes of the 2D empirical cumulative distribution function estimated from the Olympic Logo and the fish data used for com-
puting the KS-statistics with the integral performed from one of the four directions

Table 1 KS statistic

KS-statistic CDF-JS PDF-JS CDF-HC

Olympic Logo 0.1103 0.1018 0.0324

Fish 0.1314 0.1267 0.0722

cate that the CDF-HC method yields a smaller KS-statistic,
hence better registration and more immune to noise.

We also present the comparison using the average nearest
neighbor distance3 in Table 2, which also favors the CDF-
HC method. For a pair of given point sets, the average near-
est neighbor distance is defined by finding the nearest neigh-
bor from the second point set for each point in the first point
set and vice versa, and then computing the average distance
over all the points. Here, we compute the distance between
each point set and the ground truth point set and then take
the average.

Finally, we present the results for 3D atlas construction.
The initialization in the optimization here is similar to the
previous experiments, i.e. [I;0] for affine and 0 for non-
rigid parameters. The experiments were carried out on the
hippocampus and duck data sets, the latter of which is ex-
tracted from a web-based 3D data set.4 Each data set con-
tains 4 point sets. The unbiased group-wise registration re-
sults for the hippocampus and duck data sets using the CDF-
HC algorithm are shown in Fig. 7 and Fig. 8, respectively.
These experiments clearly demonstrate that our point-set
registration algorithm can simultaneously register multiple
point sets, which can be used to compute a meaningful mean
shape/atlas.

3We acknowledge an anonymous reviewer for this suggestion.
4http://www.3dxtras.com.

Table 2 Average nearest neighbor distance

ANN Distance CDF-JS PDF-JS CDF-HC

Olympic Logo 0.0367 0.0307 0.0019

Fish 0.0970 0.0610 0.0446

4.3 Group-Wise Registration Assessment Without Ground
Truth

In the previous section, a set of atlas construction experi-
ments for real data were presented. However, there is no
standard validation method to evaluate the “goodness” of
a computed atlas shape (or in our case an atlas probability
distribution). Therefore, we present a group-wise registra-
tion assessment criterion, with the ground truth unknown, in
order to validate our registration.

Since the KS-statistic is a standard measure of dis-
similarity between two CDFs, we decided to generalize the
KS-statistic to measure the quality of unbiased group-wise
registration. A procedure that is similar to the one presented
in Sect. 4.2 is used for computing the empirical cumulative
distribution function in the estimation of the KS-statistic.
Intuitively speaking, if the point sets are better registered,
the estimated 2D/3D eCDF should be more similar to each
other, and hence, we should obtain a smaller KS-statistic
between each eCDF estimated from the registered point sets
pair-wisely than the eCDF estimated from the initial point
set pairs. We use the following measure to evaluate the CDF-
HC atlas construction:

K = 1

N2

N∑
k,s=1,k �=s

D(Fk,Fs) (28)

http://www.3dxtras.com.
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Fig. 7 Atlas construction from four 3D hippocampi data sets. Each
point set contains 400,429,554,310 points respectively. The first row
and the leftmost image in the second row show the deformation of
each point set to the atlas. The initial point set is denoted with ‘×’ and

the deformed one ‘◦’. The middle image in the second row shows the
superimposed point sets before registration. The rightmost image in
the second row shows the superimposed point sets after registration

Fig. 8 Atlas construction from
3D Duck data sets. Each point
set contains 235 points. The first
row and the leftmost image in
the second row show the
deformation of each point set to
the atlas. The initial point set is
denoted with ‘×’ and the
deformed one ‘◦’. The middle
image in the second row shows
the superimposed point sets
before registration. The
rightmost image in the second
row shows the superimposed
point sets after registration
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Table 3 Non-rigid group-wise registration assessment without ground
truth using KS statistics

Before After

registration registration

Corpus Callosum 0.3226 0.0635

Corpus Callosum with outlier 0.3180 0.0742

Olympic Logo 0.1559 0.0308

Fish with outlier 0.1102 0.0544

Hippocampus 0.2620 0.0770

Duck 0.2287 0.0160

Table 4 Non-rigid group-wise registration assessment without ground
truth using average nearest neighbor distance

Before After

registration registration

Corpus Callosum 0.0291 0.0029

Corpus Callosum with outlier 0.0288 0.0092

Olympic Logo 0.0825 0.0022

Fish with outlier 0.1461 0.0601

Hippocampus 13.7679 3.1779

Duck 15.4725 0.3280

where Fk is the eCDF from the one point set out of the
N point sets. D is D(2) or D(3) in 2D or 3D case respec-
tively, that is, the KS-statistic between two 2D/3D eCDFs.
K thus evaluates the average pairwise KS-statistic among
these point sets.

The results for CDF-HC group wise registration assess-
ment using K for the 2D and 3D unbiased atlas construction
experiments are listed in Table 3. Our assessment measure
K is computed for each data set before and after registration.

Similarly, the average nearest neighbor distance is also
computed here in Table 4 for reference.

Obviously, after CDF-HC registration, the point sets
achieve a much lower value for both K as well as the aver-
age nearest neighbor distance, as compared to the measures
before registration. This indicates that the newly registered
point sets more resemble each other than the point sets be-
fore registration.

5 Conclusions

In this paper, we presented a novel and robust algorithm
that utilizes an information theoretic measure—the CDF-
based Havrda Charvát (CDF-HC) divergence—to simulta-
neously register multiple unlabeled point-sets with unknown
correspondence. Inspired by the separability of the Heavi-
side Function, we model each point-set using a Dirac Mix-
ture Model so as to employ the Heaviside Function in the

CDF surface construction, which greatly simplifies the com-
putation. We also discovered that the cost function has a
closed-form solution for its derivative if the parameter for
the CDF-HC divergence is set to α = 2. This enabled us to
reach simple but elegant formulae for both the cost function
and its derivatives. The advantages of our algorithm over
existing techniques are that CDF-HC can be used for unbi-
ased group-wise point-set registration and it is robust, com-
putationally faster and much simpler from an implementa-
tion perspective. We compared the computational complex-
ity of objective function computation for CDF-HC, CDF-JS
and PDF-JS, showing that CDF-HC is much more efficient.
We also compared the performance of CDF-HC and CDF-
JS methods and showed 2D experimental results on a va-
riety of data sets to demonstrate the advantage of correct-
ness and robustness of our CDF-HC algorithm over the cor-
responding CDF- and PDF-based approaches. Finally, we
defined a KS-statistic based measure to evaluate the qual-
ity of the group wise registration for real data sets for the
case when the ground truth atlas is unknown. Note that we
use the TPS as our transformation model since this model
is good enough for the deformations of the point sets in this
atlas construction problem and we did not observe any local
folding. A promising immediate avenue for future research
is the incorporation of a diffeomorphism model of deforma-
tion (Guo et al. 2005). As this effort expands to larger data
sets, we may have to consider simultaneously learning mul-
tiple exemplar atlases.

References

Baird, H. S. (1985). Model-based image matching using location.
Cambridge: MIT Press.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and ob-
ject recognition using shape contexts. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24(4), 509–522.

Blake, A., & Isard, M. (1998). Active contours: the application of tech-
niques from graphics, vision, control theory and statistics to visual
tracking of shapes in motion. New York: Springer.

Bookstein, F. L. (1989). Principal warps: thin-plate splines and the
decomposition of deformations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(6), 567–585.

Chui, H., & Rangarajan, A. (2003). A new point matching algorithm
for non-rigid registration. Computer Vision and Image Under-
standing, 89(2–3), 114–141.

Chui, H., Rangarajan, A., Zhang, J., & Leonard, C. M. (2004).
Unsupervised learning of an atlas from unlabeled point sets.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2), 160–172.

Cootes, T., & Taylor, C. (1999). A mixture model for representing
shape variation. Image and Vision Computing, 17(8), 567–573.

Duta, N., Jain, A. K., & Dubuisson-Jolly, M.-P. (2001). Automatic
construction of 2D shape models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(5), 433–446.

Feller, W. (1948). On the Kolmogorov-Smirnov limit theorems for em-
pirical distributions. The Annals of Mathematical Statistics, 19(2),
177–189.



124 Int J Comput Vis (2010) 86: 111–124

Glaunes, J., Trouvé, A., & Younes, L. (2004). Diffeomorpic matching
of distributions: a new approach for unlabeled point-sets and sub-
manifolds matching. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR) (Vol. 2, pp. 712–
718).

Gosset, E. (1987). A three-dimensional extended Kolmogorov-
Smirnov test as a useful tool in astronomy. Astronomy and As-
trophysics, 188(1), 258–264.

Guo, H., Rangarajan, A., & Joshi, S. (2005). 3D diffeomorphic shape
registration using hippocampal datasets. In LNCS: Vol. 3750. Pro-
ceedings of the international conference on medical image com-
puting and computer assisted intervention (MICCAI) (pp. 984–
991). Berlin: Springer.

Havrda, M. E., & Charvát, F. (1967). Quantification method of classifi-
cation processes: concept of structural α-entropy. Kybernetika, 3,
30–35.

Jian, B., & Vemuri, B. (2005). A robust algorithm for point set reg-
istration using mixture of Gaussians. In Proceedings of the 10th
IEEE international conference on computer vision (ICCV) (Vol. 2,
pp. 1246–1251).

Klassen, E., Srivastava, A., Mio, M., & Joshi, S. H. (2004). Analysis of
planar shapes using geodesic paths on shape spaces. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(3), 372–
383.

Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., & Joshi, S.
(2006). Multi-model image set registration and atlas formation.
Medical Image Analysis, 10(3), 440–451.

McLachlan, G. J., & Basford, K. E. (1988). Mixture models: inference
and applications to clustering. New York: Marcel Dekker.

Nocedal, J., & Wright, S. J. (1999). Springer series on operations re-
search. Numerical optimization (2nd ed.). New York: Springer.

Peacock, J. A. (1983). Two-dimensional goodness-of-fit testing in as-
tronomy. Royal Astronomy Society Monthly Notices, 202, 615–
627.

Rohlfing, T., Brandt, R., Maurer, C. R. Jr., & Menzel, R. (2001). Bee
brains, B-splines and computational democracy: generating an
average shape atlas. In Proceedings of the IEEE workshop on
mathematical methods in biomedical image analysis (MMBIA)
(pp. 187–194).

Rohr, K. (2001). Landmark-based image analysis: using geometric
and intensity models (1st ed.). New York: Springer.

Sabuncu, M. R., Shenton, M. E., & Golland, P. (2007). Joint reg-
istration and clustering of images. In Proceedings of the MIC-
CAI workshop on statistical registration workshop: pair-wise and
group-wise alignment and atlas formation (Vol. 10(WS), pp. 47–
54).

Sebastian, T. B., Crisco, J. J., Klein, P. N., & Kimia, B. B. (2000). Con-
structing 2D curve atlases. In Proceedings of the IEEE workshop
on mathematical methods in biomedical imaging analysis (MM-
BIA) (pp. 70–77).

Tsin, Y., & Kanade, T. (2004). A correlation-based approach to ro-
bust point set registration. In LNCS: Vol. 3024. Proceedings of the
European conference on computer vision (ECCV) (pp. 558–569).
Berlin: Springer.

Twining, C. J., Cootes, T. F., Marsland, S., Petrovic, V., Schetowitz, R.,
& Taylor, C. J. (2006). Information-theoretic unification of group-
wise non-rigid registration and model building. In Proceedings of
the medical image understanding and analysis (MIUA) (Vol. 2,
pp. 226–230).

Wahba, G. (1990). Spline models for observational data. SIAM:
Philadelphia.

Wang, Y., Woods, K., & McClain, M. (2002). Information-theoretic
matching of two point sets. IEEE Transactions on Image Process-
ing, 11(8), 868–872.

Wang, F., Vemuri, B. C., Rao, M., & Chen, Y. (2003). A new and robust
information theoretic measure and its application to image align-
ment. In LNCS: Vol. 2732. Proceedings on information processing
in medical imaging (IPMI) (pp. 388–400). Berlin: Springer.

Wang, F., Vemuri, B. C., & Rangarajan, A. (2006). Group-wise point
pattern registration using a novel CDF-based Jensen-Shannon di-
vergence. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition (CVPR) (pp. 1283–1288).

Wang, F., Vemuri, B. C., Rangarajan, A., Schmalfuss, I., & Eisen-
schek, S. (2008). Simultaneous nonrigid registration of multiple
point sets and atlas construction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(11), 2011–2022.


	Group-Wise Point-Set Registration Using a Novel CDF-Based Havrda-Charvát Divergence
	Abstract
	Introduction
	Point Pattern Registration Model
	Definition of CDF-HC divergence
	Group-Wise Point-Set Registration Model

	Estimating the Empirical CDF-HC
	The Dirac Mixture Model
	Gradient Computation

	Complexity Analysis and Experimental Results
	Computational Complexity Analysis
	Group-Wise Registration for Atlas Construction
	Group-Wise Registration Assessment Without Ground Truth

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


