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ABSTRACT

This paper presents a novel classification via aggregated
regression algorithm — dubbed CAVIAR - and its applica-
tion to the OASIS MRI brain image database. The CAVIAR
algorithm simultaneously combines a set of weak learners
based on the assumption that the weight combination for the
final strong hypothesis in CAVIAR depends on both the weak
learners and the training data. A regularization scheme using
the nearest neighbor method is imposed in the testing stage to
avoid overfitting. A closed form solution to the cost function
is derived for this algorithm. We use a novel feature — the his-
togram of the deformation field between the MRI brain scan
and the atlas which captures the structural changes in the scan
with respect to the atlas brain — and this allows us to automat-
ically discriminate between various classes within OASIS [1]
using CAVIAR. We empirically show that CAVIAR signif-
icantly increases the performance of the weak classifiers by
showcasing the performance of our technique on OASIS.

Index Terms— aggregated regression, classifier ensem-
ble, OASIS, dementia

1. INTRODUCTION

Brain MRI analysis and its associated application in the di-
agnosis and treatment of brain-based diseases has attracted
immense attention in the past two decades. Dementia is an
example of such a neurological disorder, that may occur at
any stage of adulthood and lead to long-term decline in cog-
nitive function. Therefore, a technique that is able to detect
the changes in brain structures due to the onset of dementia
and use this information to classify the subjects is of great
value. One of the main challenges is that it is not easy to find
a single classifier that achieves a low error rate. Due to the
difficulty in obtaining good features from MRI, the classifiers
we obtain are actually weak classifiers. However, can a set
of weak classifiers create a single strong learner? Numerous
variants of algorithms for classifier ensembles have been pro-
posed in literature, for instance, boosting and bagging. Gen-
erally speaking, the boosting method iteratively refines each
weak learner and re-adjusts the weighted combination of the
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training data after each iteration. Another type of algorithm is
called bootstrap aggregation (bagging) proposed by Breiman
[2]. Here bootstrap samples are trained using weak learners
and the output of the weak predictors are combined by aver-
aging or voting. In Adaboost [3], it is required that the perfor-
mance of weak learners be slightly better than mere random
assignment. Therefore, a ”very weak” weak classifier is not
acceptable. Besides, this algorithm also needs a large num-
ber of weak learners in order to converge. Meanwhile, due
to the equally weighted voting scheme, bagging also has its
limitation in terms of improving on linear models.

In this paper, we propose a novel ensemble classifier -
called CAVIAR - which is different from the bagging and
boosting mentioned above and offers a significantly better
performance. CAVIAR is a regression based classification al-
gorithm, which assumes that the weights for combining the
weak learners depend not only on the weak learners but also
on the training data. It is analogous to a medical consulta-
tion carried by a group of doctors on a number of patients.
We think that it’s well-justified to assume that each patient’s
personal condition has a different affect on the experts’ con-
sensus final decisions. Since in CAVIAR the weights vary
over both the weak learners and the training set, it is prone to
overfitting. We impose a regularization scheme wherein the
weights corresponding to closed training patterns are forced
to be similar. Furthermore, in the testing phase, a strong clas-
sifier is constructed by choosing the weights corresponding
to the nearest neighbors of the test pattern among the train-
ing data set. Intuitively speaking, as a new patient comes in
for medical consultation, we expect that a good strategy for
the experts involves searching through similar case studies in
order to arrive at a consensus diagnosis. To the best of our
knowledge, this kind of data adaptive testing technique has
never been reported in literature. We demonstrate the stabil-
ity and effectiveness of the classification model, along with
its novel testing technique via numerous experiments on the
OASIS database.

2. CLASSIFICATION VIA AGGREGATED
REGRESSION (CAVIAR) ALGORITHM

Formally speaking, let X be the set of training feature vec-
tors and Y be the set of labels, where (z,,,¥y,) are drawn



randomly from X x Y based on some unknown distribu-
tion. In the case of two-class classification, Y is a binary set
containing two labels {+1, —1}. Assume h is the weak hy-
pothesis applied to the instance taken from the sample set X,
with its magnitude |h| being the confidence of the prediction
and its sign distinguishing the class to which it belongs. Let
W = {wps}, withn = 1,2,...,Nand t = 1,2,...,T, be
the weight matrix that corresponds to the training samples and
weak learners. The goal in the classification problem is to find
a proper combination C'(z,,) = Y, wpithe(2n) = Wy, - ()
for each data that minimizes a given classification error dis-
criminant function ) Dist(C(xy,),yn) for the whole train-
ing data set. To simplify the notation, we use w,, to de-
note the vector (wy1, Wna, - - - , wyr)t and let h be the vector
(hi(xn), ha(xpn), ..., hr(zn))t.

So far, the curious reader may have two concerns. First,
since the dimension of the weights to be optimized in CAVIAR
is N x T which is huge for a large data set, the optimiza-
tion might be difficult and time consuming. Second, this
training technique is very likely to induce over-fitting. We
now relegate the discussion of the optimization issue to the
next section and address in detail our method for solving the
over-fitting problem here.

It is justified to assume that the weights w,, and w,,, are
expected to be similar if the training samples x,, and x,,, are
close to each other in the feature space. We therefore adopt
an aggregated regularization term in order to prevent over-
fitting. A nearest neighbor graph G is pre-computed (once
and for all for the training data) and stored, with G(n, m) =
1 if x,, and z,, are neighbors (appropriately symmetrized)
and G(n,m) = 0, otherwise. We regularize our objective

function using A Zﬁmzl G(n,m)Dist(wW,, W.,).

Assume we obtain a set of weights for combining the
weak learners in the training stage. In the testing phase, a
filtering procedure is imposed in order to construct a strong
learner based on the test data and to overcome over-fitting. In-
stead of using all the training results, we only use the learned
weights that are associated with the training patterns which
are in the nearest neighborhood of the test pattern. Formally,
let  be an incoming test instance. We then take into ac-
count a set of nearest neighbors of = from the training data
set X. Moreover, each neighbor is assigned a different weight
according to its distance to the instance x. We choose the
weight to be inversely proportional to the distance which ac-
cords with the assumption that the training data being more
similar to the test sample = should have more contribution to
the final strong classifier for that particular x.

The final hypothesis [ of CAVIAR for a test sample z is
the weighted combination of the 7" weak hypotheses weighted
by the K nearest neighbors’ contribution, that is, H(xz) =
sign(Zi(:l Qs Zthl wy, hi(x)). Here wy, ; is the optimal
weight obtained from the training. The pseudo code of 2-class
CAVIAR algorithm is listed in Algorithm 1.

Note that any distance measure can be used to define the

objective function in step 3 of the training stage. The most
popular one is the L2 distance which leads to a closed form
solution in the optimization.

Algorithm 1 CAVIAR : for 2 classes
Training stage:

I: Input N labeled training samples ((x1,91),..., (TN, YN)),
where y; € {—1,1} and T weak learners hq,...,hr, ht :
X —[-1,1]

2: Initialize the weight matrix: W = {wn:}, forn =1,2,..., N
andt=1,2,...,T

3: Minimize the following objective function:

N
W* = argmin Z Dist(wy, - h(xn), yn) (1)
n=1
N
+AY " G(n,m)Dist(Wn, W)
n,m=1
Testing stage:

1: Input the test sample x

2: Compute the nearest neighbors of z: z,,, Ts,, -
attained from X within the distance threshold d

3: Assign weights to the chosen training samples using:

exp(fdsy)

T € X,

Qs = — e 2)
* 25:1 exp(8ds; )
where ds, = Dist(x,xs, )
4: Output the strong hypothesis
K T
H(z) = sign(Y_ g Y wi, () 3)
k=1 t=1

Next, we show how to generalize this algorithm to the
multi-class classification case, where each training sample
corresponds to a particular class label from the set of integers
Y ={1,2,...,C}, and C is the number of classes. In our
approach, we define a C'-dimensional label vector L,, for each
training sample x,,, with the ¢! entry being 1 only if the label
of ,, is c and the remaining entries being —1. Meanwhile, the
weak learner h; in this case is a vector function, which maps
an instance into a C-dimensional vector space with a positive
entry indicating that the data belong to that class, negative
otherwise and the magnitude being the confidence of the pre-
diction. The final hypothesis will assign class c to the test
data if the c¢*" entry has the maximum positive value in the
following vector Zle Qs E;le w}, hi(x). Therefore, the
objective function is as follows,

N
W = argmvin(ZDist(wn-h(xn),Ln)) (4)

n=1

N
+/\Z G(n,m)Dist(Wy, Wy,).

n,m=1



We do not present the detailed pseudo code here since the
whole structure of the algorithm is similar to the 2-class case.

3. OPTIMIZATION

In this section, we briefly discuss the optimization technique
and derive the closed form solutions for both 2-class and
multi-class algorithms when using the L2 distance.

By using the L2 distance as the distance measure in the
2-class objective function, we obtain

E = ZHWTL xn yn|| +A Z

n,m=1

(n, M) |[Wp — W |2

Expanding the right hand side of the equation and adopt-
ing the following notations, we get: Let H,, = h(x, )h’(x,)

and denote the column vector of W as W' = [wh, w, ... wi],
the matrix By as By = Hp + 2X( Y. G(n,m) +
n=k,m#1

S>> G(n,m))Irxr and the column vector b as b' =
n#l,m=k

[y1h(x1), yoh' (xa), . .., ynh (xn)].
The cost function can be re-arranged into a matrix form
as follows:

B cee 220G, N)Ipxr
pow]| "D 206Nl |y,
—2\G(N, V) Irxr ... By
N
- thW+Zy,2L.
n=1

Taking the derivative of E w.r.t. W and setting the equation
to 0, we have, 2Z = (D' + D)W — 2b* = 0, with D being
the matrix in the equation above that contains By, as diagonal.
The problem is finally reduced to solving the following linear
system (D' + D)W = 20",

For the multi-class case, assume there are C classes, for
each weak learner h;, the output is a C' dimensional vector
denoted as [h¢1(xy), ..., hic(zn)]. We re-arrange those T
C-dimensional vectors by taking the corresponding c!”* entry
of each and stacking them in to one vector, and get h.(z,) =
[hic(zn), ..., hre(xy,)]. Recall that the true label for each
data is a C dimensional vector. Similar to the 2-class case,
we change some notations and define H,, = h; (x,,)h(x,,) +
hy(x,, )l (x,, )+ - -+ho(x,)hi (X, ), which is a T x T’ matrix,

By :Hk+2/\( Z G(n,m)Jr Z G(n,m))ITXT
n=k,m%#1 n#lm=k
and b}, = [y1h(x1), yohy(xa), . . ., ynhe(xn)].

A similar closed form solution as in the 2-dimensional
case is obtained, one that requires us to solve the linear system
(D' + D)W =2(b} + b5+ -+ bL).

Note that in both cases, D! 4 D are sparse matrices. Fi-
nally, the overall optimization reduces to one basic problem:
solving a sparse linear system Az = b [4] with A being

D! + D in the previous equations. Sparse Cholesky factor-
ization is used when A is a positive definite matrix. Since the
positive definite property is not guaranteed for small A\, we
resort to the LD L' factorization when A is indefinite.

4. EXPERIMENTS

In this section, we empirically validate our proposed algo-
rithm by classifying the OASIS MRI database into the con-
stituent classes namely, young (Y), old (O), middle aged (M),
control and very mild to moderate Alzheimer disease (AD).

4.1. Feature Selection

In addition to the behavioural assessments and cognitive tests,
a morphological marker for the Alzheimer disease is the en-
largement of ventricles and the shrinkage of cortex and hip-
pocampi. In [5], Mert et al. revealed the structural changes in
the brain across different age groups and between the healthy
and patients with dementia. This led us to the hypothesis that
a good feature might be one that captures the structural dif-
ferences among the brains. Therefore, we constructed the 3D
histogram of the deformation field (vectors in the 3D space)
required to co-register an emerging atlas to a sample MR
brain scan as our feature. This was achieved by performing a
group wise registration [6] of the MR images within the OA-
SIS data set. The number of bins in each direction was set to
(6 x 6 x 6) for constructing the histograms of the vectors.

4.2. Weak Learners

In order to demonstrate the power of CAVIAR, we choose the
most simple weak learners by randomly selecting a compo-
nent from the feature vector and picking a random threshold.
The samples were assigned to particular classes based on their
values in that chosen component of the feature vector by com-
paring to the threshold. For instance, assume the data = has
a d-dimensional feature. The weak learner h(x) assigns the
data to class 1 if the k*" dimension (randomly chosen) of the
feature vector is larger than a random value ¢, and assigns to
class 2 otherwise.

4.3. Model Selection

The free parameters involved in our CAVIAR algorithm in-
clude the regularization parameter A, the number of nearest
neighbors K in setting up the nearest neighbor graph G, the
weighting parameter 3 and the distance threshold d. The ex-
periments indicate that only d is crucial for CAVIAR’s per-
formance, and requires tuning with the remaining parameters
fixed a priori, without sacrificing performance. The parame-
ter A is used to tune the amount of similarity of the weights
w,, and w,,, corresponding to the nearest neighbors x,, and
X, CAVIAR works well in the region A € (0,1) and we
set it to be 0.01 in the experiments. Empirically, K is chosen
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Fig. 2. The classification errors of
the weak learners and the final strong hy-
pothesis w.r.t. different number of weak
learners for AD vs. Control.

Fig. 1. The classification errors for
both validation and test data sets w.r.t.
different d (indicated by the bins on the
x-axis) for Middle aged vs. Old.

to be approximately 5% of the number of the training data.
[ is used to adjust the weights of the chosen training data
as in Eqn.(2). A setting of 8 = 0 implies that the data are
equally weighted and a 8 = oo corresponds to a single near-
est neighbor choice. Stable performance is achieved when 3
is inversely proportional to the average distance among the
samples.

The most crucial parameter for this algorithm is the dis-
tance threshold d. Note that Euclidian distance is used as our
distance measure here. A larger than necessary d means more
training data are involved in the testing which results in over-
fitting. Meanwhile a smaller than necessary d leads to a small
portion of training results being used which pushes the algo-
rithm closer to being a nearest neighbor method. Therefore,
a proper choice of d is of great importance. To this end, we
discretize the search space for d into [ bins and this bin num-
ber only affects the resolution of the search. By searching
over the [ different d values and compute the error, we find
the best d for each data set. The optimization curves of the
classification errors w.r.t. d (indicated by [ bins) for both the
validation and test data are shown in Fig.1. We obtain the best
d according to the validation error curve and use this d in the
testing stage.

4.4. Experimental Results

The OASIS data set contains cross-sectional collection of 416
subjects aged 18 to 96. We divided the subjects into three
groups, with ages below 40 designated as young, above 60 as
old and the ones in between as middle aged. Among the old
people, we took 70 subjects, and 35 of them were diagnosed
with very mild to moderate AD while the rest were controls.
For each experiment, we randomly divided the data set into 5
portions and took 4 of them for training and 1 for testing, with
1 of the training data selected as a validation set. For different
numbers of weak learners, the experiments were repeated 20
times and the averages were taken as the result to be reported.

We first classified the data set between any two age groups
using the 2—class version of CAVIAR and then demonstrated
the performance of our multi-class classification algorithm by
classifying the three age groups simultaneously. Finally, we

presented a more serious challenge to our algorithm by classi-
fying the healthy and the very mild to mild AD patients. For
comparison, the results of the Adaboost algorithm with the
same weak learner settings are also reported.

In Table 1, we show the average error for the weak learn-
ers in the second column and the test error of the final strong
hypothesis in the third column, followed by the improvement
of the performance of our algorithm w.r.t. the weak learners,
and reported the test error for Adaboost in the last column.
The error is measured by the mis-classification rate.

To illustrate the change of performance w.r.t. the increas-
ing number of weak learners, we show the experimental re-
sults of AD vs. Control in Figure.2.

Table 1. Testing results with 20 weak learners(WL)

l [ Ave. WL Err  Test Err  Improve  Ada. Err ‘
Y vs. M 0.3220 0.0233  92.76% 0.0400
Myvs. O 0.6746 0.0164 97.57% 0.0320
Ovs. Y 0.4770 0.0086  98.19% 0.0125

Y vs. M vs.O 0.7925 0.0375  95.27% 0.0912
AD vs. Control 0.6876 0.0417  93.94% 0.0975

The experimental results indicate that the deformation
field captures the structural changes across the brains very
well and the CAVIAR algorithm significantly improves the
performances of the weak classifiers, when presented with
a small number of simple weak learners in both 2-class and
multi-class cases.
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