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ABSTRACT Recently several methods have been proposed for estimating

th. ; p e .
Cartesian tensors of various orders have been employed fér order tensors with positive-definite constraints [4, 5] as

either modeling the diffusivity or the orientation distitipn well as for processing high-order tenso_r fields [6, 7]. .
LT . One of the advantages of Cartesian tensor basis over
function in Diffusion-Weighted MRI datasets. In both cases : . 2 ) )
spherical harmonic basis is that the local maxima of a higher

the estimated tensors have to be positive-definite singe thé ; ,
I . . order tensor can be easily computed [8, 9]. This property has
model positive-valued functions. In this paper we present

o N o S Been used for computing the fiber orientations from a given
novel unified framework for estimating positive-definitate . . TN .
sors of any order, in contrast to the existing methods in "t_or|entat|on distribution function.
' Although, high-order tensors have been employed in most

erature, which are either order-specific or fail to handke th : N
ositive-definite property. The proposed framework em;;:loyOf. the aforemenno_ned _n_1ethods due to th.e" simple po_lyno-
P ) mial form and their ability to model multi-lobed spherical

a homogeneous polynomial parametrization that covers thfe

o o e unctions, there are no existing methods for imposing posit
full space of any order positive-definite tensors and eiplic . oo .
. . e : . ity constraints in tensors of any order higher tteaand4. It
imposes the positive-definite constraint on the estimatad t

. o . has been shown that tensors of ordeasd’ can approximate
sors. We show that this parametrization leads to a linear sys ; i .
omplex fiber structures such as 3-fiber crossings, by over-

tem that is solved using the non-negative least squares tec oming the limitations of"-order tensors [2]. Furthermore,

nique. The framework is demonstrated using synthetic an@ne need for positivity constraints is essential espacialthe

real data from an excised rat hippocampus. ; - .
case where the tensors approximate positive-valued pdysic
Index Terms— Diffusion Tensors, Symmetric High- quantities such as diffusion or displacement probabiiiy [
Order Positive-Definite Tensors, Homogeneous Polynomials  In this paper, we present a novel method for imposing the
positivity constraints on high-order symmetric tensonsouir
1. INTRODUCTION framework, we express any symmetric positive-definite ten-
sor as a sum of squares of lower-order polynomials. This

Symmetric positive-definite (SPD) tensors of order-2 havarametrization can be approximated by a convex combina-
been used in modeling the diffusivity function in the soedll tion of predefined homogeneous polynomials, and we show
Diffusion Tensor MR Images (DT-MRI) [1]. The diffusion that the accuracy of the approximation can be easily adjuste
tensor can be estimated from a given Diffusion-Weighted© a desired level. We evaluaze?, 4'", and6""-order tensors

(DW) MRI dataset by using the Stejskal-Tanner signal attencomputed by the proposed framework using synthetic data.
uation model: Furthermore, we quantitatively compare our method with an-

S/Sy = e—bd(g) (1) other exis_ting technique for estimating diffusion tensofs_
order6. Finally, the proposed method is demonstrated using
whered(g) is the diffusivity function andS/Sy is the ob-  real DW-MRI data from an isolated rat hippocampus.
served signal attenuation associated with the diffusion se  The main contribution of the work presented here is a
sitizing magnetic gradient orientatiog and the diffusion ynified framework for estimating symmetric positive-detni
weightingb. tensors of any even order. To the best of our knowledge this
Higher even-order tensors (e.g!" and6'") generalize s the first method in literature for imposing positivity con
the 2"?-order tensors and have the ability to approximatestraints on any order symmetric tensor. The other signifi-
multi-lobed functions [2] such as the kurtosis of diffus[8h  cant contribution of this paper is a novel parametrizatibn o
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2. DIFFUSION TENSORS OF EVEN ORDERS 4. TENSOR ESTIMATION FROM DW-MRI

The diffusivity functiond(g) in Eq. 1 can be approximated Given a data set of DW-MRI signal attenuatiofis/ Sy as-

by a Cartesian tensor as follows [2]: sociated with magnetic gradient orientatignsand diffusion
3 3 3 weighting b-value$;, i = 1,--- , N, we can estimate the co-
d(g) = Z Z . Z Z 9igi - grgiDi g ny  (2)  efficients of aKth—ordgr positive-definite diffusion tensor by
i S ! ' minimizing the following energy function with respect teeth

. ) ) ] unknown polynomial coefficients
whereyg; is thei’” component of the 3-dimensional unit vec-

tor g, gnd_ Dij,.. k1 are the tensor coefficients. Tr_\e num- 7o XN: (S-/S B eibid(gi))z
ber of indices (or equivalently the number of sums in Eq. 2) /20

is equal to the order of the tensor. When approximating the =t

diffusivity function, we are interested in tensors of even o Whered(g) is given by Eq. 3.

ders with full symmetry. In this case, those tensor coefiitsie The energy in Eq. 4 can be minimized by reformulating
which correspond to the same monomjagsgs are equal to  Ed. 3 in the form of a spherical convolution:

(4)

each other. For instance the coefficiefis; 1 2, D1,1,2,1, 9
Di211,D21,11 of a4*"-order symmetric tensor correspond d(g) = /S A(e)p(g1, 92, 93; ¢)“de )
to the monomial?¢, and therefore are equal to each other. Gt

Another property of the diffusivity is thati(g) is @ \yhere)(c) is a non-negative real function. Note that Eq. 5 is
positive-valued ﬂ_mCt'OWg € S2. The_re aré various Ways  the continuous generalization of Eq. 3, and it also covess th
for re-parameterizing Eq. 2, so that it explicitly represen space of K*"-order positive-definite tensors. By substi-
positive-definite tensors of orders 2 or 4. In the fOIIOWingtuting d(g) in Eq. 4 with Eq. 5, we can now estimate a diffu-
sections we present a novel unified way of parameterizingiq, tensor by minimizing Eq. 4 with respect to the unknown

positive-definite tensors of any (even) order. The proposegnction (c). The value of this function can be approximated
method covers the full tensor space and is not order specific,, 5 given set of\’ unit vectorse, , - - - , car by discretizing

the integration over the sphere in Eq. 5 as follows:
3. PARAMETRIZATION OF POSITIVE TENSORS

M’
Any positive-definite polynomial can be written as a sum d(g) = Z)‘J'p(91’92’93;°j)2 (6)
of squares of lower order polynomials [10, 11]. In our par- =t
ticular case, any positive-definit&*"-order homogeneous where); are non-negative real numbers. The parametriza-
polynomial in 3 variables can be written as a sum of squareton in Eq. 6 approximates the spacelof"-order positive-
of K/2th-0rder homogeneous polynomialgg, g2, g3;c),  definite tensors and the approximation accuracy depends on
wherec is a vector that contains the polynomial coefficients. how well the set of vectors; sample the space of unit vec-
v torsc. By constructing a large enough set of well sampled
d(g) = Zp(gl’ 92,93 ¢;)> 3) vectorsc;, one can achieve any desired level of accuracy.
j=1

The number of terms in the summation of Eq. 3 is bounded 5. IMPLEMENTATION DETAILS

by the number of unique monomials ink&/2""-order homo- 5.1. High SNR case
geneous polynomial in 3 variables, i.8/ < % F
instance2™?-order tensors can be written as a sundHf< 3
squares of order-1 polynomials, which parametrization cor
responds to the rankdecomposition of symmetric matrices.
Similarly, 4/"-order tensors can be written as a sumbf 6
squares of orde2-polynomials. This agrees with Hilbert's
theorem on ternary quartics [4] according to whith = 3
terms are enough in Eq. 3. In the case$éfands?” order

. that contains the unknown coefficients
tensors the upper.bogndg arel0 and< 15 respectively. Here we should note that the size of matfixdoes not
The parametrization in Eq. 3 covers the full space of

. - : depend on the orddk of the estimated tensor; however, the
positive-definite homogeneous polynomials of any ordee Th

unknown parameters are the coefficients of the pol nomialelements of matrbP change with(, since their value is re-
P poly fated to aK /2!"-order homogeneous polynomial. Further-

2
p(.) whose number is bounded %y( (2(}72/)2,)') + (Zz}f/ﬁ.)' more, the rank oP is equal to the number of unique coeffi-

i.e. 6,21, ands5 coefficients fork” = 2, 4, and6 respectively.  cients in ak*-order tensor, i.erank(P) < % which

In the case of high signal-to-noise ratio (SNR) in the acsplir
data, the positive-definite tensors can be estimated by mini
mizing a log-linear version of Eq. 4, which can be efficiently
achieved by solving a linear system with non-negative con-
straints. The constructed linear systenPis = y, whereP
isaN x M’ matrix with P; ; = —b;p(gi;c;)? y is aN-
dimensional vector withy; = log(S;/So), andx is a vector




is equal to6, 15, and28 for K = 2, 4, and6 respectively.

This is related to the fact tha can be decomposed into the Table 1. Order of tensor vs. the number of required polynom.

form P — GC, whereG is of sizeN' x rank(P) and con- Order of Tensor Poly/nomials Fit. error | Run. Time

tains only monomials constructed from the elements of the K=2 M/=321 0.00 0.7 ms

vectorsg;, andC is of sizerank(P) x M’ and contains only K=4 M, =900 0.01 12 ms

monomials constructed from the elements of the veatprs K=6 M'=3000 0.02 130 ms
Due to the need for estimating non-negatlyethe above 0

linear system can be stably solved using NNLS (non-negative
least squares) [12]. The obtained solution contains at most [ oS e b Ak
rank(P) non-zero elements, which are as many as the un- 6th-order tensors without positivity constraint
known tensor coefficients. We can easily compute the tensor 04l
coefficients byCx, which multiplication produces a vector
that contains the unique coefficients ok&"-order tensor.

5.2. Low SNR case 02f }".“‘I,,.---I i |

Fitting error

In the case of low SNR, log-linearizing Eq. 4 may lead to I l'
inaccurately estimated tensor coefficients due to the irapp T i i T
priate noise model assumed when using the logarithm of the Standard deviation of noise indata

signal values. Instead, one should minimize Eq. 4 by em-

ploying any non-linear functional minimization method.eTh Fig. 1. Comparison of the proposed method with the tech-
functiond(g) in Eq. 4 can be parametrized by either Eq. 3 ornique in [2] for various levels of Riccian noise in the data.
Eq. 6. In the first case, the minimization of Eq. 4 should be

performed with respect to the polynomial coefficieajsby

using the Levenberg-Marquardt algorithm, as it was shown in 6. EXPERIMENTAL RESULTS

[4] for estimating4*"-order tensors.

If we employ the parametrization in Eq. 6, the minimiza-We constructed a dataset of positive-definite tensors by firs
tion of Eq. 4 should be performed with respecttp The  generating random vectors in 3, 6, and 10 dimensions, and
gradient of the energy can be easily computedBy/0x =  then using themin Eq. 3 as coefficients of homogeneous poly-
2P" diag(exp(Px))[exp(Px) — exp(y)], whereP, x, andy ~ nomials. This process createt, 4'* and6"-order tensors
are defined similarly as in Sec. 5.1, adihg(x) denotes a and was repeated for 1000 times for each order case.

square diagonal matrix whose diagonal elements are given by |n order to investigate how many vectarsare necessary
the vectorx. The gradient can be used by any gradient-basegh Eq. 6 for our algorithm to produce accurate tensor fitting
energy minimization method for minimizing Eq. 4. The al- results, we evaluated Eq. 1 ff = 81 unit vectorsg; - - - gs1
gorithm can be initialized by setting to the solution of the  ysing the synthetic dataset of tensors. This prodgteshm-
linear system that was discussed in Sec. 5.1. Addltlomﬂlly, p|esSl/S0 R S81/SO for each tensor in the dataset. Then we
each iteration of the minimization algorithm the negatigé v reconstructed the original tensors by applying our fran&wo
ues in the solution vectot should be forced to zero in order (Sec. 5.1) to the obtained set of samples using various reso-
to guarantee that the estimated tensors are positive-#efini |utions 1/’. Table 1 reports the number of polynomials that
were required in Eq. 6 in order to reconstruct accurately the

5.3. Constructing sets of polynomials tensors. The table also reports the fitting errors compuwed b

. . SN |deruth (8:)—d(g:)] . . .
In our experiments we constructed sets of polynomial coef-" S~ Ta,.m@nl and the running time per tensor using

ficientsc; by first creating a set of 3D unit vectoss, i = an Intel Pentium Dual CPU at 1.60 GHz and 1GB RAM. The
1,---, L using tessellations of the icosahedron on the unitesults demonstrate that our method estimates accurately a
sphere. Then, for the case BF"-order tensors we computed €fficiently positive-definite tensors of any order.

the homogeneous polynomiglég) = Hk:l:K/Q(gTvik)' In order to demonstrate the necessity for estimating ten-
wherei, = 1,---, L. The coefficients of these polynomi- sors with positivity constraints we compared our method
als were stacked together in the form of a veeipfor each  with an existing one that computes tensor without impos-
polynomial. In the case ok = 2, 4, and6, this procedure ing the positive definite property [2]. In this experiment we
produced., L?/2+ L/2,andL?/6 + L?/2+ L/3 unique co- added various levels of Riccian noise to the previously de-
efficient vectors respectively. From our experiments weehavscribed synthetic datas8t/ Sy - - - Ss1/So that correspond to
seen that the sets of vectors constructed by this procesae | the synthesized set 6f"-order tensors. The noisy datasets
to parameterizations in the form of Eq. 6 that accurately apwere given as input to: a) the algorithm in Sec. 5.1 (using
proximate the space df*"-order positive definite tensors. M’ = 3000) and b) the method in [2], which is the only ex-
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Symmetric positive-definite tensors have been used in vari-
ous applications. Although there are existing methodsfoer i
posing positivity constraints on the estimated tensorgsaéo
P A 2 and 4, none of these techniques can be easily extended to
7S & D00 ) ¢ higher orders. In this paper we presented a framework for es-
e ®© Qof\ timating SPD tensors of any order and we used our technique
7 Region it single = for a_tpprommatmg the d|ffl_JS|V|ty functlon_ from given DWT
. fiber Structures & %¢%e°c0 MR images. The formulation leads to a linear system which

Pe ;i:%%%%%%m G Q‘DCQOOQQQQ can be efficiently solved. Finally, we presented evaluatinin
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