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ABSTRACT

Cartesian tensors of various orders have been employed for
either modeling the diffusivity or the orientation distribution
function in Diffusion-Weighted MRI datasets. In both cases,
the estimated tensors have to be positive-definite since they
model positive-valued functions. In this paper we present a
novel unified framework for estimating positive-definite ten-
sors of any order, in contrast to the existing methods in lit-
erature, which are either order-specific or fail to handle the
positive-definite property. The proposed framework employs
a homogeneous polynomial parametrization that covers the
full space of any order positive-definite tensors and explicitly
imposes the positive-definite constraint on the estimated ten-
sors. We show that this parametrization leads to a linear sys-
tem that is solved using the non-negative least squares tech-
nique. The framework is demonstrated using synthetic and
real data from an excised rat hippocampus.

Index Terms— Diffusion Tensors, Symmetric High-
Order Positive-Definite Tensors, Homogeneous Polynomials

1. INTRODUCTION

Symmetric positive-definite (SPD) tensors of order-2 have
been used in modeling the diffusivity function in the so called
Diffusion Tensor MR Images (DT-MRI) [1]. The diffusion
tensor can be estimated from a given Diffusion-Weighted
(DW) MRI dataset by using the Stejskal-Tanner signal atten-
uation model:

S/S0 = e−bd(g) (1)

whered(g) is the diffusivity function andS/S0 is the ob-
served signal attenuation associated with the diffusion sen-
sitizing magnetic gradient orientationg and the diffusion
weightingb.

Higher even-order tensors (e.g.4th and6th) generalize
the 2nd-order tensors and have the ability to approximate
multi-lobed functions [2] such as the kurtosis of diffusion[3].
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Recently several methods have been proposed for estimating
4th-order tensors with positive-definite constraints [4, 5] as
well as for processing high-order tensor fields [6, 7].

One of the advantages of Cartesian tensor basis over
spherical harmonic basis is that the local maxima of a higher-
order tensor can be easily computed [8, 9]. This property has
been used for computing the fiber orientations from a given
orientation distribution function.

Although, high-order tensors have been employed in most
of the aforementioned methods due to their simple polyno-
mial form and their ability to model multi-lobed spherical
functions, there are no existing methods for imposing positiv-
ity constraints in tensors of any order higher than2 and4. It
has been shown that tensors of orders6 and8 can approximate
complex fiber structures such as 3-fiber crossings, by over-
coming the limitations of4th-order tensors [2]. Furthermore,
the need for positivity constraints is essential especially in the
case where the tensors approximate positive-valued physical
quantities such as diffusion or displacement probability [4].

In this paper, we present a novel method for imposing the
positivity constraints on high-order symmetric tensors. In our
framework, we express any symmetric positive-definite ten-
sor as a sum of squares of lower-order polynomials. This
parametrization can be approximated by a convex combina-
tion of predefined homogeneous polynomials, and we show
that the accuracy of the approximation can be easily adjusted
to a desired level. We evaluate2nd, 4th, and6th-order tensors
computed by the proposed framework using synthetic data.
Furthermore, we quantitatively compare our method with an-
other existing technique for estimating diffusion tensorsof
order-6. Finally, the proposed method is demonstrated using
real DW-MRI data from an isolated rat hippocampus.

The main contribution of the work presented here is a
unified framework for estimating symmetric positive-definite
tensors of any even order. To the best of our knowledge this
is the first method in literature for imposing positivity con-
straints on any order symmetric tensor. The other signifi-
cant contribution of this paper is a novel parametrization of
tensors, which covers the full space of positive-definite high-
order tensors.



2. DIFFUSION TENSORS OF EVEN ORDERS

The diffusivity functiond(g) in Eq. 1 can be approximated
by a Cartesian tensor as follows [2]:

d(g) =

3
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i=1
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· · ·

3
∑

k=1

3
∑

l=1

gigj · · · gkglDi,j,··· ,k,l (2)

wheregi is theith component of the 3-dimensional unit vec-
tor g, andDi,j,··· ,k,l are the tensor coefficients. The num-
ber of indices (or equivalently the number of sums in Eq. 2)
is equal to the order of the tensor. When approximating the
diffusivity function, we are interested in tensors of even or-
ders with full symmetry. In this case, those tensor coefficients
which correspond to the same monomialga

1gb
2g

c
3 are equal to

each other. For instance the coefficientsD1,1,1,2, D1,1,2,1,
D1,2,1,1, D2,1,1,1 of a4th-order symmetric tensor correspond
to the monomialg3

1g2 and therefore are equal to each other.
Another property of the diffusivity is thatd(g) is a

positive-valued function∀g ∈ S2. There are various ways
for re-parameterizing Eq. 2, so that it explicitly represents
positive-definite tensors of orders 2 or 4. In the following
sections we present a novel unified way of parameterizing
positive-definite tensors of any (even) order. The proposed
method covers the full tensor space and is not order specific.

3. PARAMETRIZATION OF POSITIVE TENSORS

Any positive-definite polynomial can be written as a sum
of squares of lower order polynomials [10, 11]. In our par-
ticular case, any positive-definiteKth-order homogeneous
polynomial in 3 variables can be written as a sum of squares
of K/2

th-order homogeneous polynomialsp(g1, g2, g3; c),
wherec is a vector that contains the polynomial coefficients.

d(g) =

M
∑

j=1

p(g1, g2, g3; cj)
2 (3)

The number of terms in the summation of Eq. 3 is bounded
by the number of unique monomials in aK/2

th-order homo-
geneous polynomial in 3 variables, i.e.M ≤

(2+K/2)!
2(K/2)! . For

instance,2nd-order tensors can be written as a sum ofM ≤ 3
squares of order-1 polynomials, which parametrization cor-
responds to the rank-1 decomposition of symmetric matrices.
Similarly,4th-order tensors can be written as a sum ofM ≤ 6
squares of order-2 polynomials. This agrees with Hilbert’s
theorem on ternary quartics [4] according to whichM = 3
terms are enough in Eq. 3. In the cases of6th and8th order
tensors the upper bounds are≤ 10 and≤ 15 respectively.

The parametrization in Eq. 3 covers the full space of
positive-definite homogeneous polynomials of any order. The
unknown parameters are the coefficients of the polynomials

p(.) whose number is bounded by18

(

(2+K/2)!
(K/2)!

)2

+ (2+K/2)!
4(K/2)! ,

i.e. 6, 21, and55 coefficients forK = 2, 4, and6 respectively.

4. TENSOR ESTIMATION FROM DW-MRI

Given a data set of DW-MRI signal attenuationsSi/S0 as-
sociated with magnetic gradient orientationsgi and diffusion
weighting b-valuesbi, i = 1, · · · , N , we can estimate the co-
efficients of aKth-order positive-definite diffusion tensor by
minimizing the following energy function with respect to the
unknown polynomial coefficients

E =

N
∑

i=1

(

Si/S0 − e−bid(gi)
)2

(4)

whered(g) is given by Eq. 3.
The energy in Eq. 4 can be minimized by reformulating

Eq. 3 in the form of a spherical convolution:

d(g) =

∫

S (2+K/2)!
2(K/2)!

−1

λ(c)p(g1, g2, g3; c)
2dc (5)

whereλ(c) is a non-negative real function. Note that Eq. 5 is
the continuous generalization of Eq. 3, and it also covers the
full space ofKth-order positive-definite tensors. By substi-
tutingd(g) in Eq. 4 with Eq. 5, we can now estimate a diffu-
sion tensor by minimizing Eq. 4 with respect to the unknown
functionλ(c). The value of this function can be approximated
for a given set ofM ′ unit vectorsc1, · · · , cM ′ by discretizing
the integration over the sphere in Eq. 5 as follows:

d(g) =

M ′

∑

j=1

λjp(g1, g2, g3; cj)
2 (6)

whereλj are non-negative real numbers. The parametriza-
tion in Eq. 6 approximates the space ofKth-order positive-
definite tensors and the approximation accuracy depends on
how well the set of vectorscj sample the space of unit vec-
tors c. By constructing a large enough set of well sampled
vectorscj , one can achieve any desired level of accuracy.

5. IMPLEMENTATION DETAILS

5.1. High SNR case

In the case of high signal-to-noise ratio (SNR) in the acquired
data, the positive-definite tensors can be estimated by mini-
mizing a log-linear version of Eq. 4, which can be efficiently
achieved by solving a linear system with non-negative con-
straints. The constructed linear system isPx = y, whereP
is a N × M ′ matrix with Pi,j = −bip(gi; cj)

2, y is a N -
dimensional vector withyi = log(Si/S0), andx is a vector
that contains the unknown coefficientsλj .

Here we should note that the size of matrixP does not
depend on the orderK of the estimated tensor; however, the
elements of matrixP change withK, since their value is re-
lated to aK/2th-order homogeneous polynomial. Further-
more, the rank ofP is equal to the number of unique coeffi-
cients in aKth-order tensor, i.e.rank(P) ≤

(2+K)!
2(K)! , which



is equal to6, 15, and28 for K = 2, 4, and6 respectively.
This is related to the fact thatP can be decomposed into the
form P = GC, whereG is of sizeN × rank(P) and con-
tains only monomials constructed from the elements of the
vectorsgi, andC is of sizerank(P)×M ′ and contains only
monomials constructed from the elements of the vectorscj .

Due to the need for estimating non-negativeλj , the above
linear system can be stably solved using NNLS (non-negative
least squares) [12]. The obtained solution contains at most
rank(P) non-zero elements, which are as many as the un-
known tensor coefficients. We can easily compute the tensor
coefficients byCx, which multiplication produces a vector
that contains the unique coefficients of aKth-order tensor.

5.2. Low SNR case

In the case of low SNR, log-linearizing Eq. 4 may lead to
inaccurately estimated tensor coefficients due to the inappro-
priate noise model assumed when using the logarithm of the
signal values. Instead, one should minimize Eq. 4 by em-
ploying any non-linear functional minimization method. The
functiond(g) in Eq. 4 can be parametrized by either Eq. 3 or
Eq. 6. In the first case, the minimization of Eq. 4 should be
performed with respect to the polynomial coefficientscj by
using the Levenberg-Marquardt algorithm, as it was shown in
[4] for estimating4th-order tensors.

If we employ the parametrization in Eq. 6, the minimiza-
tion of Eq. 4 should be performed with respect toλj . The
gradient of the energy can be easily computed by∂E/∂x =
2PT diag(exp(Px))[exp(Px)− exp(y)], whereP, x, andy
are defined similarly as in Sec. 5.1, anddiag(x) denotes a
square diagonal matrix whose diagonal elements are given by
the vectorx. The gradient can be used by any gradient-based
energy minimization method for minimizing Eq. 4. The al-
gorithm can be initialized by settingx to the solution of the
linear system that was discussed in Sec. 5.1. Additionally,at
each iteration of the minimization algorithm the negative val-
ues in the solution vectorx should be forced to zero in order
to guarantee that the estimated tensors are positive-definite.

5.3. Constructing sets of polynomials

In our experiments we constructed sets of polynomial coef-
ficientscj by first creating a set of 3D unit vectorsvi, i =
1, · · · , L using tessellations of the icosahedron on the unit
sphere. Then, for the case ofKth-order tensors we computed
the homogeneous polynomialsp(g) =

∏

k=1:K/2(g
T vik

),
whereik = 1, · · · , L. The coefficients of these polynomi-
als were stacked together in the form of a vectorcj for each
polynomial. In the case ofK = 2, 4, and6, this procedure
producesL, L2/2+L/2, andL3/6+L2/2+L/3 unique co-
efficient vectors respectively. From our experiments we have
seen that the sets of vectors constructed by this procedure lead
to parameterizations in the form of Eq. 6 that accurately ap-
proximate the space ofKth-order positive definite tensors.

Table 1. Order of tensor vs. the number of required polynom.
Order of Tensor Polynomials Fit. error Run. Time

K=2 M ′=321 0.00 0.7 ms
K=4 M ′=900 0.01 12 ms
K=6 M ′=3000 0.02 130 ms

Fig. 1. Comparison of the proposed method with the tech-
nique in [2] for various levels of Riccian noise in the data.

6. EXPERIMENTAL RESULTS

We constructed a dataset of positive-definite tensors by first
generating random vectors in 3, 6, and 10 dimensions, and
then using them in Eq. 3 as coefficients of homogeneous poly-
nomials. This process created2nd, 4th and6th-order tensors
and was repeated for 1000 times for each order case.

In order to investigate how many vectorscj are necessary
in Eq. 6 for our algorithm to produce accurate tensor fitting
results, we evaluated Eq. 1 forN = 81 unit vectorsg1 · · ·g81

using the synthetic dataset of tensors. This produced81 sam-
plesS1/S0 · · ·S81/S0 for each tensor in the dataset. Then we
reconstructed the original tensors by applying our framework
(Sec. 5.1) to the obtained set of samples using various reso-
lutionsM ′. Table 1 reports the number of polynomials that
were required in Eq. 6 in order to reconstruct accurately the
tensors. The table also reports the fitting errors computed by
∑N

i=1 |dtruth(gi)−d(gi)|
∑ N

i=1 |dtruth(gi)|
and the running time per tensor using

an Intel Pentium Dual CPU at 1.60 GHz and 1GB RAM. The
results demonstrate that our method estimates accurately and
efficiently positive-definite tensors of any order.

In order to demonstrate the necessity for estimating ten-
sors with positivity constraints we compared our method
with an existing one that computes tensor without impos-
ing the positive definite property [2]. In this experiment we
added various levels of Riccian noise to the previously de-
scribed synthetic datasetS1/S0 · · ·S81/S0 that correspond to
the synthesized set of6th-order tensors. The noisy datasets
were given as input to: a) the algorithm in Sec. 5.1 (using
M ′ = 3000) and b) the method in [2], which is the only ex-



Fig. 2. DW-MRI dataset from an isolated rat hippocampus.
TheS0 image is shown on the top left. The6th-order diffu-
sion tensors estimated by the proposed method are shown as
a field of spherical functions. One of the depicted regions of
interest contains tensors that model 3-fiber structures, which
can not be reconstructed by2nd or 4th-order tensors.

isting technique in literature for estimating6th-order tensors.
In both cases, the computed6th-order tensors were compared
to the ground truth tensors using the previously defined fit-
ting error metric. Figure 1 shows a comparison of the fitting
errors obtained for various levels of noise in the data. The
results conclusively demonstrate that those tensors that were
estimated using positivity constraints approximated the data
significantly better, motivating the use of our method.

Finally, in order to illustrate the performance of our
framework on real data sets, we applied the method in Sec.
5.2 to a DW-MRI data set from an excised rat hippocam-
pus (shown in Fig. 2). The data set contained 46 images
acquired using a pulsed gradient spin echo pulse sequence,
with 45 different diffusion gradients and approximateb value
of 1250s/mm2. Figure 2 shows the computed6th-order
diffusion tensor field. The highlighted regions of interest
demonstrate the variability of the estimated structures. At
each voxel, the fiber orientations can be estimated from the
peaks of the displacement probability, which can be computed
from the diffusion tensors as it was shown in [4].

7. CONCLUSIONS

Symmetric positive-definite tensors have been used in vari-
ous applications. Although there are existing methods for im-
posing positivity constraints on the estimated tensors of order
2 and 4, none of these techniques can be easily extended to
higher orders. In this paper we presented a framework for es-
timating SPD tensors of any order and we used our technique
for approximating the diffusivity function from given DW-
MR images. The formulation leads to a linear system which
can be efficiently solved. Finally, we presented evaluations of
our method using synthetic and real DW-MRI datasets.
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