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Abstract. In this paper, we propose a Riemannian framework for statistical anal-
ysis of tensor fields. Existing approaches to this problem have been mainly voxel-
based that overlook the correlation between tensors at different voxels. In our
approach, the tensor fields are considered as points in a high-dimensional Rie-
mannian product space and accordingly, we extend Principal Geodesic Analysis
(PGA) to the product space. This provides us with a principled method for lin-
earizing the problem, and coupled with the usual log-exp maps that relate points
on manifold to tangent vectors, the global correlation of the tensor field can be
captured using Principal Component Analysis in a tangent space. Using the pro-
posed method, the modes of variation of tensor fields can be efficiently deter-
mined, and dimension reduction of the data is also easily implemented. Exper-
imental results on characterizing the variation of a large set of tensor fields are
presented in the paper, and results on classifying tensor fields using the proposed
method are also reported. These preliminary experimental results demonstrate the
advantages of our method over the voxel-based approach.

1 Introduction

Tensor field data sets are quite commonly encountered in diffusion tensor imaging
(DTI) [1] and Tensor-Based Morphormetry (TBM) [2]. Most tensor fields that have
been reported in recent medical image analysis literature are fields of symmetric positive-
definite matrices (SPDs), and this paper proposes a framework for statistical analysis
on the space of these tensor fields.

The Riemannian geometry of the SPD matrices and its applications to medical im-
age analysis problems that require statistical analysis of ensembles of SPD matrices has
been the focus of intensive study in the past several years, e.g. [3, 5, 9]. In [5], Pennec et
al. developed a Riemannian framework for computing statistics on SPD tensors. In [9],
Schwartzman discussed the geometry of positive-definite matrices and studied proba-
bility distributions defined on SPD matrices. Principal Geodesic Analysis (PGA), as a
generalization of Principal Component Analysis (PCA) for data on a Riemannian man-
ifold, was introduced in [4]. In [3], Fletcher and Joshi described PGA-based methods
for statistical analysis of diffusion tensors, in the context of computing (Karcher) mean
of a collection of SPD matrices and characterizing their variance.

We remark that all these earlier works have focused on the statistical analysis of
symmetric positive-definite matrices, and to the best of our knowledge there is no lit-
erature on statistical analysis of tensor fields where each field is treated in its entirety
as a single entity. Although the methods for SPD matrices can be applied to study the



Fig. 1. Left column: Eight input tensor fields. (a) Mean, first mode and second mode of tensor
fields computed using a pixel-based approach: means and modes are determined at each pixel
independently using eight tensors. Note that the two modes are constant fields. (b) Mean, first
mode and second mode of tensor fields computed using the proposed method.

statistics of tensor fields using a voxel-based approach where tensor fields are aligned
and the statistics are gathered independently for every voxel, it is clearly insufficient
and inadequate as it fails to capture global interaction patterns in the tensor fields. This
point can be best illustrated using a simple example shown in Figure 1. Here, we gener-
ate four pairs of 10× 10 tensor fields. Each tensor field contains two constant subfields
occupying the top and bottom regions of the domain. Tensor fields in each pair differ
by a reflection that swaps the top and bottom regions. For this collection of eight tensor
fields, pixel-wise statistics fails to capture the global patterns in the tensor fields as the
first and second modes are all constant fields. This result is not surprising as a pixel-
based approach only considers tensors at each location independently, and it completely
ignores the possible correlation between tensors at different locations.

In this paper, we propose a Riemannian framework for statistical analysis of a set
of tensor fields that is capable of capturing the global correlation within the fields.
Specifically, each tensor field can be represented by a point in the Riemannian prod-
uct space. We extend Principal Geodesics Analysis (PGA) to Riemannian symmetric
products, and this provides a principled method for linearizing the problem by mapping
data (tensor fields) to a Euclidean space that is the tangent space at one specific point.
The global correlations of the tensor field are then captured using Principle Component
Analysis (PCA) in the tangent space, and the modes of variation for the tensor fields can
be determined first in the tangent space followed by the exponential map. In addition,
dimensionality reduction of data can also be efficiently implemented using PCA in the
Euclidean space. This is particularly important as one major difficulty of working with
the space of tensor fields is its dimension. For example, the space of 100 × 100 × 100



tensor-valued images has 6×106 dimension, and dimensionality reduction is necessary
for most applications and analysis. The proposed method is evaluated using OASIS
dataset. We characterized the variation within a set of deformation tensor fields and
applied our method to the tensor field classification problem. Preliminary experimental
results have demonstrated the superiority of our method compared to the voxel-based
approach.

2 Statistical Analysis in the Space of Tensor Fields

In this section, we present the details of statistical analysis in the space of tensor fields,
and we will consider only fields of symmetric positive-definite matrices. Let P (n) de-
note the space of n × n symmetric positive-definite matrices and Sym(n) denote the
space of n × n symmetric matrices. A tensor field defined on a domain Ω in RK is
treated as a function f : Ω → P (n). Since both diffusion tensor fields and deformation
tensor fields used in medical imaging are almost always defined over a grid (pixels or
voxels), Ω will be a collection of m points in RK , and we identify the space of ten-
sor fields on Ω with the product P (n)m = P (n)× P (n)× · · · × P (n)︸ ︷︷ ︸

m

. Thus a tensor

field X in P (n)m is represented as an m-tuple (X1, X2, . . . , Xm), where each Xi is a
symmetric positive-definite matrix, the value of X at one point in Ω.

2.1 Geometry of Tensor Fields

The space P (n) is a symmetric Riemannian manifold [3] with GL(n) as the symmetry
group. This can be generalized directly to product spaces P (n)m using product Rieman-
nian structure, and in particular, the Riemannian geodesic distances, log and exponential
maps have closed-form expressions. Specifically, the group GL(n)m acts transitively on
P (n)m with the action given by φG(X) = (G1X1G

T
1 , . . . , GmXmGT

m), where each
Gi ∈ GL(n) is a n×n invertible matrix and Xi is a n×n positive-definite matrix. The
tangent space of P (n)m at any point can be identified with Sym(n)m since the tangent
space of a product manifold is the product of tangent spaces. Let Y,Z ∈ TMP (n)m

be two tangent vectors at M ∈ P (n)m. The product Riemannian metric gives the inner
product between the two vectors as

〈Y,Z〉M =
m∑

i=1

tr(YiM
−1
i ZiM

−1
i ). (1)

Using this metric, the Riemannian exponential map at M maps the tangent vector Y to
a point in P (n)m

ExpM(Y) =
(
G1 exp(G−1

1 Y1G
−T
1 )GT

1 , . . . , Gm exp(G−1
m YmG−T

m )GT
m

)
(2)

where Gi ∈ GL(n) such that M =
(
G1G

T
1 , . . . , GmGT

m

)
.

Given X ∈ P (n)m, the log map at M is

LogM(X) =
(
G1 log(G−1

1 X1G
−T
1 )GT

1 , . . . , Gm log(G−1
m XmG−T

m )GT
m

)
. (3)



Using this definition of log map in P (n)m, the geodesic distance between two tensor
fields M and X is computed by

d(M,X) = ‖LogM(X)‖ =

√√√√ m∑
i=1

tr
(
log2(G−1

i XiG
−T
i )

)
. (4)

2.2 Statistics on the Space of Tensor Fields

Using the formula above for the geodesic distance, we define the (intrinsic) mean of N
tensor fields as the tensor field that minimizes the sum of squared geodesic distances:

M = arg min
M∈P (n)m

1
N

N∑
i=1

d(M,Xi)2. (5)

The sum of squares on the RHS above can be re-written as a sum over all points in
Ω. This implies that the value of M(p) of M at one point p ∈ Ω is the usual Karcher
mean in P (n) of X1(p), · · · ,XN (p). In particular, since the Karcher mean is unique
on P (n) [3], this shows that M will be unique as well, and it can be computed using an
iterative algorithm similar to the one in [3].

After obtaining the intrinsic mean M of the input tensor fields X1, . . . ,XN , we
will determine the modes of variation using PGA. Specifically, we use the log map to
map all the tensor fields to the tangent space at M, xi = logM(Xi). This is a Euclidean
space in which we can analyze the data points x1, · · · , xN using principal component
analysis. We define the principal vectors V1, · · · ,Vk in TMP (n)m according to the
following equations:

V1 = arg max
‖V‖=1

N∑
i=1

〈V,LogM(Xi)〉2M ,

Vk = arg max
‖V‖=1

N∑
i=1

k−1∑
j=1

〈Vj ,LogM(Xi)〉2M + 〈V,LogM(Xi)〉2M .

The orthonormal vectors Vi spanned a K-dimensional subspace SK that best approxi-
mates x1, · · · , xN in the least-squares sense, and they can be computed using PCA. By
exponentiating vectors in SK , ExpM

(∑d
k=1 αkVk

)
, where αk tells the variation of

kth mode, we obtain the geodesic submanifold SK ⊂ P (n)m that can serve as a good
approximation of the input tensor fields.

There are two important details that differ from the usual application of PGA [3].
First, except at the identity, the inner product defined in Equation 1 does not correspond
to the standard Euclidean inner product, which is required for the familiar PCA algo-
rithm. Therefore, we first transform the data to the tangent space at the identity, which
is accomplished via the following transform, X ∈ TMP (n)m

φG−1(X) : (X1, · · ·Xm) −→
(
G−1

1 X1G
−T
1 , . . . , G−1

m XmG−T
m

)
, (6)



where G = (G1, . . . , Gm) is such that M =
(
G1G

T
1 , . . . , GmGT

m

)
. Once the data have

been mapped to TIP (n)m, we can apply the usual PCA algorithm to obtain principal
vectors Ui, i = 1, · · · ,K. They are then transformed back to TMP (n)m using Vi =
φG (Ui). Due to the high-dimensionality of P (n)m, we use the Gram matrix instead of
the usual covariance matrix when computing the principal vectors in the tangent space,
which is the approach used in many computer vision applications such as the Eigenfaces
[8]. The complete algorithm is summarized in Algorithm One.

Algorithm 1 PGA for Tensor Fields
1: Input N tensor fields X1, . . . ,XN ∈ P (n)m.
2: Compute intrinsic mean M of input tensor fields.
3: Compute Yi = LogM(Xi) for i = 1, . . . , N .
4: Translate Yi to the tangent space of identity I.
5: Perform PCA in TIP (n)m and get eigenvectors Ui.
6: Translate Ui back to get Vi in the tangent space of M.

2.3 Tensor Fields Classification

We can formulate a tensor field classification algorithm using the principal directions
and geodesic submanifolds. One common method for solving classification problems on
Riemannian manifold is to map input data to the tangent space and do the classification
in the tangent space [6]. However, this approach does not respect the geometry of the
manifold as the geodesic distance between two points on the manifold are usually not
the same or even commensurate with the distance between their images in the tangent
space. A more principled approach is to use the distances to geodesic submanifolds as
the feature for classification.

Assume a binary classification problem, and the training tensor fields are labelled
as one of the two classes. For each label k(k = 1, 2), we compute a low-dimensional
geodesic submanifold Sk using training tensor fields with label k. For a test tensor field
X, we can determine its class by comparing the geodesic distances dk = minY∈Sk

d(X,Y).
A tensor field is classified as belonging to class k if dk is smaller than the other geodesic
distance. The key step in this algorithm is to find the minimizer in Sk that gives the
geodesic distance dk. Since any point in the geodesic submanifold Sk can be written
as ExpM

(∑d
i=1 αiVi

)
, where M is the mean and α1, . . . , αd are real coefficients, dk

can be solved via the following optimization problem in Rd,

min
α1,...,αd

d

(
X,ExpM

(
d∑

i=1

αiVi

))2

. (7)

Unfortunately, minimizing Equation 7 can be time-consuming for large tensor fields.
Therefore, we approximate dk by the geodesic distance d (X,Z) between X and Z



defined by

Z = ExpM

(
d∑

i=1

Vi 〈Vi,LogM(X)〉M

)
. (8)

That is, we obtain Z by first map X to the tangent space at M using Log map and
project it onto the principal subspace Sd. The projection is then mapped down to the
manifold using the exponential map to get Z. In our experiments discussed in the next
section, the differences between the approximated distance and the one computed by the
optimization are less than 1% and have no major influence on the classification results.
We summarize the tensor fields classification algorithm in Algorithm Two.

Algorithm 2 Tensor Fields Classification
1: Training compute geodesic submanifolds S1 and S2 by using PGA on training tensor fields

of different classes separately.
2: Testing for each test tensor field, compute their geodesic distances d1 and d2 to submanifolds

S1 and S2 respectively. If d1 < d2, classify the test data to class1, otherwise, set it to class2.

Fig. 2. Statistical Analysis for deformation tensor fields from old age group. For better visualiza-
tion, we downsample the images, only axial view is shown and set FA as the background in the
display. (a) Tensor field variation along the first principal direction. From left to right, the coef-
ficient α1 is −2σ1,−σ1, σ1, 2σ1. (b) Tensor field variation along the second principal direction.
From left to right, the coefficient α2 is −2σ2,−σ2, σ2, 2σ2. Right column: Mean tensor field.

3 Experimental Results
The data used in our experiments are from the freely available Open Access Series of
Imaging Studies (OASIS) MRI data set, which contains a cross-sectional collection of
416 subjects aged between 18-96 [7]. Each brain image has a resolution of 176×208×
176 voxels. We divided 416 subjects three groups: young subjects (40 or younger),
middle-aged subjects (between 40 and 60 years of age) and old subjects (60 or older).
There is a subset of old subjects that were diagnosed with probable Alzheimer’s Disease



Fig. 3. Comparisons with voxel-based method. (a) and (c) are the first mode (σ1) and second
mode (σ2) computed using Algorithm One. (b) and (d) are the first mode and the second mode
computed using voxel-wise PGA. FA is used as the background in the display.

(AD). We compute the atlas for all the MR images in the OASIS data set using a group-
wise nonrigid registration [10], and this also gives the the deformation field from each
image to the atlas. For each voxel, we compute the Jacobian matrix J of the deformation
field and build the deformation strain tensor S = (JT J)1/2. This gives a strain tensor
field for every subject.

In the first experiment, we characterize the variation in the tensor fields within an
age group by computing the modes of variation using Algorithm-1. The dimension
of the geodesic submanifold is set at 20 after examining the eigenvalue distribution.
Figure 2 displays the mean tensor fields and the variations along the first two principal
directions for the old group. The comparison with the mean and modes computed using
the voxel-based approach in shown in Figure 3. We can clearly see that the modes
computed using voxel-based method are fragmentary and they do not reflect the global
structures of the tensor fields. This is not surprising because voxel-based method does
not consider correlations between different voxels.

For the second experiment, we test our tensor-field classification algorithm. We ran-
domly divide the brain images for each age group into four subsets. Images from one
of the subsets are the test images, while other three subsets give the training images.
The training images are used to compute the geodesic submanifolds Sd, and we clas-
sify the test images for every pair of age groups using Algorithm 2. We use a four-fold
cross-validation in the experiments to fully evaluate the algorithm on OASIS data set.
We compared the performance of our algorithm with the nearest neighbor method that
maps each tensor field to the tangent space of the mean. Low-dimensional feature vec-
tors are generated using PCA projection, and the classification is done using nearest
neighbor of these feature vectors. We have also tested the proposed algorithm on clas-
sification for healthy and diseased (Alzheimer) brain images. All results are tabulated
in Table 1. The experimental results indicate that the deformation strain tensor fields
do capture the subtle structural changes in the brain images across different age groups
(and also for diseased samples), and the good classification results show the importance
and value of doing statistical analysis on the space of tensor fields.



Table 1. Tensor Fields Classification on OASIS

Old vs. Young Old vs. Middle Middle vs. Young AD vs. Control
Nearest Neighbor 92.43% 87.74% 78.42% 84.29%

Submanifold Projection 96.43% 90.23% 84.32% 88.57%

4 Conclusions

In this paper, we have presented the geometry of the space of tensor fields and pro-
posed a framework for statistical analysis of a set of tensor fields. We have extended the
PGA framework to the space of tensor fields considered as a Riemannian product space,
and the modes of variation computed by the proposed algorithm capture the correlation
between tensors at different locations. We have also proposed a novel tensor field clas-
sification algorithm using distances to the geodesic submanifolds as the main features
for classification. Experimental results have shown that our approach provides a better
characterization of the variation within a collection of tensor fields when compared to
the voxel-based approach. In addition, good classification results on a large population
of brain images have further validated the proposed framework.
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