
Using Intel Software Guard Extensions for
Efficient Two-Party Secure Function Evaluation

Debayan Gupta1, Benjamin Mood2, Joan Feigenbaum1,
Kevin Butler2, and Patrick Traynor2

1 Yale University. E-mail: {debayan.gupta, joan.feigenbaum}@yale.edu
2 University of Florida. E-mail: bmood@ufl.edu, {butler,traynor}@cise.ufl.edu

Abstract. Recent developments have made two-party secure function
evaluation (2P-SFE) vastly more efficient. However, because they make
extensive use of cryptographic operations, these protocols remain too
slow for practical use by most applications. The introduction of Intel’s
Software Guard Extensions (SGX), which provide an environment for the
isolated execution of code and handling of data, offers an opportunity
to overcome such performance concerns. In this paper, we explore the
challenges of using SGX to achieve security guarantees similar to those
found in traditional 2P-SFE systems. After demonstrating a number of
critical concerns, we develop two protocols for secure computation in
the semi-honest model on this platform: one in which both parties are
SGX-enabled and a second in which only one party has direct access to
this hardware. We then show how these protocols can be made secure in
the malicious model. We conclude that implementing 2P-SFE on SGX-
enabled devices can render it practical for a wide range of applications.

1 Introduction

Secure Function Evaluation (SFE) is a powerful way to protect sensitive data.
Made possible by a range of cryptographic primitives, SFE allows multiple par-
ties to compute the output of a function without revealing the potentially sen-
sitive inputs of any individual party. In this paper, we focus on the case of
two-party secure function evaluation (2P-SFE). While both the performance of
and the security provided by these underlying primitives have improved dramat-
ically over the past decade [43,8,16,24,26,28,32], the expense of using 2P-SFE
remains too high for most practical applications.

An emerging hardware primitive may help to reduce the cost of such compu-
tation substantially. Intel’s Software Guard Extensions (SGX) [1,25] provide a
module within upcoming chipsets that allow for the creation of secure containers
called “enclaves.” These hardware-enforced sandboxes allow for code and data
to be executed without the influence of code running in the traditional registers
of the processor. In addition, an SGX system can use hardware-based attestation
to prove that an enclave performs the operations as claimed. While not neces-
sarily appropriate for all scenarios, this set of capabilities may help to support
the use of fast and strong 2P-SFE in a wide range of practical applications.

In this paper, we perform the first analysis of SGX as a platform on which
to implement 2P-SFE. Beginning with a tutorial example, we show why the
naive execution of functions within SGX fails to provide the strong properties
necessary to prevent significant leakage. From this observation, we then make
the following contributions:

– We show how to augment an SGX system to provide stronger guarantees
against leakage and provide a protocol that enables two SGX systems to
perform 2P-SFE more efficiently than a pure garbled-circuits implementa-
tion. We refer to this approach as SGX-supported 2P-SFE. We then provide
a protocol for securely outsourcing the SGX-supported 2P-SFE computa-
tion from a resource constrained device (i.e., one without an SGX module)
to an SGX-compliant device (i.e., another device that has an SGX module).
This allows us to take advantage of a remote SGX hardware unit without
requiring universal deployment.

– We show how to modify 2P-SFE protocols secure against semi-honest ad-
versaries so that, when run on augmented SGX machines, they are secure
against malicious adversaries.

– We describe a number of novel use cases for SGX with our augmentations.

The rest of the paper is organized as follows: Section 2 provides background
on 2P-SFE and SGX. Section 3 explains problems that arise in straightforward
attempts to use SGX for 2P-SFE. Section 4 describes how to augment SGX so
that it can be used to implement 2P-SFE, a secure-outsourcing protocol for non-
SGX machines, and how 2P-SFE and SGX can be used efficiently in conjunction
to provide better security. Section 5 discusses previous work on secure-execution
environments, and Section 6 provides conclusions and open questions.

2 Technical Background

We begin with a brief overview of garbled-circuit 2P-SFE and SGX. We use this
as a point of departure for our investigation of SGX-based protocols for 2P-SFE
and why they are harder to design than one might imagine at first glance.

2.1 Garbled Circuits for Two-Party, Secure Function Evaluation

In a garbled-circuit protocol, two parties with private inputs jointly compute
a function represented as a Boolean circuit. Both parties receive outputs – the
scenario described in Section 1, which has a single output y for both parties, is a
special case; in general, the protocol may deliver different outputs to each party.
First, a compiler [32,37] is used to convert the function into a Boolean circuit.
One of the parties, the generator, encrypts, or garbles the Boolean circuit. He
then sends it to the evaluator, who evaluates the garbled circuit without learning
any information about the generator’s inputs, intermediate values (i.e., those
computed by non-output gates of the circuit), or the generator’s output. Finally,
the evaluator sends the generator’s (encrypted) output back to him.

Each gate in a Boolean circuit can be evaluated using its truth table to
get the output corresponding to the input values. Likewise, a garbled circuit is
made up of many garbled gates, and each gate is evaluated in turn. A garbled
gate’s output entry in the truth table is encrypted under a unique combination
of the two inputs: TTi,j = Enc(Xi, Yj) ⊕ Outi,j , where TTi,j is the truth-table
entry created by the ith value of wire X and the jth value of wire Y , and
Outi,j is the corresponding unencrypted output value. The truth-table entries
are permuted so that the position of the (only) decryptable entry does not leak
the underlying Boolean value. Once the evaluator receives the garbled gates and
the input values, she finds the correct garbled output by trying to decrypt each
truth-table entry or by using the point and permute optimization [32].

There are two basic types of adversaries in the garbled-circuit literature: semi-
honest and malicious adversaries; each captures a basic threat model. (There
exist others, such as the covert model, but we do not discuss them here.) Semi-
honest adversaries faithfully follow the protocol, but attempt to gain information
by observing all transmitted messages. Malicious adversaries, on the other hand,
may behave in any arbitrarily manner in an attempt to gain information about
another party’s input or output, to corrupt the computation (i.e., to cause in-
correct outputs), or to block the protocol execution from completing.

To achieve security against malicious adversaries, the computation must be
performed N times in order to prevent the generator from creating an incorrect
circuit. The security parameter N sets the upper bound on an adversary’s suc-
cessfully cheating at 1

2N
. There must be mechanisms to ensure that the same

inputs are used each time and a way to ensure the evaluator does not corrupt the
generator’s output. These are solved problems in the garbled-circuit literature.

2P-SFE and garbled circuits were introduced in the seminal paper of Yao [50],
and the area has since been studied extensively by the cryptography com-
munity. One very notable achievement was the creation of the first general-
purpose 2P-SFE platform, Fairplay [32]. Today, many 2P-SFE platforms ex-
ist [43,8,16,24,26,28,31,36], and their performance is improving. Such platforms
have been used for scenarios as varied as those of farmers conducting beet-root
auctions [7], inter-domain routing [23], governments reporting aggregated salary
data [6], and database policy compliance [14]. For a detailed explanation of many
essential garbled-circuit techniques, see Kreuter et al. [28] and Perry et al. [40].

2.2 Intel’s Software Guard Extensions Module

The Software Guard extensions (SGX) module allows parts of programs to be ex-
ecuted inside of separate segments of the CPU called enclaves. This is a general-
purpose module (unlike, say, a DRM module). SGX provides a hardware-based
guarantee that the programs and memory inside an enclave cannot be read or
modified from outside of the enclave (including a program in different enclave).
In particular, neither root nor any other type of special-access program can
read or modify the memory inside an enclave. Technically, the data inside of an
enclave are still within the same registers and cache as other programs; however,
SGX processors provide functionality to prevent unauthorized access.

An adversary should not be able to determine what is accessed inside of the
enclave or what is written back to RAM when the cache is full. Therefore, any
data in the enclave that must be written back to main memory is encrypted and
signed so that it cannot be read or modified by another program. Modifications
to code, data, or stack outside an enclave cannot interfere with the operation of
the enclave except in one way: if something needed by a program in the enclave is
simply unavailable or has been corrupted, then the program may have to abort.

Comprehensive overviews of SGX can be found in Intel’s whitepapers [1,25].
Design of systems and protocols that make extensive use of SGX is covered by,
e.g., Baumann et al. [5] and Schuster et al. [42].

2.3 Towards Using Secure Hardware for Garbled-Circuit Protocols

Both garbled circuits and SGX are designed for scenarios in which parties have
private input data for a computation where they want to receive the result of the
computation while no one else learns either the input or the result. Therefore, it
is natural to consider using SGX-enabled machines to execute a garbled-circuit
protocol. The reason that it is not straightforward to do so is that garbled circuits
and SGX use different techniques to protect private inputs.

In garbled-circuit protocols (and SFE more generally), cryptographic guar-
antees are used to ensure the privacy of the data. In SGX, users rely on secure
hardware to guarantee data privacy. SGX provides security against malicious
adversaries as long as one trusts Intel’s setup process. In the SFE world, this is
comparable to having a trusted setup, on top of which one runs one’s protocol
(here, part of the “setup” occurs at the Intel factory when the hardware and
private key are created). The security properties of the exact model used by
SGX are described in Intel’s whitepapers [1,25].

3 Why Simple “Solutions” Do Not Quite Work

The security guarantees provided by SGX do not immediately translate into
being able to perform 2P-SFE protocols in general or even garbled-circuit pro-
tocols in particular. Simple solutions that use unmodified SGX primitives may
leak information or, in some cases, undermine the security of other code running
under SGX. In this section, we explain how that can happen.

3.1 A simple 2P-SFE protocol implemented with SGX

Below, we describe a naive, straw-man protocol for performing SGX-supported
2P-SFE. There exist numerous ways of doing this, but almost all of them suffer
from a number of problems that we discuss in the next subsection.
Setup: We start with the standard 2P-SFE setup – two mutually distrustful
parties with private inputs who wish to jointly compute a function and produce
private results. In this scenario, both parties have SGX-enabled machines and

have agreed to run a specific program. The two parties are as follows: the evalua-
tor, who will use his SGX module to evaluate the program, and the sender, who
will check the agreed upon program and then send her input. In the following,
a superscripted “+” denotes a public key, while a superscripted “−” denotes a
private key that does not leave the SGX enclave.

Protocol

1. The sender ensures the evaluator will evaluate the correct program, progsgx,
by checking the signed measurement, Ecvevalmeasure, from the evaluator’s en-
clave. Ecvevalmeasure is signed by the evaluator enclave’s private key Ecv−keyeval

.
2. The sender encrypts her input, inputsender, under the evaluator enclave’s

public key, Ecv+keyeval
, and sends it to the evaluator.

3. The sender’s encrypted input, Enc(inputsender) is decrypted inside of the
evaluator’s enclave using Ecv−keyeval

.
4. The evaluator enters his own input, inputeval into the enclave.
5. The enclave puts inputsender and inputeval into the SGX program, progsgx.

It then executes progsgx and encrypts the sender’s output, outputsender,
under the sender enclave’s public key, Ecv+keysend

.
6. The evaluator’s enclave releases the evaluator’s output to him, and sends the

sender’s encrypted output, Enc(outputsender), to the sender.
7. The sender decrypts Enc(outputsender) using Ecv−keysend

.

3.2 Problems with simple SGX-supported 2P-SFE

Side channels

1. Runtime: 2P-SFE protocols are not directly vulnerable to timing attacks.
This is achieved by ensuring all program paths take equal time, at the cost
of efficiency. In SGX-supported 2P-SFE, if a secret value x determines the
number of times, for instance, a loop is executed, the timing could easily nar-
row the range of x. Principally, an attacker could execute the same program
offline with many different iterations of the same loop inside of the enclave to
see how long several different numbers of iterations take. This may provide
a lot of information if each iteration of the loop is easily identifiable, e.g., if
each iteration takes a second to execute.

2. RAM Access: Data access is not hidden in SGX-supported 2P-SFE, which
can potentially leak significant amounts of data. E.g., a simple database style
query using a binary search, where one side, the client, sends a private query
to check whether a given value exists within the database. The enclave on
the server reads in the plaintext records and matches them, one by one, to
the queried value. In such a scenario, the data access alone is enough leak
information about the queried value. (If the query matched, we have the
value itself, if not, we know that it lies within a certain range.) There exist
some methods to add hardware-level cryptographic support to FPGAs [45],
but not for RAM. The best ways to make RAM secure are still Oblivious
RAM and similar techniques [19].

3. RAM Timing: A timing attack could reveal a lot of information about
the item being queried in the binary search. If the item is located on the
first jump, we know that it’s the value in the middle, etc.

Cryptography vs Memory Out of Bounds Garbled circuits rely upon cryp-
tography for data privacy – information leakage is not an issue as we have proofs
for correctness and security. While it is theoretically possible to “leak” data by
simply outputting it in the predefined program, such a blatant problem is easy
to notice. SGX, if used improperly, might leak information if memory goes out of
bounds, which is one of the most common bugs in everyday programming [42].
This is among the most frequent errors in programming, and can have catas-
trophic consequences [48,13]. Unfortunately, in SGX, such an error would not
only break the security of the program (and enclave) in question, but would also
affect the security of SGX as a whole, since users might be able to access or
modify data that they should not be able to see.

Trusting SGX vs Trusting Cryptography SGX requires the users to trust
that the evaluator of the program has not broken into the enclave to watch
the memory and that the supply chain was not disrupted with insecure parts.
These might not be acceptable assumptions for nation states or large companies.
In contrast, 2P-SFE protocols provide cryptographic guarantees. They prove
themselves equivalent to the “ideal model,” which uses a trusted third party.
SGX uses the trusted platform model, which is weaker than the trusted third
party model and allows side-channel and information flow attacks.

SGX requires us to have trust in hardware and standard cryptographic prim-
itives (which are used by SGX to protect data), while a 2P-SFE protocol needs
only the latter. Moving the “trust” from software to hardware presents addi-
tional problems – the authors are unaware of any techniques that could be used
to sign and verify hardware. Given the recent issues with nation states actively
infiltrating hardware vendors at massive scales for bulk data collection, this is
a major problem. Ultimately, the trust in SGX boils down to trust in hardware
suppliers and whether or not the hardware can be opened and the CPU read.

4 Using SGX for 2P-SFE Computations

Having outlined the capabilities and limitations of SGX-supported 2P-SFE, we
now present our solutions to the problems faced when trying to use SGX for
2P-SFE protocols.

4.1 Using SGX for 2P-SFE: Problems and solutions

Our solution is to augment the SGX programs to prevent (or reduce) data leakage
in SGX for 2P-SFE computations. These augmentations are described below.

Timing Side Channel: We must ensure all code-paths take approximately the
same amount of time. There are many such obfuscation-based palliative mecha-
nisms, as well as general mitigation strategies [33]. However, these problems are

more complex in some scenarios – e.g., when a secret variable determines how
many times a loop executes. In this case, the time the program takes can reveal
information about the value of the secret variable. It is possible to prevent any
secret values from being revealed by having a fixed loop bound, however, this
may not always be preferable. We can limit the amount of information leaked
when executing a loop by including a pseudo-random N extra loop iterations -
where N is based upon secret information from both parties. Using this tech-
nique, neither party learns the number of iterations executed.
Memory Side Channel: We must ensure all memory that can be touched by
the SGX program is touched one single time at the beginning of the program.
Once the SGX program touches a piece of plaintext memory, the memory should
not be read again unless the read is not dependent on secret information. If the
read is dependent on secret information, the evaluator may be able to learn
something about the secret [17,38]. However, if we need too much data and
some are encrypted and stored outside of the enclave, there might be a correlation
between when a block of memory is read and when a block of encrypted memory
is sent back to RAM; e.g., if a binary search program that runs inside an enclave
reads one element at a time, mere observation yields the secret query (within a
range, if it is missing). In order to prevent this problem, we must ensure a mix
operation is performed that removes any correlation between plaintext memory
and encrypted memory; e.g., this would occur if the memory was placed outside
of the enclave in the same order as it was entered. Such mix operations, which
continuously shuffle and re-encrypt data as they are accessed, already exist, and
are widely used to implement Oblivious RAM [19,46].
Array Out of Bounds: To mitigate the risk of arrays out of bounds in SGX,
we apply safe memory access techniques to ensure memory does not go out
of bounds. SGX programs can use bound-checking data structures or memory
safe languages [42]. Although such techniques slow down the execution time of
the application, both of the aforementioned methods would still be significantly
faster than executing the programs in a 2P-SFE protocol.
Cost of a 2P-SFE protocol vs SGX: In Table 1, we note the expected
cost of normal 2P-SFE using garbled circuits and SGX-supported 2P-SFE. We
examine the costs of setup, input, the operation itself, data access, and memory
access. As shown in the table, the primary reason for the expected increase in the
speed of SGX-supported 2P-SFE over a garbled-circuit protocol is the amount
of cryptography required for each operation and data access in 2P-SFE (which is
free in SGX). However, unlike garbled-circuit protocols, SGX encounters a cost
to push memory out of the cache to RAM (Non-Cache Access).

4.2 Half and Half

With the techniques above, 2P-SFE protocols and SGX can be used together in
scenarios where parties trust each other enough to want to cooperate in the first
place but not enough to release private data or blindly trust the other parties not
to cheat [29]. However, when different groups of parties want to perform a secure
computation together, a user may trust one group over another; the different

2P-SFESemi 2P-SFEMalicious SGX
Sym Asym Sym Asym Sym Asym

Setup - - - - O(1) O(1)
Input O(N) O(K) O(N ∗ S) O(K ∗ S) O(N) + -

Per Operation1 O(1) - O(S) - - -
Data (array) Access O(N) - O(N ∗ S) - - -
Non-Cache Access2 - - - - O(1) -

Table 1: Cost (in terms of cryptography) for operations in 2P-SFE and SGX-
supported 2P-SFE. “ - ” means there is no cryptography required. N is length
of input. C is length of the circuit/program. K is the bit-security parameter. S
is the stat parameter (number of circuits in 2P-SFE). 1 - per gate for 2P-SFE
and per processor instruction for SGX-supported 2P-SFE. 2 - the cost of saving
and loading a value to or from main memory for SGX. + - assumes we attained
a symmetric key during the setup phase and used it to encrypt the input.

guarantees and characteristics of SGX-supported 2P-SFE and current 2P-SFE
protocols mean that it might make sense to use one technique for a certain
group but not another. We now examine how to perform a secure computation
where one part of it is evaluated using current 2P-SFE protocols and the other
is evaluated using SGX-supported 2P-SFE.

We start with two companies, A and B (as shown in figure 1), which want
to perform a secure computation involving nodes both inside and outside their
private networks. Parts of the computation are done inside of each company,
while others require A and B to cooperate. Thus, companies could use the trust
model of SGX when within their own networks and 2P-SFE when they want
cryptographic guarantees instead of assuming that the hardware remains secure.

To perform such hierarchical or “mixed” SGX computations, users need to
know how to convert a value from a 2P-SFE protocol to an SGX-supported 2P-
SFE value and vice-versa. Once we know how to perform these transformations,
we can run “mixtures” of 2P-SFE protocols and SGX. For simplicity, we deal
with the semi-honest setting, although we note there are ways to do the same
conversions in the malicious setting. For the purposes of this short protocol,
the evaluator is the evaluator in both 2P-SFE and SGX-supported 2P-SFE. The
generator is the generator for 2P-SFE and the sender in SGX-supported 2P-SFE.

Before we briefly describe the conversion process, we describe more about
garbled circuits. During the evaluation of the garbled circuit each wire holds an
encrypted value. The generator knows the possible encrypted values (that is,
which values represent 0 and 1), but does not know which value is actually on
the wire (the value the evaluator has). The evaluator knows the encrypted value
on each wire value, but does not know what any value represents. We provide a
short, intuitive security sketch; a complete, formal proof is omitted for brevity.
Conversion from Garbled Circuit to SGX:

1. For each garbled wire wi we will convert to an SGX value, the evaluator has
wr

i (the encrypted result) and the generator has w0
i and w1

i (the encrypted
values that represent 0 and 1).

2P-SFE

Company A Company B

Node 1 Node 2
2P-SFE

with SGX

Node 3 Node 4
2P-SFE

with SGX

Fig. 1: Half and Half. In this usage, we convert SGX-supported 2P-SFE values to
standard 2P-SFE values and back in order to take advantage of the speed of the
combined form when the trust model is acceptable and still allow for a stronger
model when the trust model of SGX-supported 2P-SFE is not acceptable (say,
the user does not trust Intel when using a public network).

2. The generator enters w0
i and w1

i into progsgx (the SGX program) as input.
3. The evaluator enters in wr

i into progsgx as her input.
4. progsgx calculates whether wr

i is w0
i or w1

i and sets the corresponding input,
bi, to match wr

i .
5. progsgx uses each bi as input.

Conversion from SGX to Garbled Circuit:

1. For each bit bi that will be converted into a garbled value wi, the generator
creates both possible garbled values, w0

i and w1
i , that will represent the two

possible values of b and enters them into progsgx.
2. progsgx, based on whether bi is a 0 or 1, selects either w0

i or w1
i to be wr

i .
3. Each wr

i is sent to the evaluator to be used as input to the garbled circuit.
4. The generator uses his values, w0

i and w1
i , in the creation of the garbled

circuit to ensure wr
i will map to a value.

Security: In order for either the generator or evaluator to learn additional
information, they have to (1) posses either w0

i or w1
i and posses wr

i , or (2) see
bi outside of the enclave. Since bi only exists inside of the enclave, it will not be
seen by either the generator or evaluator. The generator only ever sees w0

i and
w1

i and never sees wr
i . Likewise, the evaluator only sees wr

i and never sees w0
i or

w1
i . Thus, neither party will learn any additional information.

4.3 Outsourcing

For devices that do not have an SGX module (or are slow), it would be useful
to have the ability to securely outsource computation to a more powerful or
better equipped system. There have already been a number of works addressing
this situation in 2P-SFE [9,10,11,12,35]. In this section, we examine how we can
outsource from a constrained device (that does not possess an SGX module)
when we want to perform SGX-supported 2P-SFE.

In our setup, seen in figure 2, the sender does not have an SGX unit and
is outsourcing to a server, the cloud, who has an SGX unit. Any outsourcing
protocol must guarantee (1) the party we are outsourcing to (the cloud) cannot

Cloud

Evaluator

Sender

Sender securely outsources to the cloud

SGX-Enabled

SGX-Enabled

SGX-supported 2P-SFE
 computation

Fig. 2: Outsourcing. Shows the different parties in our outsourcing protocol.

cheat, and (2) the party that performs the SGX execution (the other party in
the original SGX-supported 2P-SFE computation, the evaluator) cannot cheat.

We assume that we are trying to protect the input and output of the sender;
we also assume the cloud and evaluator do not collude, i.e., they are not working
together to corrupt the sender’s output or input. We provide a short, intuitive
security sketch; a complete, formal proof is omitted for brevity. As before, su-
perscripted “+” and “−” signs denote public and private keys, respectively.

Protocol:

1. The cloud and evaluator perform the standard SGX setup to initialize their
SGX units and confirm they are running the desired program.

2. Both parties pass enclave public keys, Ecv+keycloud
and Ecv+keyeval

to the
sender and authenticate by using MRSIGNER [1,25].

3. Both the evaluator and cloud enclaves send to the sender their enclave mea-
surements, Ecvcloudmeasure and Ecvevalmeasure.

4. The sender checks the measurements Ecvcloudmeasure and Ecvevalmeasure are correct.
5. The sender encrypts his input, inputsender, and a public key for his output,

Out+key, under Ecv+keyeval
to create Enc(inputsender||Out+key) and sends it to

the cloud.
6. The cloud enters Enc(inputsender||Out+key) into the SGX program, progsgx.

We note here there is no reason the cloud cannot also have input into the
program, if it is desired.

7. The input is sent from the cloud to the evaluator.
8. progsgx is run according to the previous SGX-supported 2P-SFE protocol.
9. The sender’s output, outputsender is encrypted under Out+key as a final step

in progsgx.
10. This value, Enc(outputsender), is sent from the evaluator to the sender.
11. The sender uses the output private key Out−key to decrypt Enc(outputsender).

Security of the Sender’s Data
Input: Since the sender’s input is encrypted under the evaluator’s enclave
private key, it can only be decrypted inside of the evaluator’s enclave. Given the
measurement of the evaluator’s enclave, we also know the program inside of the
enclave is correct so it will not pass the input outside the enclave.
Output: Since the sender’s output is encrypted inside the enclave during eval-
uation and is only sent outside when it is encrypted under the sender’s public
key, only the sender can decrypt and read this output.

4.4 Improving the security of 2P-SFE protocols using SGX

Semi-honest or honest-but-curious protocols guarantee security as long as all
parties faithfully follow the protocol. Such protocols are much cheaper in terms
of computation cost than those that protect against malicious adversaries, who
attempt to gain additional information by any means necessary. We can use
SGX for parts of the semi-honest 2P-SFE protocol to gain additional security
guarantees without incurring significant overhead. We provide a short, intuitive
security sketch; a complete, formal proof is omitted for brevity.

First, we replace the OT in the 2P-SFE protocol with an SGX component
that acts like an OT. The SGX OT is a stripped down version of the previously
described SGX-supported 2P-SFE protocol. In this program, the 2P-SFE eval-
uator chooses the encrypted form of the input as in the 2P-SFE protocol. This
immediately gives us greater security than the standard semi-honest OT since
we are not relying on the parties to behave correctly during the OT (i.e., the
SGX unit checks whether the parties are running the correct “OT” program).
Note that this does not guarantee fair-release of the result, since a malicious
party can still cause us to abort at any point.

Similarly, we can replace the circuit generation and evaluation with an SGX
component as well. This SGX-evaluation is the program evaluation component
described earlier. While we could use the 2P-SFE OT before this part of the
protocol, using the SGX OT component gives us better security. After the input
and circuit evaluation components are replaced, we can also replace the out-
put component with the SGX output protocol. Replacing all of these elements
leaves us with a protocol that is significantly more secure than the original semi-
honest 2P-SFE protocol (since the SGX protocol has checks for when a user is
malicious), while remaining much cheaper than a malicious 2P-SFE protocol.

4.5 Universal Programs (Circuits)

A universal circuit (UC) is a program that takes another program as input
(denoted as UCprog) and then executes it. In a UC for two parties, one party
enters UCprog as input while the other party enters the input for UCprog.

However, in 2P-SFE, a UC requires a massive number of array accesses due to
the nature of oblivious data access. For each operation in UCprog (e.g., data[a] =
data[b] + data[c]), the inputs to the operation (i.e., data[b] and data[c]) have to
be found from all the possible values that could be entered into the instructions
– i.e. this requires a set of if statements to check whether index value v equals b –
unless constraints can be added to UCprog. However, in SGX-supported 2P-SFE,
this would be more efficient since array access takes O(1). Thus, UC programs
can be efficiently and privately executed in an enclave.

4.6 Novel Use Cases for SGX

Secure data storage: With the advent of cloud and multi-user systems, unau-
thorized data access is a greater problem than ever before. Our idea is to use

SGX as a gatekeeper: If all reads and writes went through the SGX hardware, we
could automatically encrypt and decrypt it based on a user-entered key without
the need for a specialized drive. A keyboard could enter the enclave password
while skipping the operating system and any keyloggers within. Unlike systems
such as BitLocker [18], the key here would remain safe even if the operating
system was compromised. For cloud storage, the SGX program would encrypt
data before they are sent to the cloud server; it could be implemented so as to
be transparent to the end user and obviate the need to trust cloud companies.

User Authentication: SGX offers many new avenues for user authentication.
It includes MRSIGNER, which signs the enclave before it is deployed. Group
authentication is also possible, using EPID (Enhanced Privacy ID) [1], an ex-
tension to the Direct Anonymous attestation scheme used in [21,22]. This allows
an enclave to sign communications while maintaining privacy within a group.
There is also a “pseudonymous” mode, which relaxes the security slightly, allow-
ing the verifier to know whether it has checked an enclave in the past while still
maintaining intra-group anonymity.

Cyber-physical applications: Given the security concerns involved in control
systems for sensitive infrastructure (e.g., a nuclear power plant or a hydroelectric
dam), improving security is highly desirable. In order to prevent attacks on
such systems, the controls could be made accessible only through an enclave
that would require all orders to the system to be signed; the current state of
the system would also be hidden. Periodic signed updates from the enclave to
a “master” control system would prevent the system from being taken offline
without the knowledge of the master control system. These strategies would
mitigate the threat of hackers breaking into the system and altering code or
stealing passwords – this information would exist only inside of the enclaves.

Online Games: Online games are played between multiple users on different
machines. In order to reduce bandwidth, many games only transfer events, e.g.,
the information for each user command. Each machine can then process this
independently, but at the cost of each machine knowing the entirety of the game’s
data, including sensitive information about other players’ positions. SGX could
be used to protect private data from other gamers. By keeping each gamer’s
private data inside an enclave, a hacker (or any user who uses a tool to read
information normally not available to them) would be unable to gain any private
information. The enclave would release such private information to the local
machine based on triggers in the code, e.g., when an enemy unit is nearby.
Further, we can periodically verify the state of each enclave to prevent cheating.

5 Previous Work on Secure-Execution Environments

In this section, we briefly discuss previous work on the use of specialized software
and hardware platforms to enable secure execution of code. However, none of
these works provide the same guarantees or address the same scenarios as a
2P-SFE protocol. Various levels of code and data protection have been achieved

using approaches as varied as managed runtime environments (such as Java and
.NET), tamper resistant software [3], and microkernels.

Haven [5] is an SGX-based system for executing Windows applications in the
cloud. VC3 [42], also based on SGX, allows verifiable and confidential execution
of MapReduce jobs in untrusted cloud environments.

Systems such as TrustedDB [4] and Cipherbase [2] use different kinds of
trusted hardware to process database queries over encrypted data. There ex-
ist several other systems [30,39,47] that use trusted system software (usually a
trusted hypervisor) along with specialized hardware to achieve various security
and privacy requirements. Some, such as Virtual Ghost [15] and Flicker [34],
avoid hypervisors by using specialized kernel-level hardware-isolation mecha-
nisms and time-partitioning between trusted and untrusted operations, respec-
tively. Super-distribution systems for transmission of protected digital data also
exist [27]. They decrypt protected data using a key from an authorized clearing-
house and then re-encrypt the data with a locally generated key on the end-user
system, ensuring that no one else can use the data. Secure co-processors [44]
allow programs to execute securely as long as users can verify that they are
dealing with untampered programs and hardware.

Intel has a number of whitepapers on SGX [1,25], as well as previous at-
tempts in the same vein, such as the Trusted Execution Technology [20]. ARM
trustzone for Cortex-A processors also provides some similar guarantees and has
been used to build embedded linux platforms [49], language runtimes for mobile
applications [41], and many other systems.

6 Conclusion

This paper presents the first systematic consideration of Intel’s Software Guard
Extensions as a platform on which to implement two-party secure function eval-
uation. We show that careful use of SGX primitives can facilitate extremely
efficient 2P-SFE protocols, provide an outsourcing mechanism for machines with-
out an SGX module, and discuss augmentations to SGX which provide stronger
guarantees against leakage. We also use SGX to convert 2P-SFE protocols secure
against semi-honest adversaries into ones secure against malicious adversaries,
and discuss a number of use cases for SGX. As SGX-enabled processors eventu-
ally make their way onto the market, future work will include implementations
and improvements to the efficiency and security properties of these protocols.
Acknowledgements: The first author was supported in part by DARPA con-
tract FA8750-13-2-0058. The second and fourth authors were supported in part
by NSF grants CNS-1540217 and CNS-1540218. The third author was supported
in part by NSF grants CNS-1407454 and CNS-1409599. The fifth author was sup-
ported in part by NSF grants CNS-1464087 and CNS-1464088. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA, NSF, or the U.S. Government.

References

1. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for cpu
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy (2013)

2. Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R.,
Venkatesan, R.: Orthogonal security with cipherbase. In: CIDR (2013)

3. Aucsmith, D.: Tamper resistant software: An implementation. In: Information Hid-
ing. pp. 317–333. Springer (1996)

4. Bajaj, S., Sion, R.: Trusteddb: A trusted hardware-based database with privacy
and data confidentiality. Knowledge and Data Engineering, IEEE Transactions on
26(3), 752–765 (2014)

5. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. In: USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2014)

6. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party computa-
tion for financial data analysis. In: Proceedings of the International Conference on
Financial Cryptography and Data Security. Springer (2012)

7. Bogetoft, P., Christensen, D., Damg̊ard, I., Geisler, M., Jakobsen, T., Kroig̊ard, M.,
Nielsen, J., et al.: Secure multiparty computation goes live. In: Proceedings of the
International Conference on Financial Cryptography and Data Security. Springer
(2009)

8. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: Privacy-preserving
aggregation of multi-domain network events and statistics. In: Proceedings of the
USENIX Security Symposium (2010)

9. Carter, H., Amrutkar, C., Dacosta, I., Traynor, P.: For your phone only: custom
protocols for efficient secure function evaluation on mobile devices. Journal of Se-
curity and Communication Networks (SCN) 7(7), 1165–1176 (2014)

10. Carter, H., Lever, C., Traynor, P.: Whitewash: Outsourcing garbled circuit gener-
ation for mobile devices. In: Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC) (2014)

11. Carter, H., Mood, B., Traynor, P., Butler, K.: Secure Outsourced Garbled Circuit
Evaluation for Mobile Devices. In: Proceedings of the USENIX Security Sympo-
sium (SECURITY’13) (2013)

12. Carter, H., Mood, B., Traynor, P., Butler, K.: Outsourcing secure two-party com-
putation as a black box (short paper). In: International Conference on Cryptology
and Network Security (CANS) (2015)

13. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In: DARPA Information Survivability
Conference and Exposition. vol. 2, pp. 119–129. IEEE (2000)

14. Crescenzo, G.D., Feigenbaum, J., Gupta, D., Panagos, E., Perry, J., Wright, R.N.:
Practical and privacy-preserving policy compliance for outsourced data. In: Pro-
ceedings of the International Conference on Financial Cryptography and Data
Security - Workshop on Applied Homomorphic Cryptography. Springer (2014)

15. Criswell, J., Dautenhahn, N., Adve, V.: Virtual ghost: Protecting applications from
hostile operating systems. ACM SIGARCH Computer Architecture News 42(1),
81–96 (2014)

16. Damg̊ard, I., Geisler, M., Kroig̊ard, M., Nielsen, J.B.: Asynchronous multiparty
computation: Theory and implementation. In: Proceedings of the International
Conference on Practice and Theory in Public Key Cryptography. Springer (2009)

17. Erlingsson, Ú., Abadi, M.: Operating system protection against side-channel at-
tacks that exploit memory latency. Tech. Rep. MSR-TR-2007-117, Microsoft Re-
search (2007)

18. Ferguson, N.: Aes-cbc+ elephant diffuser: A disk encryption algorithm for windows
vista. Tech. rep., Microsoft (2006)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
Journal of the ACM (JACM) 43(3), 431–473 (1996)

20. Greene, J.: Intel trusted execution technology. Intel Technology White Paper
(2012)

21. Group, T.C.: Trusted platform module main specification (tpm1.0). http://www.
trustedcomputinggroup.org/resources/tpm_main_specification (2011), [On-
line]

22. Group, T.C.: Trusted platform module library specification (tpm2.0). http:

//www.trustedcomputinggroup.org/resources/tpm_library_specification

(2013), [Online]

23. Gupta, D., Segal, A., Panda, A., Segev, G., Schapira, M., Feigenbaum, J., Rexford,
J., Shenker, S.: A new approach to interdomain routing based on secure multi-
party computation. In: Proceedings of the 11th ACM Workshop on Hot Topics in
Networks. pp. 37–42. ACM (2012)

24. Henecka, W., Kogl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: Tasty: tool
for automating secure two-party computations. In: Proceedings of the Conference
on Computer and Communications Security. ACM (2010)

25. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative
instructions to create trustworthy software solutions. In: Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy. p. 11. ACM (2013)

26. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ansi c. In: Proceedings of the Conference on Computer and Communications
Security. ACM (2012)

27. Kawahara, M.: Superdistribution: the concept and the architecture. IEICE
TRANSACTIONS (1976-1990) 73(7), 1133–1146 (1990)

28. Kreuter, B., Mood, B., a. shelat, Butler, K.: PCF: A portable circuit format for
scalable two-party secure computation. In: Proceedings of the USENIX Security
Symposium (2013)

29. Libicki, M., Tkacheva, O., Feng, C., Hemenway, B.: Ramifications of DARPA’s
PROCEED Program. RAND, Santa Monica (2014)

30. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,
M.: Architectural support for copy and tamper resistant software. ACM SIGPLAN
Notices 35(11), 168–177 (2000)

31. Lindell, Y., Riva, B.: Blazing fast 2pc in the offline/online setting with security for
malicious adversaries. In: Proceedings of the 2015 ACM SIGSAC Conference on
Computer and Communications Security. ACM (2015)

32. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay–A Secure Two-Party Com-
putation System. In: Proceedings of the USENIX Security Symposium (SECU-
RITY’04) (2004)

33. Martin, R., Demme, J., Sethumadhavan, S.: Timewarp: Rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: Pro-
ceedings of the 39th Annual International Symposium on Computer Architecture.
pp. 118–129. ISCA ’12, IEEE Computer Society, Washington, DC, USA (2012)

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

34. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An exe-
cution infrastructure for tcb minimization. In: ACM SIGOPS Operating Systems
Review. vol. 42, pp. 315–328. ACM (2008)

35. Mood, B., Gupta, D., Butler, K., Feigenbaum, J.: Reuse it or lose it: More efficient
secure computation through reuse of encrypted values. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (2014)

36. Mood, B., Gupta, D., Carter, H., Butler, K., Traynor, P.: Frigate: A validated,
extensible, and efficient compiler and interpreter for secure computation. In: Pro-
ceedings of the 1st IEEE European Symposium on Security and Privacy (2016)

37. Mood, B., Letaw, L., Butler, K.: Memory-Efficient Garbled Circuit Generation for
Mobile Devices. In: Proceedings of the IFCA International Conference on Financial
Cryptography and Data Security (FC’12) (2012)

38. Osvik, D., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case of
aes. In: Topics in Cryptology – CT-RSA 2006, Lecture Notes in Computer Science,
vol. 3860, pp. 1–20. Springer Berlin Heidelberg (2006)

39. Owusu, E., Guajardo, J., McCune, J., Newsome, J., Perrig, A., Vasudevan, A.: Oa-
sis: On achieving a sanctuary for integrity and secrecy on untrusted platforms. In:
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. pp. 13–24. ACM (2013)

40. Perry, J., Gupta, D., Feigenbaum, J., Wright, R.: Systematizing secure computation
for research and decision support. In: Abdalla, M., De Prisco, R. (eds.) Security
and Cryptography for Networks, Lecture Notes in Computer Science, vol. 8642,
pp. 380–397. Springer International Publishing (2014)

41. Santos, N., Raj, H., Saroiu, S., Wolman, A.: Using arm trustzone to build a trusted
language runtime for mobile applications. In: ACM SIGARCH Computer Archi-
tecture News. vol. 42, pp. 67–80. ACM (2014)

42. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: Vc 3: Trustworthy data analytics in the cloud

43. a. shelat, Shen, C.H.: Two-output secure computation with malicious adversaries.
In: Proceedings of the Annual International Conference on Theory and Applica-
tions of Cryptographic Techniques. Springer (2011)

44. Smith, S.W., Weingart, S.: Building a high-performance, programmable secure
coprocessor. Computer Networks 31(8), 831–860 (1999)

45. Standaert, F.X., Rouvroy, G., Quisquater, J.J., Legat, J.D.: Efficient implementa-
tion of rijndael encryption in reconfigurable hardware: improvements and design
tradeoffs. In: Cryptographic Hardware and Embedded Systems-CHES 2003, pp.
334–350. Springer (2003)

46. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: An extremely simple oblivious ram protocol. In: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. pp. 299–
310. ACM (2013)

47. Suh, G.E., Clarke, D., Gassend, B., Van Dijk, M., Devadas, S.: Aegis: architecture
for tamper-evident and tamper-resistant processing. In: Proceedings of the 17th
annual international conference on Supercomputing. pp. 160–171. ACM (2003)

48. Vipindeep, V., Jalote, P.: List of common bugs and programming practices to avoid
them (2005)

49. Winter, J.: Trusted computing building blocks for embedded linux-based arm trust-
zone platforms. In: Proceedings of the 3rd ACM workshop on Scalable trusted
computing. pp. 21–30. ACM (2008)

50. Yao, A.C.: Protocols for secure computations. In: Proceedings of the IEEE Sym-
posium on Foundations of Computer Science (FOCS’82) (1982)

	Using Intel Software Guard Extensions for Efficient Two-Party Secure Function Evaluation

