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Abstract—Ransomware is a growing threat that encrypts a
user’s files and holds the decryption key until a ransom is
paid by the victim. This type of malware is responsible for
tens of millions of dollars in extortion annually. Worse still,
developing new variants is trivial, facilitating the evasion of many
antivirus and intrusion detection systems. In this work, we present
CryptoDrop, an early-warning detection system that alerts a user
during suspicious file activity. Using a set of behavior indicators,
CryptoDrop can halt a process that appears to be tampering with
a large amount of the user’s data. Furthermore, by combining
a set of indicators common to ransomware, the system can be
parameterized for rapid detection with low false positives. Our
experimental analysis of CryptoDrop stops ransomware from
executing with a median loss of only 10 files (out of nearly
5,100 available files). Our results show that careful analysis of
ransomware behavior can produce an effective detection system
that significantly mitigates the amount of victim data loss.

I. INTRODUCTION

Encrypting ransomware (a.k.a. crypto ransomware) at-
tempts to extort users by holding their files hostage. Such
ransomware differs from other types of malware in that its
effects are reversible only via the cryptographic keys held by
a remote adversary. Users can only regain access to their files
through the use of anonymous payment mechanisms (e.g., Bit-
coin), further frustrating efforts to take down these campaigns.
While this class of malware has existed for well over a decade,
its increasingly widespread use now causes tens of millions of
dollars in consumer losses annually [37]. Compounding this
problem, an increasing number of law enforcement agencies
have also been the victim of ransomware [4], [18], losing
valuable case files and forcing these organizations to ignore
their own advice and pay the attackers. As such, ransomware
represents one of the most visible threats to all users.

Combating ransomware is difficult for a number of reasons.
First, this malware is easy to obtain or create [48] and
elicits immediate returns, creating lucrative opportunities for
attackers. Second, the operations performed by such malware
are often difficult to distinguish from those of benign software.
Finally, ransomware often intentionally targets unsophisticated
users who are unlikely to follow best practices such as regular
data backups. Accordingly, a solution to automatically protect
such users even in the face of previously unknown samples is
critical.

In this paper, we make the following contributions:

• Develop an early-warning system for ransomware:
CryptoDrop is fundamentally different from existing

methods of detecting ransomware, which inspect pro-
grams and their activity for malicious characteristics.
Our system is the first ransomware detection system that
monitors user data for changes that may indicate trans-
formation rather than attempting to identify ransomware
by inspecting its execution (e.g., API call monitoring)
or contents. This allows CryptoDrop to detect suspicious
activity regardless of the delivery mechanism or previous
benign activity. Our system does not attempt to prevent
all files from loss and is not intended to replace a user’s
normal anti-malware software; rather, CryptoDrop is de-
signed to be effective even when the user’s anti-malware
software has failed to block the malware. Our system
is built on Windows, a platform frequently targeted for
ransomware attacks, providing a realistic solution to “in-
the-wild” threats. In doing so, we attack the core behavior
of ransomware in a novel and practical manner that other
anti-malware technologies fundamentally cannot.

• Identify three primary indicators suited to detect
malicious file changes: These indicators each measure
an aspect of a file’s transformation, and when all three
have manifested, a ransomware file transformation has
likely occurred. This union indication assists CryptoDrop
in reliably detecting ransomware while incurring few
false positives. These indicators have not been previously
employed in a ransomware detection system, and our
analysis of their effectiveness in isolation and unison
provides insight into the ability to detect ransomware.

• Perform most extensive analysis of encrypting ran-
somware to date: Demonstrate a 100% true positive rate
over 492 distinct ransomware samples across 14 families
after as few as 0 and a median of 10 (0.2%) files lost from
our test corpus. Finally, we discuss the observed behavior
of our samples and discuss how CryptoDrop remains ro-
bust despite the significant behavioral differences between
families. Through reduction of the number of files lost,
we demonstrate that CryptoDrop reduces the need for the
victim to pay the ransom, choking attackers’ revenue and
rendering the malware ineffective.

The remainder of the paper is structured as follows: In
Section II, we perform a literature analysis. In Section III,
we define and classify ransomware behaviors, our system’s
indicators, and demonstrate how these are insufficient for
fast detection in isolation. Section IV details CryptoDrop’s
implementation and its scoring and detection mechanisms. In
Section V, we obtain live ransomware samples, demonstrate
CryptoDrop’s effectiveness against real-world attacks, and an-
alyze the behavior of the samples. We conclude in Section VI.
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II. RELATED WORK

Existing techniques to detect malware attempt to classify
a given program as malware and stop it using two proper-
ties: what the malware is and what the malware does [38].
Anomaly detection IDS systems use various machine learning
and statistical techniques to determine whether a program is
performing atypical operations [17], [8], [23], [49], [29], [43],
but are often prone to false positives [5], [21], [47].

Signature matching, commonly found in most modern
antivirus and IDS deployments, analyzes programs based on
known malware characteristics and flags those that match
previously observed intrusions. Early signature detection sys-
tems used a variety of features to detect malicious code [28],
[45], and over years of development the characteristics in
modern malware signatures make this technique for classifying
known malware extremely accurate. However, malware that
has not been previously observed is difficult to identify in
these systems. Furthermore, recent research has shown that
evading signature detection is possible with relative ease when
the malware signatures used are too rigid [9], [24], [32],
[33]. While combining multiple IDS suites using different
techniques may provide some added accuracy [36], it is still
possible to use automated malware packing techniques to
evade tiered anti-malware products [35], [46]. Rather than
matching known signatures of programs, file integrity monitors
such as Tripwire [26] alert the administrator when system-
critical files are modified. These monitors are based on simple
hash comparisons and fail to distinguish between legitimate file
accesses and malicious modifications. Such integrity checks
are primarily effective for files that rarely change; user data
is expected to change frequently. Accordingly, this type of
integrity monitoring is likely to be noisy and frustrate the user.

Recent work by Kharraz et al. explored several different
types of ransomware, including those that hold the operating
system hostage or steal information [25]. These other kinds
of ransomware are indeed a nuisance, but these types of ran-
somware can be remedied by wiping the system or removing
the disk and extracting the user’s important data. However,
when the user’s data is encrypted (or deleted), these simple
mitigations no longer apply and may prevent the victim from
paying the ransom and recovering his/her files. Andronio et al.
developed an analysis tool for detecting Android ransomware
through a combination of static and dynamic analysis tech-
niques including monitoring for encryption calls and threat-
ening ransom messages [3]. This system is well-suited for
mobile platforms, where applications can often be analyzed
in depth before being posted to an app market [30], [7],
[34]. On traditional desktop operating systems, however, these
techniques would be easily evaded and introduce unacceptable
delays in application installation or launch.

Our work differs from these works because our system
monitors the user’s data for changes instead of directly inspect-
ing the program making the changes. Through this insight, we
build an early-warning system for ransomware that can detect
a malicious program through examining how the user’s data
is changing. In this paper, we refer to encrypting ransomware
as “ransomware” and focus on remedying this problem.

Fig. 1: The ransom demand from TeslaCrypt. The victim
is instructed to access a Tor hidden service and pay the ransom
with Bitcoin. Some variants allow the victim to recover a small
number of files for free as a gesture of goodwill.

III. RANSOMWARE INDICATORS

Encrypting ransomware works by obfuscating the contents
of user files, often through the use of strong encryption
algorithms. Victims have little recourse other than paying the
attacker to reverse this process [4], [6], [11]. Some attackers
even enforce strict deadlines and host elaborate customer
service sites to encourage victims to pay [50]. Figure 1 shows
an example of one such extortion demand.

The ease with which ransomware can be written and
obfuscated limits the effectiveness of traditional signature-
based detection schemes [36]. Signature-based detection does
little to stop ransomware variants that take advantage of
programmatic input via rogue USB devices [13], which can be
attached to a system, and automatically open a terminal, type,
and execute a program without writing malicious software to
the disk. Such attack vectors fundamentally evade traditional
anti-malware and application whitelisting systems by avoiding
their inspection point, execution from the disk. Solutions to
these attacks [44] require OS modification and are not widely
deployed. A more robust solution would be based on the
detection of the bulk transformation of a user’s data before it
completes, allowing the user to stop such transformation and
denying ransomware access to the totality of the user data.
This “data-centric” approach minimizes the pressure to pay an
adversary as the data loss can be minimized.

The signature behavior of ransomware is its encryption of
the victim’s data. Ransomware must read the original data,
write encrypted data, and remove the original data to complete
this transformation. Note that detecting calls to encryption
libraries alone is not sufficient as many variants implement
their own versions of these algorithms. The specific activities
that ransomware performs can be refined into three classes:

Class A ransomware overwrites the contents of the original
file by opening the file, reading its contents, writing the
encrypted contents in-place, then closing the file. It may op-
tionally rename the file. Class B ransomware extends Class A,
with the addition that the malware moves the file out of the
user’s documents directory (e.g., into a temporary directory).
It then reads the contents, writes the encrypted contents, then
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moves the file back to the user’s directory. The file name
when moving back to the documents directory may be different
than the original file name. Since the destination file name
may not match the original during any move, the state of
the file must be carefully tracked each time a file is moved.
Class C ransomware reads the original file, then creates a new,
independent file containing the encrypted contents and deletes
or overwrites (via a move) the original file. This class uses
two independent access streams to read and write the data.

Additional operations may be performed to frustrate re-
coverability. For example, ransomware family TeslaCrypt
disables and removes the Windows volume shadow copies [14]
and other variants wipe the disk’s free space. We ignore these
operations because they do not directly alter user data.

Capturing the data-centric behavior of ransomware is crit-
ical to developing an effective detector. We have identified
three primary and two secondary indicators through extensive
analysis. Below, we discuss the technical details of each
indicator and their relevance to ransomware. We then explore
how the union of such indicators — that is, we require all
primary indicators to be present — creates a strong detector
with low false positives.

We selected these indicators because they broadly cover
the transformation that encrypting ransomware performs on
user data. Other indicators of compromise, such as suspicious
strings, network traffic [41], and monitoring for ransom de-
mand windows [15], [3] are outside the scope of CryptoDrop
since these indicators may not occur or may become obvious
too late to protect the user’s data. We instead focus on the task
of protecting the user’s data from total loss, which requires our
system to monitor this data as it changes. It may therefore be
helpful to think of these indicators as hints that a file may be
undergoing a transformation from usable to unusable.

A. File Type Changes

The type of data stored in a file can be approximated
using “magic numbers.” These signatures describe the order
and position of specific byte values unique to a file type, not
simply the header information. Since files generally retain their
file type and formatting over the course of their existence, bulk
modification of such data should be considered suspicious.

The file utility is a popular program for determining
file type. The default “magic” database library contains hun-
dreds of file type signatures, ranging from specific programs
(“Microsoft Word 2007+”) to general content (“Unicode text,
UTF-7”). With this tool, we can track the file type both before
and after a file is written. If this type changes, we can infer
that some transformation has occurred. However, we note that
a single change in file type does not automatically imply
malicious actions. For example, when upgrading to a new
software version, the application may update the document’s
format to comply with a new standard.

B. Similarity Measurement

Strong encryption should produce output that provides
no information about the plaintext content. Accordingly, we
assume that the output of ransomware-encrypted user data is
completely dissimilar to its original content. Such meaning-
ful changes to content can be captured through the use of

similarity-preserving hash functions [27], [40]. These hashes
differ from traditional hash functions because they contain
some information about the source file in their output. Through
measuring the similarity of two versions of the same file, we
can also gain information about dissimilarity.

We selected sdhash [40] for this metric. This function
outputs a similarity score from 0 to 100 that describes the
confidence of similarity between two files. sdhash assists in
determining if two files are homologous with a score of 100 in-
dicating a high likelihood that two files are related. Conversely,
the authors of this algorithm note that a confidence score of
0 is “statistically comparable to that of two blobs of random
data,” and this provides a key insight to how a ransomware-
encrypted file should be scored. Given the similarity hash of
the previous version of a file, a comparison with the hash of
the encrypted version of that file should yield no match, since
the ciphertext should be indistinguishable from random data.
We should therefore obtain a near-zero score when comparing
an original copy of a user’s file to a ransomware-encrypted
version of that file.

C. Shannon Entropy

Entropy is a simple indicator that provides information
about the uncertainty of data. Some types of data, such as
encrypted or compressed data, are naturally high entropy.
Intuitively, a ransomware attack should result in consistently
high entropy output as the malware reads the victim’s files and
writes the encrypted content. The Shannon entropy of an array
of bytes can be computed as the sum:

e =

255∑

i=0

PBi
log2

1

PBi

for PBi =
Fi

totalbytes and Fi, the number of instances of byte
value i in the array. This produces a value from 0 to 8, where
8 represents a perfectly even distribution of byte values in
the array. Encrypted files will tend to approach the upper
bound 8, since each byte in a ciphertext should have a uniform
probability of occurring. Others have previously proposed the
use of entropy in the space of malware detection [42], [39],
[31], however these works focus on classifying the malware
sample and not on indicating user data transformation.

D. Secondary Indicators

While the primary indicators provide the strongest sug-
gestion of file modification by ransomware, two additional
indicators fill gaps left by the primary indicators:

Deletion is a basic filesystem operation and is not generally
suspicious. For example, applications often create and delete
temporary files as part of normal operation. However, the
deletion of many files from a user’s documents may indicate
malicious activity. Class C ransomware uses file deletion
instead of overwriting an existing file to dispose of the original
content. This class of ransomware performs a high number
of these operations; early detection of this type of malware
depends on capturing this operation.

File type funneling occurs when an application reads an
unusually disparate number of files as it writes. Applications
that read multiple file types but write only a single type
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during an execution are not uncommon. A word processor, for
example, may allow the user to embed various file types (e.g.,
pictures and audio) but will typically only write a single file
type (the output document). Ransomware takes this innocuous
case to an extreme. As ransomware encrypts and writes data,
we expect to see a smaller number of output file types. By
tracking the number of file types a process has read and
written, the difference of these can be assigned a threshold
before considering it suspicious.

E. Union Indication

While exploring the behavior of ransomware, we observed
that none of the benign programs we tested triggered all three
of our primary ransomware indicators, while the vast majority
of ransomware samples did. We demonstrate in Section V that
this union of primary indicators is crucial for early detection.
Although each indicator provides value in isolation, we use
union indication to take action faster.

F. Indicator Evasion

Malware detection is an arms race. As defenders provide
mitigations, adversaries will modify their techniques. We ex-
pect the same to occur in the ransomware space. However,
evading the union of our three primary indicators will require
significant effort on the part of an adversary. For instance,
while padding a file with low entropy bits may cause our
detector to miss it, such behavior will also concurrently skew
similarity hashes. Attempts to make output files appear to
maintain their original format may also be possible, but not
without dramatically skewing the remaining two indicators.
Accordingly, we posit that this work is a contribution because
it raises the bar significantly compared to existing ransomware
detection techniques, requires that future adversaries have
much a deeper understanding of modern file systems and
formats, and forces them to make very difficult engineering
trade-offs to successfully evade all detectors.

IV. IMPLEMENTATION

CryptoDrop focuses on detecting ransomware through
monitoring the real-time change of user data. The union
of these individual indicators provides a strong measure of
suspiciousness of a process. By tracking these indicators and
monitoring for this condition in a single running process
over time, we can develop a reputation score that indicates
whether or not the program is likely behaving maliciously.
Once a threshold score is reached, CryptoDrop alerts the user
and suspends the suspicious process (or family of processes).
In this way, we can prevent ransomware from completely
encrypting a victim’s files, and contain the amount of damage
in the event of infection. The primary challenge in constructing
this system is detecting ransomware early while limiting false
positives that could make the system impractical to use.

A. Reputation Scoreboard

CryptoDrop monitors read and write accesses to the user’s
protected directories (e.g., “My Documents”). Whenever a
filesystem operation exhibits questionable characteristics that
trigger CryptoDrop’s indicators, it increments the overall rep-
utation score for that process. Once this score reaches a

Disk

Applications and
Ransomware

Filesystem

Filesystem Filters

CryptoDrop
Kernel Driver

Anti-Virus

CryptoDrop Analysis Engine

Notifications, File Data, Context

Allow/Disallow Decisions

Di
sk

 R
eq

ue
st

s

Indicator Measurement

Scorekeeping 

User Notifications

Detection

Caching

Fig. 2: The architecture of CryptoDrop on Windows. The
software filters filesystem reads and writes on user document
folders using a filesystem filter similar to other anti-malware
solutions. The ordering of the filesystem filter drivers is
dependent on the other drivers installed and does not affect
our system. Requests are then forwarded to the analysis engine
where measurement, caching, and scorekeeping occurs.

malicious threshold, our system pauses disk accesses for the
flagged process and requests permission from the user to allow
the process to continue. This system allows us to observe the
cumulative behavior for each process over time, and allows us
to watch for combinations of suspicious indicators rather than
relying on any one indicator in isolation to catch ransomware.

B. Union Indication Scoring

The occurrence of all three primary indicators provides
strong insight into a process’s behavior. In our testing, no
legitimate process triggered the union indicator, which we
discovered is reliable for immediately detecting ransomware
and halting its disk operations.

This scoring mechanism allows us to keep our scoring
thresholds low without incurring significant false positives, in
a similar manner to the BotHunter IDS by Gu et al. [20],
which was able to observe zero false positives in a real de-
ployment. Because anomaly detection research has shown that
the probability of a benign process incurring a false positive
on a single detection mechanism is high [5], we maintain
a reputation score threshold for all processes. However, the
probability of a benign process activating a false positive on all
three indicators is much lower (specifically, it is the product of
the probabilities of a false positive on each individual detector).
CryptoDrop’s reliability is reinforced by ransomware’s typical
behavior, which frequently triggers all three primary indicators.

C. State Tracking and Score Assessment

Figure 2 illustrates the CryptoDrop architecture. We in-
strument the Windows kernel using a driver that allows us
to interpose on calls between processes and the filesystem
driver. Such an approach allows us to not only detect when
files are changed, but also to protect against the modification
of our mechanism by malware. This approach also prevents
interference with disk encryption systems (e.g., BitLocker),
which operate between the filesystem and the disk.
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1) Entropy Measurement: Ransomware often writes ran-
som payment instructions into new text files in every directory.
We found that these small, low-entropy writes over-influence
basic averaging of the entropy. Through capturing the entropy
of the atomic read/write operations, a weighted arithmetic
mean of these entropy measurements is computed, where the
weight w is defined w = 0.125 × �e� × b, where b is the
total number of bytes in the operation and �e� is the entropy
value rounded to the nearest integer. The constant normalizes
the weight to a value from 0 to 1. This weighting ensures
that low-entropy and small read/write operations do not over-
influence the mean and provides a metric that captures a
process’s behavior over time.

When a protected file is read or written, we calculate the
entropy of the bytes involved in this operation and update the
respective weighted average Pread or Pwrite for the process
performing the operation. After each update of a process’s
averages, if a process has performed at least one read and
one write, we calculate the difference of these means as
eΔ = Pwrite − Pread, where eΔ ≥ 0. This delta determines
the extent that write entropy has exceeded read entropy. When
the system exceeds the threshold eΔ ≥ 0.1, we consider the
operation suspicious. This measurement is stateless with regard
to the previous or future state of a file and occurs for every
atomic read or write operation where the threshold is exceeded.
While this threshold is small compared to the total range of
possible entropy values (0–8), this value provides resolution
for detecting the small entropy increase for compressed files
(as discussed in Section III).

V. EXPERIMENTS

We now demonstrate how CryptoDrop detects and stops
ransomware with a low number of user files lost and with few
false positives. As we will discuss below, union indication pro-
vides high-speed detection capabilities for CryptoDrop without
increasing the number of false positives.

A. Experimental Setup

Since ransomware attacks user data, we first built a set
of data representative of measured user document directories.
Using studies that have examined the distribution of file types
over an entire filesystem [16], [2] and over user document
directories [22], we constructed a document corpus of 5,099
files spread over a nested directory tree with 511 total di-
rectories. First, we aggregated the data from the complete
set of 10 Govdocs1 Corpus [19] threads1, the Govdocs1 file
set of .docx, .xlsx, and .pptx files, the OPF Format
Corpus [1], and Coldwell’s audio comparison files [10]. The
combination of these corpora contained 11,809 files. We then
approximated the proportions of file types needed for our
subset corpus and categorized each file such that we could
make selections out of the categories, modeling the results
in [22]. For each category, we made random selections from
the resulting data set and placed them into each directory of
our modeled corpus. Finally, the directory tree was placed
into the user’s documents folder in a Cuckoo Sandbox [12]

1Each of the 10 Govdocs1 “threads” consist of a randomly-selected 1,000
files from the complete Govdocs1 corpus. These were preselected by the
Govdocs1 maintainers for use in research projects.

guest virtual machine running Windows 7 SP1 (64-bit) with
2GB of RAM. Each Windows guest was configured with its
firewall, anti-virus, and user account control disabled in order
to remove impediments to successful malware execution. All
tests were performed as a single administrative user. For safety,
network access was restricted on the host’s network stack
to prevent the spread of malware. Each virtual machine was
reverted to a previous snapshot between samples to remove
any possibility of experiments influencing each other. Finally,
this virtual machine was instrumented with CryptoDrop and
configured with a non-union detection threshold of 200.

We obtained 2,663 malware samples from VirusTotal using
ransomware-related search terms and known variant names.
The fact that these samples were labeled as ransomware by one
or more anti-virus engines does not imply that those samples
actually are encrypting ransomware or that they will perform
any operations to attack a victim’s data (e.g., they may simply
lock the screen). Additionally, ransomware often requires
online infrastructure, and this requirement is a heavy burden
on the future usefulness of any given sample. If command-
and-control servers are taken offline, the ransomware cannot
complete its task. Some samples may be mislabeled by anti-
virus as ransomware, some may operate once and never again,
and others may detect our virtual environment. As a result, a
significant part of our testing required culling inert, mislabeled,
and corrupt samples from our test set.

Since ransomware generally attacks user data quickly after
execution begins, we ran each sample for 20 minutes or until
detection occurred. We then verified the SHA-256 hashes of
the documents to ensure they were present and unmodified.
This initial run of all samples took over 22 days to complete.
189 samples that had started to attack the provided documents
but had not completed in the time allotted were restarted with
a one hour timeout. If no detection occurred and no files
were modified, we marked the sample as “inert” and excluded
it from future trials. Note that CryptoDrop does not have
a detection timeout and is not affected by the run time of
malware; the timeout was in place merely to prevent spending
excess time on unusable samples. In total, 2,171 malware
samples were removed from the set. No removed samples had
modified any user files.

CryptoDrop detects ransomware based on its behavior
against user data, so the number of families of ransomware
we test is more important than the raw number of samples.
Each sample we test of the same family is unlikely to exhibit
significantly different behavior than previous ones, ultimately
leading to skewed results. Of the various types of ransomware,
Kharraz et al. discussed four unique variants of encrypting
ransomware [25]. We collected 14 distinct families of ran-
somware, including all four previously-discovered families,
making ours the most comprehensive study of encrypting
ransomware to date.2 Table I shows the breakdown of the
samples by family and class, including the number of files
lost before detection. Due to the breadth of families that
CryptoDrop detected, we believe that the above methodology
successfully culled unusable samples from our original set.

2One sample, known to McAfee as Ransom-FUE, was tested but excluded
from family counts because different anti-malware products mark it as generic
malware or belonging to disparate ransomware families.
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Fig. 3: The cumulative percentage of samples detected at each
sample’s number of files lost before detection. The median
number of files lost before detection was 10, and CryptoDrop
detected all 492 samples with 33 or fewer files lost.

We confirm in this data that there is a relative lack of diver-
sity within each family’s behavior. In both the TeslaCrypt
and CTB-Locker families, which consist of over half of
the working samples we obtained, two or fewer samples
showed behaviors beyond their families’ primary behavior
class. The greatest diversity was found in the Filecoder
and CryptoLocker families, though these two family names
are often used as generic ransomware detection names. As
antivirus detection names evolve, samples in these two families
may be further refined. Due to the homogeneous nature of
the behavior in each sample, our data shows that CryptoDrop
remains robust against many forms of encrypting ransomware
despite low counts of usable samples in some families. Because
our study covered nearly four times the number of families of
the previous study [25] and there was little diversity within
families, there was little need to collect additional samples.

B. Ransomware Detection

CryptoDrop detected all the remaining 492 samples,
quickly protecting the majority of victim’s data with as few as
zero files encrypted before detection.3 This result highlights
the required actions of ransomware and the effectiveness of
our indicators at detecting this type of malware. Below, we
discuss the ability of our system to protect user data and the
effectiveness of union indication.

1) Data Loss: The amount of data lost before detection
occurs is our most valuable metric. When CryptoDrop is
able to detect the ransomware more quickly, fewer files are
encrypted by the ransomware, thus protecting more of the
user’s data. Figure 3 shows the data loss as a cumulative plot
of the number of files lost before detection. The number of
files lost in each case is dependent on the particular variant
and the order in which it attacks files. For example, samples
which attack high entropy files first (e.g., .docx) experience a
delay before being assigned points for increasing file entropy.
These samples perform high-entropy reads early, resulting in
a small delta between read and write entropies, but as these
samples move to other files in the user’s documents, this
advantage quickly disappears. Furthermore, some samples do
not prioritize the same file types as others. This behavior has
no effect on CryptoDrop’s ability to detect malware, as the
primary indicators quickly uncover the ransomware.

3Two Class C samples created new files but did not successfully remove
the original files. For more information, see Section V-C.

Family # Class A # Class B # Class C Total Median FL
CryptoDefense 18 18 (3.66%) 6.5
CryptoFortress 2 2 (0.41%) 14
CryptoLocker 13 16 2 31 (6.30%) 10
CryptoLocker (copycat) 1 1 2 (0.41%) 20
CryptoTorLocker2015 1 1 (0.20%) 3
CryptoWall 2 6 8 (1.63%) 10
CTB-Locker 1 120 1 122 (24.80%) 29
Filecoder 51 9 12 72 (14.63%) 10
GPcode 12 1 13 (2.64%) 22
MBL Advisory 1 1 (0.20%) 9
PoshCoder 1 1 (0.20%) 10

Ransom-FUE2 1 1 (0.20%) 19
TeslaCrypt 148 1 149 (30.28%) 10
Virlock 20 20 (4.07%) 8
Xorist 51 51 (10.37%) 3

# Samples 282 (57.32%) 147 (29.88%) 63 (12.80%) 492 (100%) 10

TABLE I: This table shows the breakdown of the 492 ran-
somware samples that CryptoDrop detected across each class
and its median files lost result. We matched each sample
CryptoDrop detected with a family name chosen by popularity
from detection names from 57 antivirus vendors.

In the median case, the system detected ransomware after
only 10 of the 5,099 test files (0.2%) were lost. We observe
that Class B samples had the highest number of files lost,
and we found that this is due to these samples attacking the
user’s smallest documents first. We discuss this in detail in
Section V-C. By protecting the majority of the user data, our
robust approach outperforms traditional anti-malware which
allows the complete encryption of the data to occur if the
ransomware is not immediately detected.

2) Union Indicator Effectiveness: All three primary indi-
cators proved valuable in the majority of samples, with 457
(93%) having at least one occurrence of union indication.
We observe that this indicator enables CryptoDrop to detect
samples in as few as one file lost due to this both dramatically
increasing the current score of a process and lowering that
process’s detection threshold. Accordingly, the ransomware is
able to encrypt fewer files before detection.

We found our sample set included 63 samples of Class C
ransomware, which can evade union indication by writing its
data into separate files. However, 41 of these moved the new
file over the original content, allowing linking the original and
new content and ultimately leading to union detection. The
remaining 22 samples evaded union detection but were unable
to evade overall detection due to the large number of high-
entropy writes and deletes it performed. CryptoDrop’s low
non-union threshold mechanism allowed these samples to be
detected with a median loss of 6 files.

The 13 remaining samples that did not trigger union
indication (but were detected) were all Class A and did not
have a similarity indicator alert before detection, preventing
union detection on these samples. This does not mean that the
malware successfully evaded the similarity indicator, only that
CryptoDrop detected the sample before the similarity indicator
triggered. The experimental results emphasize CryptoDrop’s
ability to detect all samples in a similar number of files. Union
indication, however, is critical to accelerating these detections
to as few as one file lost.

C. Data-Centric Ransomware Behavior

We initially expected to find that most ransomware samples
perform a depth-first search using ordered lists of directories
and upon reaching the deepest files, sequentially encrypt them.
After the experiments, however, we found differing results
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(a) TeslaCrypt (b) CTB-Locker (c) GPcode

Fig. 4: This tree represents the directory tree we filled with our modeled test corpus documents. The root of the provided
documents directory is located in the center of the tree. The filled (red) nodes represent those directories where at least one
of our files was read or written before CryptoDrop detected and stopped the malware. Each of these samples uses a different
algorithm for attacking the victim’s data. From left to right, these samples are Classes A, B, and C, though the classification of
the ransomware is unrelated to the order that it encrypts files.

between samples as shown in Figure 4. Each graph in this
figure shows the directory tree (rooted in the center of the
graph), with shaded nodes representing those directories where
the malware read or wrote a file.

TeslaCrypt uses a depth-first search, as shown in Fig-
ure 4a. It starts accessing files once it has reached the deepest
directory. The sample did not begin encrypting files in the first
directory it accessed, instead writing the decryption instruc-
tions/ransom demand into that directory. It began encrypting
our test corpus with a PDF in the second directory it accessed,
despite a PDF being available in the first directory.

CTB-Locker is shown in Figure 4b. This sample attacks
files with certain extensions (.txt and .md) in ascending
order by file size. The set of files the samples encrypted before
detection was composed of files throughout the file corpus we
provided the malware; the sample encrypted the next file in
size ascending order regardless of whether or not it existed
in a different directory. This behavior is curious because one
might assume that a victim’s largest files are the ones that
contain the most information and therefore have a higher
likelihood of being valuable. Since the malware attacked the
smallest files in the corpus, 26 of these files lost have sizes
< 512B, causing an above-average number of files to be
lost. sdhash is unable to generate similarity scores for such
small files, causing union detection to be impossible until the
malware has moved past this threshold. To test this hypothesis,
we reran one of these samples with a corpus missing all
of the files with sizes < 512B. The number of files lost
on this run was 7, far fewer than the 29 previously lost.
Through our experimental observations, we believe situations
like this can be remedied in future versions of CryptoDrop
through automatic identification of conditions unfavorable to
individual indicators. Once identified, CryptoDrop could adjust
the number of reputation points assessed up or down for
individual indicators, leading to faster detection even when
union indication is not possible.

GPcode, shown in Figure 4c, accesses files starting at

the root directory and moving down the tree. This sample is
particularly notable because it did not modify or delete any of
our test files before being detected. This Class C sample read
files from each directory it accessed and wrote a new file. The
sample did attempt to delete the original content, but some of
our test files were marked read-only on the filesystem, which
this sample was uniquely unable to work around. Regardless,
CryptoDrop detected this sample due to the high entropy delta
between the files it was reading and writing. If this sample
had been able to successfully delete the files, the number of
files lost would have been ≤ 6. It is surprising that this sample
remains functional, as it was first submitted to VirusTotal in
2008. This may also provide some clue as to why this sample
had errors with basic file functionality.

Ultimately, the ordering of the files attacked by the mal-
ware influences CryptoDrop’s speed to detect and stop the
ransomware, though we note that there may be future opti-
mizations to the indicators to assist with detecting attacks on
corpora of small files. One such optimization might increase
the points assessed on certain indicators when others are
unavailable. We leave dynamic scoring to future work but note
that this may have an adverse effect on false positives.

D. File Format Attack Frequency

We constructed the set of file extensions that each sample
attacked and then calculated the frequency of those extensions
among all of the samples. For example, if a sample accessed
more than one PDF file, the data shows a single PDF access
for that sample. This data is shown in Figure 5 and provides
a glimpse into ransomware’s priority of file formats.

The data indicates a strong preference for attacking pro-
ductivity files over other kinds of media including pictures
and music. It is unclear whether these file formats appear
more frequently in the early accesses of ransomware simply
because they are common or if they represent data that is more
valuable to the victim (and therefore more likely to cause a
ransom payment). We leave this discussion for future work, but
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Fig. 5: This figure shows the frequencies of aggregate file extensions accessed by the 492 live ransomware samples we obtained.
The data was collected until CryptoDrop detected the sample, causing the data to represent the first files attacked by each sample.
Overall, the samples attacked common productivity formats first.

note that the top four file formats (.pdf, .odt, .docx, and
.pptx) represent compressed, high-entropy files. Although
these files exhibit far less entropy increase when encrypted
than other files (see Section III for details), CryptoDrop’s
sensitivity to this increase nevertheless enables fast detection.

E. Ransomware Scripts

One family of ransomware we obtained, PoshCoder, was
developed in PowerShell. This sample was particularly notable
because it underlines that ransomware does not need to be
a compiled binary. As a result, it can be quickly morphed
into an unknown variant and typed or piped directly into an
interpreter. Signature-based anti-malware technologies cannot
defend against this malware because it is not necessary for
this malware to exist on the disk of the victim host. It can be
constructed, executed, and completed entirely in memory.

This particular sample continues to have an extremely low
detection rate among anti-virus vendors, with only 8 of 57
products detecting the sample as of submission.4 CryptoDrop,
however, detected this sample after only 11 files were lost.
To more fully demonstrate the issue of signature-based ran-
somware detection, we added a single character to the above
sample and submitted the file back to VirusTotal. Two of the 6
products which detected the original sample no longer detected
the malware. Since CryptoDrop is focused on the changes
to user data, not the malware’s contents or its execution,
our system is well- positioned to stop ransomware which
manipulates the filesystem using high-level APIs.

F. False Positives

While CryptoDrop is effective at quickly detecting ran-
somware, we note that any evaluation of its real-world utility
must also include a discussion on incorrect detection of
benign activity. False positive analysis for a system such as
CryptoDrop is challenging since its analysis requires changes

4We note that this metric does not mean that a particular anti-virus product
would not detect this sample in real- world conditions. When provided this
sample with no additional context, it did not detect.

to be made to a user’s protected documents. Techniques used
in static malware analysis works (e.g., providing a set of
known-good binaries alongside bad ones) will not work since
CryptoDrop does not analyze binaries for malicious traits.
Likewise, techniques used in dynamic malware analysis (e.g.,
passively observing benign activity on a system and running
the detector on it later) will not work since CryptoDrop needs
to measure the user’s documents before and after each change.
Below, we discuss the results of our experiments with benign
programs and show that our system remains robust.

We evaluated thirty common Windows applications on
the same virtual machine configuration used to test malware
samples and found only one false positive. That false positive,
7-zip, was expected as it reads a large number of disparate files
and generates high entropy output (similar to ransomware).
We discuss mitigating this specific type of false positive in
the following section. Furthermore, no application exhibited
all three primary indicators. Our Windows application data set
includes: 7-zip, Adobe Lightroom, Avast Anti-Virus, Chocolate
Doom, Chrome, Dropbox, F.lux, GIMP, ImageMagick, iTunes,
Launchy, LibreOffice Calc, LibreOffice Writer, Microsoft Ex-
cel, Microsoft Office Viewers, Microsoft Word, MusicBee,
Paint.NET, PhraseExpress, Picasa, Pidgin, Piriform CCleaner,
Private Internet Access VPN, ResophNotes, Skype, Spotify,
Sticky Notes, SumatraPDF, uTorrent, and VLC Media Player.

For space limitations, we are unable to thoroughly discuss
the testing methods used for all thirty applications. However, to
get better insight into how CryptoDrop analyzed benign appli-
cations, we analyze five important applications below. Figure 6
shows the number of false positives that would have occurred
at varying detection thresholds with these five applications.
In our analysis, we demonstrate that our threshold selection
minimizes false positives while maintaining fast detection of
ransomware. The score of each process at the end of each
experiment is listed next to the application name.

Adobe Lightroom (107): We imported a set of 1,073
JPEG image files. We then performed an “automatic tone”
function on every picture, converted 5 photos to black-and-
white, and exported these 5 photos to the user’s documents
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Fig. 6: The number of false positives registered against five
top Windows applications for a range of non-union thresholds.
During our malware-testing experiments, the threshold for non-
union detection was configured at 200.

folder. ImageMagick (0): We performed a batch modification
of the same 1,073 JPEG image files, using the ImageMagick
mogrify utility. Each picture was rotated 90 degrees and
saved in-place. iTunes (16): Before opening iTunes, we first
deleted the iTunes library to force it to generate a new one.
We then opened iTunes, imported all 70 of the Coldwell audio
comparison files [10], and allowed iTunes to convert any files
that were unsupported. We played three songs, then converted
all of the audio files to AAC format using iTunes built-in
conversion function. Microsoft Word (0): We created a new
blank document and entered 5 paragraphs of text, then saved
the file. We then created a table, added one paragraph of text to
each cell, adjusted the formatting, and saved the file again. We
imported a photo into the file, and saved the file once again.
Finally, we inserted a “SmartArt” graphic, added text to it, and
saved. Microsoft Excel (150): We created a blank document
and filled in two 500-cell columns with values. We then created
a line chart of these two columns, saved the document, and
closed Excel. We re-opened Excel, added another column of
values, added a scatter plot of these, and saved the file again.

These scores represent the window of time from process
start to the time we completed the task. Though some of
the scores may seem higher than expected, we note that
this time window is not a similar scale to that of the ran-
somware samples. Due to the extremely aggressive nature of
ransomware, we were generally able to detect real ransomware
samples seconds after they began accessing user data. Our
false positive tests, however, took tens of minutes of high
disk activity to complete. Our Lightroom test took nearly
an hour as the files were copied, indexed, and added to the
software’s library. Monitoring any time window presents an
evasion opportunity to ransomware as it can change its rate
of attack to overcome the window. However, research into
time window parameterization may lead to another primary
indicator in future versions of CryptoDrop.

G. Limitations

CryptoDrop is unable to determine the intent of the changes
it inspects. For example, it cannot distinguish whether the
user or ransomware is encrypting a set of documents. This
fundamental limitation requires our system to notify the user
when suspicious activity occurs and allow the user to make
the final decision on whether the activity is desired. As a
result, we expect that programs such as GPG and PGP, com-
pression applications, and other applications which perform
similar transformations will cause a CryptoDrop detection
when applied to many user documents. While testing 7-zip,

a detection occurred while attempting to create an archive of
the user documents directory. We believe that a CryptoDrop
detection of this behavior is normal, expected, desirable, and
not overwhelmingly invasive. Future versions of ransomware
may simply employ the user’s own (or a bundled) GPG or
compression utility to perform encryption. Since CryptoDrop
is looking for bulk transformation, which these applications
perform, our system can notify the user of this suspicious
activity in case it is malicious.

H. Performance

The initial research version of CryptoDrop is unopti-
mized. It contains many synchronous calls, verbose logging,
debugging measurements, and other performance-decreasing
functionality. Compiler optimizations were disabled to ensure
correct operation and assist in debugging during our experi-
ments. We traced our code while performing modifications to
protected files and observed that this version of CryptoDrop
introduced overhead latencies for file open and read operations
of less than 1ms. Close operations added an average latency of
1.58ms. Write and rename operations are the most expensive
with additional latency of 9ms and 16ms, respectively. Cryp-
toDrop does not inspect files outside of the user’s documents
directory, so operating system and program accesses to other
files (including their own) are not affected.

As an example, the high latency from write and rename
operations often manifests during measurement. During these
operations, the file is often locked and cannot be opened by
CryptoDrop for inspection; when this happens, CryptoDrop
switches context and reads the file using the kernel code.
Currently, our system writes this data back to temporary
files on the disk so it can be manually inspected later for
correctness. One major optimization would be to perform these
measurements without additional disk access, heavily reducing
these latencies. We believe that with future optimizations,
CryptoDrop can be run on a live system with a small overhead.

VI. CONCLUSION

Ransomware continues to plague unsuspecting victims due
to its use of strong cryptography. Victims often have little re-
course other than to pay the ransom, fueling a vibrant economy
for attackers who can deploy new variants with ease. In this
paper, we limit attackers and reduce the incentive for victims to
pay with CryptoDrop, an early-warning system for ransomware
attacks. Our solution targets ransomware by monitoring the
victim’s data and detecting the behaviors that ransomware must
perform. We first identify these required operations, classify
ransomware into three major classes, and develop indicators
that inspect, capture, and alert on ransomware while avoiding
benign applications. We discover that ransomware frequently
trips all of these primary indicators, while legitimate appli-
cations do not, creating a shortcut to detecting ransomware
with fewer files lost. Our experiments test CryptoDrop against
492 real-world ransomware samples (representing 14 distinct
families, the largest study of encrypting ransomware to date)
and find a 100% detection rate with as few as zero victim files
lost before detection. With few files lost, the burden to pay
for victims of ransomware is reduced or removed, protecting
users and dismantling the economy of attackers.
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