
LIGER: Implementing Efficient Hybrid Security
Mechanisms for Heterogeneous Sensor Networks

Patrick Traynor, Raju Kumar, Hussain Bin Saad, Guohong Cao and Thomas La Porta
Networking and Security Research Center

Department of Computer Science and Engineering
The Pennsylvania State University

University Park, PA 16802

(traynor, rajukuma, binsaad, gcao, tlp)@cse.psu.edu

ABSTRACT
The majority of security schemes available for sensor networks as-
sume deployment in areas without access to a wired infrastructure.
More specifically, nodes in these networks are unable to leverage
key distribution centers (KDCs) to assist them with key manage-
ment. In networks with a heterogeneous mix of nodes, however, it
is not unrealistic to assume that some more powerful nodes have at
least intermittent contact with a backbone network. For instance,
an air-deployed battlefield network may have to operate securely
for some time until uplinked friendly forces move through the area.
We therefore propose LIGER, a hybrid key management scheme
for heterogeneous sensor networks that allows systems to operate
in both the presence and absence of a KDC. Specifically, when
no KDC is available, nodes communicate securely with each other
based upon a probabilistic unbalanced method of key management.
The ability to access a KDC allows nodes to probabilistically au-
thenticate neighboring devices with which they are communicating.
We also demonstrate that this scheme is robust to the compromise
of both low and high capability nodes and that the same keys can be
used for both modes of operation. Detailed experiments and simu-
lations are used to show that LIGER is a highly practical solution
for the current generation of sensors and the unbalanced approach
can significantly reduce network initialization time.

Categories and Subject Descriptors
C.2.0 [Computers-Communication Networks]: General—Secu-
rity and protection

General Terms
Security, Performance

Keywords
Heterogeneous Sensor Networks, Probabilistic Key Management,
Probabilistic Authentication, Hybrid Network Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’06, June 19–22, 2006, Uppsala, Sweden.
Copyright 2006 ACM 1-59593-195-3/06/0006 ...$5.00.

1. INTRODUCTION
The deployment of wireless sensor networks is becoming more

common in a wide range of environments. In scenarios ranging
from the remote observation of wildlife and the monitoring of so-
called “smart” buildings to commercial inventory management and
vehicle/target tracking, sensor networks are being employed for the
task of distributed information accumulation. These systems have
typically been characterized as being composed of a large number
(hundreds to a few thousand [1]) of homogeneous nodes with ex-
treme resource constraints.

A deviation from the homogeneous system model has been in-
creasingly discussed in the research community. Instead of as-
suming that sensor networks are comprised entirely of low-ability
nodes, a number of authors have started exploring the idea of de-
ploying a heterogeneous mix of platforms and harnessing the avail-
able “microservers” for a variety of needs. For example, Mhatre, et
al. [13] automatically designates nodes with greater inherent capa-
bilities and energy as cluster heads in order to maximize network
lifetime. In Traynor, et al. [19], security is provided by leverag-
ing an unbalanced distribution of symmetric keys. The availability
of platforms including the Crossbow Stargate allows such mixed-
networks to become a reality.

Security is one of the most difficult problems facing these net-
works, whether they are composed of a homogeneous or hetero-
geneous mixture of nodes. As is necessary in most other systems,
secure communication is often a mission critical requirement; how-
ever, the abovementioned resource constraints of nodes like the
Mica2 make the use of solutions including asymmetric cryptosys-
tems unrealistic or impossible in the majority of circumstances. To
make matters more complicated, the assumption of physical pro-
tection from enemies does not hold for many deployment environ-
ments, making the subversion of nodes and their data a realistic
threat for these networks. It is therefore extremely important that
all attempts at securing these systems, especially in the realm of
key management, are as simple and robust as possible.

The currently available schemes for key management in homo-
geneously composed sensor networks assume one of two scenar-
ios: either a network with access to a KDC via a base station, or a
remotely located, stand-alone system without access to any infras-
tructure. We argue, however, that the expansion of heterogeneous
networks allows for systems to potentially operate in a multi-modal
fashion. For example, consider an air-deployed sensor network be-
ing dispersed over a disputed border area. Nodes arrive long before
friendly forces are likely to be moving through the region and must
therefore begin the process of secure data collection without help
from external mechanisms. If nodes are equipped with symmetric
keys through an a priori distribution scheme, neighbors will be able

to exchange encrypted transmissions; however, it is extremely dif-
ficult for nodes to truly, scalably authenticate each other. If, at a
later time, the arrival of allied troops provides access to a backbone
network, a truly robust system should be able to harness the addi-
tional security guarantees such as centralized authority and scalable
authentication provided by a KDC.

This paper presents LIGER1, a hybrid key management system
for heterogeneous sensor networks. The contributions made in this
paper are:

• Dual-mode Key Management: We create an architecture
that allows networks to operate securely in the absence and
presence of a KDC. In the absence of a KDC, we define
a stand-alone protocol that implements the theory in many
papers based on probabilistic keying. In the presence of a
KDC, we leverage the information deployed to support the
stand-alone protocol and preserve least privilege using a pro-
tocol better suited for sensor networks than Kerberos. This
approach is advantageous as a network can not only always
operate in a secure fashion, but also harness resources as
they become available. If a connection to a KDC is avail-
able, the protocol allows nodes to learn enough information
so that some level of authentication may be performed if the
KDC becomes unavailable for periods of time and the net-
work must operate without a central authority.

• Probabilistic Authentication: We develop and test the the-
ory behind using a combination of a subset of a node’s keys
for authentication. An attractive feature of this scheme is that
it requires no more keys than in the stand-alone system and
is robust when operating with a KDC. By linking the stand-
alone and KDC system, we are able to perform varying levels
of authentication of nodes even when the KDC is unavailable
for periods of time.

• Implementation and Analysis: We implement the LIGER
protocol and compare its performance for unbalanced [19]
and balanced key distributions [5]. This is the first reported
implementation of a probabilistic keying mechanism and sheds
light on several important practical issues: it determines bot-
tleneck points in the network, shows the sensitivity of per-
formance to the number of messages required to initiate a
network, and highlights the importance of a resilient MAC
protocol if high performance is to be attained. We analyze
our implementation to quantify the efficiency of implement-
ing a combined protocol. No previous papers have addressed
these issues. Additionally, we discuss how the use of the un-
balanced key management scheme allows an administrator
to customize security policy depending upon the mission of
a specific network.

The remainder of this paper is organized as follows: Section 2
discusses related research; Section 3 defines the key establishment
protocols in detail including the theoretical foundations of proba-
bilistic authentication; Section 4 discusses the details and savings
associated with the implementation of the component schemes; Sec-
tion 5 explores the performance of these implementations; Sec-
tion 6 provides concluding comments.

2. RELATED WORK
The preceding work in the field of key management for wireless

sensor networks can be broken into two categories: schemes that
1A Liger is the hybrid offspring resulting from the breeding of a
lion and a tiger.

have constant access to a KDC or trusted third-party keying mech-
anism, and those that never do. While there has also been a large
body of work on distributed certificate authorities applied to ad hoc
networks, these schemes rely on public key cryptography and are
therefore not directly applicable to sensor networks.

The wired world of networking is already familiar with a num-
ber of protocols for authentication and session key establishment.
The classic protocol for authenticating communications between
two machines was written by Needham and Schroeder [14]. Im-
provements to this protocol were made in the abundantly used Ker-
beros [8]. Fox and Gribble proposed the use of Charon [6], a proxy
server designed to offload the memory overhead of Kerberos for
mobile devices.

A more appropriate centralized keying method for sensor net-
works is proposed in the SPINS protocol [16], which makes use
of a modified version of the TESLA [15] authentication protocol
(µTesla). Each node in a network running SPINS contains only a
pair-wise key with the base station/KDC and uses one-way hash
chains for creating an epoch-delayed key release mechanism for
use in authenticated broadcast. If two nodes A and B wish to es-
tablish keys with each other, A sends a request to B, which creates
and forwards a token to the base station. The base station generates
a session key, encrypts it in the secret keys that it shares with each
of the involved parties and transmits the data. While this scheme
has many attractive attributes, it will not operate if the base sta-
tion/KDC is unreachable.

A large number of key distribution schemes have been proposed
for networks that are unable to access a KDC after deployment.
The most famous of these pre-distribution schemes is the work by
Eschenauer and Gligor [5]. Given a key pool of size P , nodes
are preloaded with k keys (selected without replacement) such that
two randomly picked nodes can communicate with a given proba-
bility (i.e., share at least one key). In order to determine whether or
not a key is shared, each node broadcasts its key identifiers (which
are randomly associated with the keys themselves before deploy-
ment) in plaintext. Neighbors sharing a key associated with one of
those identifiers then issue a challenge/response to the source. If
two nodes do not share keys directly, they can establish a session
key with the help of neighbors with which a key is already shared.
While this technique is well suited for establishing session keys in a
stand-alone network, it does not provide support for authentication.

This work was expanded via a number of methods by Chan, et
al [2]. One extension requires nodes to share at least q keys to es-
tablish secure communication links. This greatly reduces the pos-
sibility of an intruder being able to eavesdrop on communications
through the compromise of a small number of peer nodes. Ad-
ditionally, the authors suggest a distribution model in which each
node stores pairwise keys between some subset of the nodes in the
network. This allows nodes to authenticate peers with which they
share one of the pairwise keys, and limits the damage done to un-
compromised nodes when keys are exposed to an adversary.

A number of other researchers have proposed incorporating location-
based information into the assignment of keys [4, 9, 10]. Because
of the expensive and high power-drain characteristics of GPS units,
these schemes typically rely upon initial node placement for this
information.

The only available key management scheme for heterogeneous
sensor networks known to the authors of this paper is discussed
by Traynor, et al. [19]. This scheme will be examined in detail in
Section 3.1.

None of the previous work has fully defined a protocol or shown
implementation results for the security methods they propose. The
implementation and measurements presented here show the viabil-

ity of these systems in a practical environment and illustrates their
sensitivity to MAC layer collisions and network density.

3. PROTOCOL SPECIFICATION
The specifications for our protocols are now described in detail.

For simplicity, the protocol for a network in an infrastructure-less
environment will be referred to as LION. The scheme relying upon
the presence of the KDC will be referred to as TIGER. The details
of the probabilistic authentication scheme will be covered in this
section. LIGER covers the integration of these two components.

The highlights of the protocol operation follow. All nodes are
loaded with a random set of keys drawn from a common pool be-
fore being deployed. In addition, the mapping of keys to nodes is
stored in a KDC. If the network is operating in stand-alone mode,
i.e., with no KDC, we define a protocol to instantiate probabilis-
tic keying. We differ from most of the previously defined systems
by supporting optimizations that allow keys to be deployed in an
unbalanced manner, i.e., more keys are deployed in more capable
nodes. If the network has access to a KDC, we leverage the knowl-
edge of the pre-deployed keys to perform probabilistic authentica-
tion with a high degree of confidence. In addition, session keys are
established with the enforcement of least privilege. Nodes gather
information in this mode of operation so that they may continue to
perform some level of probabilistic authentication if the KDC be-
comes unavailable for periods of time. The mode of operation may
change between stand-alone and KDC-mode.

The portrait of sensor networks painted by most of the current
literature is one of extremes. Systems exist either in total separa-
tion from infrastructure and intervention or with constant access to
such resources. Networks designed to operate in isolation therefore
never consider harnessing new resources as they become available.
Likewise, systems designed with a reliance upon available infras-
tructure flounder in its absence. In reality, large-scale sensor net-
works will have to optimally perform their missions in both of the
above settings. If, for example, there is a method of transmitting
data from a sink node to some external destination, then the ability
of a sensor node to communicate with a KDC is entirely realistic.
Indeed, if data cannot be drawn out of a sensor network and deliv-
ered to some distant location, the usefulness of the network itself is
extremely limited.

Simply placing either only LION, TIGER or any other single-
mode scheme in a sensor node therefore fails to fully utilize the
potential of these networks. The answer, however, is not using
combined, unaltered versions of both LION and TIGER in each
sensor. Such a solution fails to take advantage of redundant or sim-
ilar mechanisms. Specifically, including a unique master key for
the purpose of authentication via a KDC fails to take into account
the potential size of the code supporting this an additional proto-
col. Because the highly constrained memory of L1 nodes is one of
the chief concerns of all solutions implemented on these platforms
and an equally effective solution can be achieved probabilistically,
a hybrid method of key management becomes the most efficient
solution for such a setting.

The combination of slightly modified versions of these two schemes
results in LIGER - a more robust method of key management for
heterogeneous sensor networks. The combination enables different
levels of probabilistic authentication without increasing memory
requirements of the L1 sensor nodes.

We first describe the stand-alone component of the system (LION),
followed by the KDC-based component of the system (TIGER).
When discussing TIGER we present the details of the probabilistic
authentication protocol. We conclude this section by discussing the
transition between protocol modes.

Notation

• A, B are principles (e.g. communicating L1 nodes)

• IDA0 , · · · , IDAk−1 are the sorted key identifiers correspond-
ing to the keys held by node A.

• KA is a secret key known by node A.

• KA,B is a session key shared between nodes A and B.

• KA AUTH is an authenticator key for node A.

• KAi is some key corresponding to an ID from within the
range described directly above.

• L1 is a sensor node.

• L2(GW) is the L2/Gateway node.

• MAC(KA, R|S) is a Message Authentication Code of the
values R and S, using key KA

• MAPA is the bitmap corresponding to a sorted representa-
tion of IDA0 , · · · , IDAk−1 .

• N is a nonce.

• {S}〈K〉 is a value S encrypted in key K.

3.1 LION: Standalone Key Management
There are a number of advantages to creating wireless sensor

networks from a heterogeneous mix of nodes. First, the presence
of nodes with additional capabilities greatly reduces the difficulty
of implementing secure systems. The ability of the more capable
nodes to store extra keying data while incurring only a small rela-
tive expense allows for critical memory to be saved on low capabil-
ity or Level 1 (L1) nodes. Additionally, if high capability or Level 2
(L2) nodes have direct access to an uplink out of the network, very
large sensor networks can instead be viewed as a collection of in-
dependent, small systems. This significantly decreases the impact
of signal blocking barriers (walls, hills, etc).

Based on these arguments, Traynor, et al. [19] propose the de-
ployment of two classes of sensor nodes. L1 (sensor) nodes are
very limited in capabilities; L2 nodes are more capable and act as
gateways to a backbone network if one is present. L1 and L2 nodes
are pre-deployed with k and m keys from a pool of size P , respec-
tively, where k << m. The probability of two nodes with different
sized key rings sharing at least one key with each other is given in
Eq. 1:

P [Match] = 1 − (P − k)!(P − m)!

P !(P − m − k)!
(1)

Given Eq. 1, it is possible to determine network connectivity
via a number of trust/communication models. For example, the
network administrator may limit data collected by L1 nodes to be
backhauled to a wired network via a L2 node. In this case to limit
the number of nodes that are involved in key establishment, session
keys may only be established by virtue of a direct key match be-
tween the L1 node and the L2 node. Alternatively a peer-to-peer
model of communication between L1 nodes may be supported by
allowing key establishments either directly between two L1 nodes
or with the help of a nearby L2 node. This approach is known as
the “Limited Trust” communication model as it forces L1 nodes to
hold suspicious opinions of their neighbors (for the purpose of key

A B

1

1

2

L2 (GW)

Figure 1: The Direct Key Discovery phase of the LION proto-
col. First, L1 node A broadcasts out its key identifiers. A neigh-
boring L2 determines it has a match with the L1 and sends a
challenge/response message.

establishment). A number of other, less strict trust relationships in-
cluding the possibility of allowing up to n intermediate hops for the
establishment of session keys have also been proposed. Regardless
of the trust/communication model enforced over the network, this
unbalanced mechanism of keying allows for the number of keys
to remain constant in the L1 nodes while making slight changes
to a less resource constrained L2 node. The previously discussed
homogeneous network models require all nodes in the network to
increase the amount of already limited memory dedicated for key
management in order to overlay such schemes.

We use a peer-to-peer model of interaction and therefore select
the Limited Trust communication model discussed above. All of
the other peer-to-peer models [19] degenerate into this case as the
number of keys in L1 nodes (and therefore the probability of di-
rectly establishing a key without the use of an L2) decreases signif-
icantly.

In the key pre-distribution phase, each of the L1 and L2 nodes
receives k or m keys randomly (without replacement for each node)
from a pool of size P , respectively.

We now present the message flow for the LION protocol. This
protocol supports both unbalanced and balanced key distribution.
After deployment, an L1 node learns its neighbors through the ex-
change of Hello messages, and then attempts to establish keys
with its neighbors. To accomplish this, the node broadcasts all of
its key identifiers. Because the keys themselves are not transmitted
and similar information could be gathered from a traffic analysis at-
tack [5], this method does not compromise the integrity of the node
itself. If a neighboring node overhears this transmission and deter-
mines that it shares one of the keys associated with the broadcast,
it responds to the source with a challenge/response. In Figure 1 we
show the message flow for the case in which a node, A, has a key
match KAi , with a L2 node. The messages exchanged between the
two exhibit the following format:

1) A → ∗ : A, N, IDA0 , · · · , IDAk−1

2) L2 → A : A, L2, N, IDAi
, {IDAi

, L2, N}〈KAi
〉

L1 nodes amass a list of neighbors with which they do and do
not share keys. When the shared-key discovery phase ends, a node
attempts to use the neighbors with which keys are already shared to
assist it in establishing secure connections with all neighbors. In the
Limited Trust model discussed here, this “Request for Assistance”
(which contains all of the node IDs with which a secure relation-

A B

3

4 4

L2 (GW)

Figure 2: The Indirect phase of the LION protocol. After node
A is unable to establish keys with all of its neighbors, it launches
a “Request for Assistance” message. The L2, overhearing this
request, provides a session key to both parties.

ship has not been established) is sent directly to an L2 node. The
L2 node, having already established a link with the targeted L1,
transmits a message to the requester and targeted node containing a
session key encrypted in each of the keys shared with the L2 node.
Each L1 node then receives the L2 broadcast, decrypts the session
key and begins the secure transmission of data. The messages for
the indirect phase are:

3) A → L2 : A, B, N

4) L2 → ∗ : A, B, N, {KA,B , N}〈KA,L2〉, {KA,B , N}〈KB,L2〉

Figure 2 shows the indirect phase of the protocol with the “Re-
quest for Assistance” message being transmitted to the neighboring
L2 node in accordance with the Limited Trust model. This message
would instead be broadcast to all neighbors if a less stringent trust
model was in effect.

If a node assists in establishing a session key during the indi-
rect phase of the protocol, it deletes this key as soon as end-to-end
communication is established. The two endpoints of communica-
tion also re-key immediately. In this way, if a node is compromised,
it will not contain any valid session keys other than its own.

Authentication of neighbors is accomplished by challenging an
adjacent node on multiple shared keys. This scheme is discussed in
detail in Section 3.2.3.

A criticism of pre-distribution schemes is that copies of each key
are stored in multiple nodes, therefore making the system less se-
cure. However, with keys distributed in a uniform random fash-
ion over a network of 1,000 nodes (12.5% being L2s) [19], each
key is likely to be located in approximately 1% of the nodes on
average. Because the majority of keys stored in each node are un-
used throughout the network [5], the compromise of a single node’s
keys is not equivalent to the loss of the same number of actively
used keys. Regardless, in order to locate a specific key, an attacker
would have to physically compromise almost 100 nodes (12.5%
being L2s). If an attacker is able to compromise nearly 100 nodes
in a network without being detected, the system is likely facing far
more critical problems. We therefore assert that this mechanism is
appropriate for key management in sensor networks.

3.2 TIGER: KDC-Based Key Management
In locations such as “smart buildings” or factories where sensor

networks may be used to gather data corresponding to changing
environmental, structural, and inventory-related conditions, access

to a KDC is an entirely realistic assumption. We have designed
TIGER for this scenario.

Before the system is initialized, each L1 node is bootstrapped
with the same set of k keys as with LION. L2 nodes share a pub-
lic/private key combination with the KDC.

To perform authentication, each node creates an authenticator
key from a combination of their pre-deployed keys as described
below. After discussing the basic authentication mechanism, we
give a detailed protocol definition and analyze the robustness of the
authentication mechanism.

3.2.1 Probabilistic Authentication
One of the chief goals in the development of sensor network se-

curity is the minimization of memory overhead. Specifically, if
the ability of an L1 node to perform its sensing task is limited by
the memory footprint of a security solution, the security solution
should be considered ineffective. Because one of the primary oc-
cupiers of memory in random pre-distribution schemes is the keys
themselves, all efforts must be made to decrease this burden on the
platform. Accordingly, LIGER only stores a single set of keys for
use in both the LION and TIGER portions of operation. To provide
robust operation in the face of disconnection with the KDC, these
keys are pre-deployed as in the LION method.

In order to prove its authenticity, a node instantiates a temporary
authenticator key by which the system may perform probabilistic
authentication if a KDC is present. This key is created using a
simple operation on a subset of the k pre-deployed keys in each L1
node. This scheme is also used for L1 nodes to loosely authenticate
each other via an L2 node when a KDC is unavailable. A discussion
of this type of authentication is given in Section 3.3. Below we
provide the discussion for the method when applied to operation
with a KDC.

A similar concept, called the q-composite scheme [2], has been
previously proposed. The q-composite scheme is designed to im-
prove the robustness of probabilistic keys, not to provide authenti-
cation. As mentioned before, with the q-composite scheme nodes
must share at least q keys in common in order to establish a con-
nection. While it provides additional security for the system, sig-
nificantly more keys are required as q increases.

In TIGER, each L1 node uses q of its k pre-deployed keys to gen-
erate the authenticator key. The key itself is created by performing
a simple XOR on the selected q keys. This operation, chosen for its
speed and ubiquity across all platforms, is guaranteed to create an
unguessable, pseudo-random value from the key space as demon-
strated by Shannon [17]. Because an attacker must know all of the
key values associated with the creation of an authenticator key in
order to derive it, this system is protected to a threshold of q − 1
for any given node. The hardness of breaking an authenticator key,
for some q < k, is further enhanced as discussed in the protocol
definition by allowing the subset of keys from which the authentica-
tor key is derived to be changed as described below in the protocol
specification. An analysis of the robustness of the authenticator key
is given in Section 3.2.3.

Because the KDC knows all k keys pre-deployed in each sensor
node, it can compute authenticator keys, and thus authenticate each
L1 node in the network.

One drawback of the original q-composite method is that it re-
quires an increase in the number of keys deployed in a L1 node to
provide a reasonable probability of obtaining q key matches. In our
system, when using a KDC no additional keys are required in the
L1 nodes to maintain the likelihood of q key matches between a L1
nodes and a KDC because the KDC knows all of the keys deployed
in the L1 nodes. In addition, because with unbalanced key distri-

A B

KDC

1

2

3

4

5 6

L2 (GW)

Figure 3: The TIGER message flow for key establishment be-
tween L1 nodes. Node A sends a token to Node B indicating
its desire to establish a session key. B includes its own token
and forwards that message to the KDC via the gateway. The
KDC determines the validity of both tokens and returns a ses-
sion key to both parties. A copy of this key is encoded in one of
the allowable authenticator keys from both A and B.

bution only a small number of keys are deployed in L1 nodes, the
likelihood of one L1 node having q keys in common with a second
L1 node and thus being able to impersonate it, is small as shown in
Section 3.2.3.

3.2.2 TIGER Protocol Definition
TIGER strives to take advantage of a KDC with a protocol en-

forcing least privilege over key establishments while retaining the
ability to operate should the connection to infrastructure cease to
exist. We discuss the case in which nodes are activated and a link
to the KDC is available through a neighborhood L2 node. If con-
ditions prevent a connection being established, as is the case in the
military deployment example, the network defaults to the LION
protocol until a KDC link becomes available.

In order to minimize the effects of an L2 node being compro-
mised, we restrict the L1 nodes with which an L2 can establish keys
to those directly within its transmission range. This least privilege
is accomplished with a token mechanism described below.
L1 - L1 Authentication and Key Establishment. An L1 node A
wishing to establish a secure and authenticated session key with a
neighboring L1, a node advertising itself as B, begins the process
by creating a token. The token itself is the MAC of a series of
values included in the initial packet - the principles involved in the
exchange, a nonce, and a sorted bitmap of the keys used to create
the current authenticator key. Upon receiving the token, the node
believed by A to be B makes a decision as to whether or not it
desires an authenticated connection with the node it believes to be
A. For example, if B has low battery power, is already congested
with large amounts of data from other neighbors or has judged node
A to be compromised [12, 20], it may not wish to establish a key
with A and thus drops the request.

If B decides to set up an authenticated relationship with A, it in-
cludes the token sent by A with its own token in a message to an L2
node. The L2 node then forwards the packet on to the KDC. The

KDC

A
1

2

3

4
L2 (GW)

Figure 4: The TIGER message flow for establishing keys be-
tween L1 and L2 nodes. Because the L2 node is required to
include a token generated by the L1 with which it is trying to
establish a session, least privilege is enforced.

validity of the two tokens is determined by generating the appro-
priate authenticator keys for both A and B according to the sorted
bitmaps of the identifiers corresponding to keys used to make each
token. If both tokens are deemed legitimate, the KDC responds
with a message to the L2 containing a copy of a session key en-
crypted in a new, randomly chosen authenticator key for both A
and B. The message from the KDC will also contain a bitmap
corresponding to each of the authenticator keys used to sign the
session keys. Nodes A and B then receive a transmission from
the L2 node, generate the appropriate authenticator keys to unlock
the session key and begin communication. The messages for this
protocol flow as shown in Figure 3 and appear as follows.

1)A → B : A, B, N, MAPA, MAC(KA AUTH , A|B|N |MAPA)

2)B → L2 : A, B, N, MAPB , MAC(KB AUTH , A|B|N |
MAPB), MAPA, MAC(KA AUTH , A|B|N |MAPA)

3)L2 → KDC : Forward Message 2 to KDC
4)KDC → L2 : A, B, N, MAPA′ , {KA,B , N}〈KA′ AUT H〉,

MAPB′ , {KA,B , N}〈KB′ AUT H〉, MAC(KA,B , A|B|N |KA,B)

5)L2 → A : A, B, N, MAPA′ , {KA,B , N}〈KA′ AUT H〉,

MAC(KA,B , A|B|N |KA,B)

6)L2 → B : A, B, N, MAPB′ , {KA,B , N}〈KB′ AUT H〉,

MAC(KA,B , A|B|N |KA,B)

Requiring the KDC to create a new authenticator key allows the
protocol to supplementary harden the system against an attacker
compromising multiple nodes in attempt to forge an identity. For
example, a valid authenticator key could be generated by the KDC
from any of the elements available in the compliment of the bitmap
of the original message. Furthermore, it allows for key revoca-
tion protocols to exclude the use of keys specifically known to be
compromised. Such a policy would not need to be enacted for the
generation of authenticated session keys until all keys associated
with the authenticator key are compromised. This will extend the
lifetime of a network if keys are gradually compromised by an ad-
versary.

This scheme is similar to Kerberos in that it requires a ticket
from a node by which it may be authenticated before a session key
is granted. In TIGER, however, both nodes in which a session key
is being established are required to provide a token to the KDC.
We feel this protocol is more suited to a peer-to-peer environment,
and prevents a single node from easily generating a large amount

of requests to a KDC to receive session keys to nodes that are not
interested in communication. Additionally, TIGER, like Kerberos,
requires two messages from the clients to establish session keys;
however, in TIGER each peer generates one message as opposed to
Kerberos in which a single client generates both messages. TIGER
therefore balances message load and energy consumption across
the network more efficiently.
L2 - L1 Authentication and Key Establishment. An L2 node
wishing to view data collected by an L1 node must broadcast Hello
messages in order to alert the L1 nodes of its presence. The L1
node A provides the L2 node with a token/MAC created in the same
way as described above; the L2 node forwards the contents of this
message on to the KDC. If the KDC is able to verify the MAC, the
L2 node will have verified that it is indeed in contact with node A.

The KDC then returns a message to the L2 node containing a ses-
sion key and a copy of the session key encrypted with the authen-
ticator key of A. This information is included in a response to A,
which also contains a MAC of the packet contents calculated with
the KDC-generated session key. The last MAC can be confirmed
as having been created by the L2 node after A has decrypted the
session key. Because the L2 node can not establish keys with the
other remaining nodes in the network without being within physi-
cal proximity of them, least privilege is preserved. The messages
to implement this protocol follow the flow shown in Figure 4 and
use the format below:

1) A → L2 : A, L2, N, MAPA, MAC(KA AUTH , L2|N |MAPA)

2) L2 → KDC : Forward Message 1 to KDC
3) KDC → L2 : A, N, MAPA′{KA,L2, N,

{KA,L2, N}〈KA AUT H〉}〈KKDC,L2〉
4) L2 → A : A, N, MAPA′{KA,L2, N}〈KA′ AUT H〉,

MAC(KA,L2, A|N |MAPA′ , {KA,L2, N}〈KA′ AUT H〉)

3.2.3 Analysis
In this subsection we discuss the robustness of the probabilistic

authentication between the KDC and an L1 node.
Through Eqs 2 and 3, we determine the probability that two

nodes with different numbers of keys (k and m, respectively) share
at least q keys in common with each other. Our equation degener-
ates into the q-composite equation [2] when k = m.

Let p(i) be the probability that two nodes share exactly i keys in
common. The number of ways in which a key ring of size k and
one of size m can be chosen from a pool P are

`
P
k

´
and

`
P
m

´
, re-

spectively. There are also
`

P
i

´
ways in which two nodes can chose

i keys in common. After i common keys have been selected, there
remains (m − i) + (k − i) key rings that must still be constructed
from the remaining pool (P − i). The number of ways to dis-
tribute these remaining keys between key rings of size k and m is`
(m−i)+(k−i)

m

´
. The probability that two nodes share exactly i keys

in common is:

p(i) =

`
P
i

´`
P−i

(m−i)+(k−i)

´`
(m−i)+(k−i)

m−i

´`
P
m

´`
P
k

´ (2)

The probability that two nodes share at least q keys with each
other is therefore:

1 −
q−1X
i=0

p(i) (3)

Figure 5 demonstrates the probability, given a pool of 10,000
keys and L1 nodes containing 10, 20 or 30 keys, that an adversary
with a varying number of the keys from P would contain all k keys

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P[
q

m
at

ch
es

]

q matches

Unbalanced, k=30
Unbalanced, k=20
Unbalanced, k=10

Figure 5: The probability that an L1 node can be cloned given
a varying number of compromised keys.

stored in a random L1 node. Approximately 63%, 79% and 86%
of the entire key pool must be compromised before an attacker has
even a 1% chance of successfully impersonating an L1 node for k
= 10, 20 and 30, respectively.

Figure 6 shows the probability of an L2 node deployed with 750
keys [19] sharing at least q keys with any L1. This graph demon-
strates that an L2 node is highly unlikely to match enough keys
to impersonate a specific L1 node, thus gaining its session keys,
when the KDC can be reached. For example, consider an L1 node
pre-deployed with 30 keys, 10 of which are used to construct the
authenticator key. In this case, the probability that a L2 node can
impersonate the L1 node is below 2.52 · 105. This probability falls
to 9.37 · 108 if a L1 is predeployed with 10 keys, all of which are
used to construct the authenticator key.

3.3 LIGER: Switching Modes of Operation
The advantage of LIGER is that it allows a sensor network to

operate in a secure and efficient manner regardless of the available
resources. There are, however, a number of tradeoffs experienced
by a system operating in either mode. A comparison of these issues
is made below so as to further clarify the effectiveness of the mech-
anisms provided by both LION and TIGER. Specifically, we ex-
amine the effects of transitioning between modes and discuss how
security is affected.
TIGER to LION: A example system likely to initialize using TIGER
and transition into the LION protocol is a sensor network that is
deployed in support of a planned operation. In this case, session
keys may be initialized in a controlled environment with access to
a KDC. As the operation progresses, it is possible that access to the
KDC is lost.

In the ideal setting, a sensor network is allowed to initialize in the
presence of KDC. Every node in the network is able to authenticate
each of its neighbors to the full extent supported by this system.
Because the KDC knows all of the keys stored in both the L1 and
L2 nodes, it can send the key identifiers common to an L1/L2 pair
to an L2 node in message 4 of the TIGER protocol flow. If the
system later transitions in to the LION protocol, either by design
or out of necessity, the stored, authenticated key identifiers now in
the L2 node can be used for performing authentication of L1 nodes
when refreshing expired keys or helping to establish an authenti-
cated connection between two L1s without the presence of a KDC.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

P[
q

m
at

ch
es

]

q matches

Balanced
Unbalanced, k=30
Unbalanced, k=20
Unbalanced, k=10

Figure 6: The probability that two nodes can match q keys with
each other for the balanced (83 keys/node) and unbalanced (30
keys/L1; 750 keys/L2) cases. Notice that L1 nodes have a much
higher probability of matching multiple keys with their neigh-
bors for all values of q due to the presence of L2 nodes.

The limitations and benefits of this approach are discussed in detail
below.

If the KDC is cut-off, the L2 node will have a list of the i match-
ing keys it has with each L1 node. It can use these i keys to chal-
lenge the L1 nodes in order to authenticate them. The main limita-
tion of this mode of operation is that in many cases the value of i
will be small. As shown in Figure 6, if 750 keys are deployed in an
L2 nodes and 30 keys are deployed in an L1 node, the probability
of the L2 having two matching keys with a particular L1 node is
67%; the probability of three keys matching is 39%. While these
values show that in many cases a L2 node will not be able to au-
thenticate a L1 node by challenging with multiple keys, they are
still high enough that if a node does have two or three key matches
with the L2 node, the L2 node can be highly confident that the node
is not being impersonated. With these key deployments, the prob-
ability of two L1 nodes having the same two or three key matches
with a L2 node is 8.70 · 10−6 and 2.44 · 10−8, respectively.

If, on the other hand, the L2 node is deployed with a much larger
number of keys, the number of keys it has in common with L1
nodes may be much higher. In this case, the L2 node may decide
to cease using the KDC by design. The benefit of this approach
would be that the authentication would be performed locally and
the network delay incurred by accessing a KDC would be removed.

A benefit of using the initial KDC connectivity to inform L2
nodes of the keys deployed in L1 nodes is that L1 nodes will no
longer be required to broadcast their key IDs in stand-alone op-
eration to establish session keys with L2 nodes. From a security
perspective, this reduces information leakage from the system. The
details of this leakage are discussed in the reverse transition below.
LION to TIGER: A network operating in the military scenario
suggested in the Introduction would likely begin secure operation
via the LION protocol. Because of the lack of friendly troops with
connections to a backbone network and the need for a rapid deploy-
ment, initial access to a KDC may not be possible.

The difficulty with the LION scheme, while providing security in
the absence of a KDC, is that its ability to truly authenticate nodes
is more limited. However, some level of authentication is possi-
ble if we assume, like a number of other schemes [22], that the

Table 1: L1 code size on Mica2 motes

Scheme Size in ROM Size in RAM
LION 19636 522
TIGER 16148 458
LIGER 20982 532

Table 2: Functions used in L1 Node in each scheme

Function Name LION TIGER LIGER
addToSendList() X X X
sendFromList() X X X
hasKeyID() X X X
searchNode() X X X
getKeyFromID() X X X
insertNode() X X X
insertIndirNode() X X
deleteIndirNode() X X
initializeKeys() X X X
LionDirectRep() X X
LionIndirectRep() X X
LionIndirectSearch() X X
LionDirectSearch() X X
TigerSendReqToGW() X
LigerSendReqToGW() X
LigerSendReqToDst() X
receiveMsg() X X X

initial broadcast of key identifiers is conducted during a network
bootstrapping phase wherein all nodes are free from compromise.
During this bootstrapping phase, nodes can create a list of key iden-
tifiers present in each node. After that period, authentication of new
connections can be achieved via the comparison of keys known to
be shared with a neighbor versus those used to sign or encrypt a
message. As would be expected, the likelihood that two L1 nodes
have a large number of key matches to create relatively strong au-
thenticator keys is unlikely. However, if unbalanced key distribu-
tion is used, L2 nodes will have a reasonable probability of having
multiple key matches with L1 nodes.

The main drawbacks of this scheme are the reliance on the as-
sumption that nodes are not compromised during the start up pe-
riod and that the key identifiers must be broadcast. As mentioned
earlier, broadcasting key identifiers does not explicitly reveal any
information about the value of keys that cannot be gained from a
traffic analysis attack [5]; however, information is still being leaked
to an adversary through this approach. If an attacker is able to com-
promise a large number of nodes, it becomes possible to use the key
identifiers to pick a node to impersonate. Schemes where key iden-
tifiers are assigned via a hash function [23] exacerbate this problem
further by allowing an attacker to determine which nodes they can
impersonate without ever having been near that target. While many
have argued against the use of a broadcast mechanism for the dis-
tribution of key identifiers, it forces an adversary to have physical
proximity to a node it intends to impersonate, thereby making the
system more robust.

Because it is easier to impersonate another node while a network
is running in LION mode, an administrator may consider forcing
all nodes in the network to re-establish keys if a KDC becomes
available. Assuming that all k keys within an L1 node were not
known to the adversary, the system prevent malicious nodes added
by the attacker from injecting further data into the network. This

Table 3: GW functions for TIGER and LIGER schemes

Function Name Tiger LIGER
open serial() X X
calcrc() X X
read packet() X X
write packet() X X
getReplyFromKDC() X X
TigerHandleReq() X
LigerHandleReq() X
readPublicPrivateKeys() X X
threadMain() X X
main() X X

Table 4: KDC functions for TIGER and LIGER schemes

Function Name Tiger Liger
readGWPublicKey() X X
generateSessionKey() X X
TigerHandleReq() X
verifyLigerHMAC() X
LigerHandleReq() X
threadMain() X X
main() X X

purging of the system, of course, comes at the cost of the additional
overhead associated with re-initializing an entire network.

In summary, it is always advantageous to initialize a network us-
ing TIGER. In this mode nodes may be authenticated with a confi-
dence level as an attacker was required to guess a 128 bit key. Also
information may be securely distributed to L2 nodes so that some
level of authentication may be performed if the KDC becomes un-
available. If the network must initialize using LION, some level of
authentication may still be performed, but some information may
be leaked to adversaries.

4. DESIGN AND IMPLEMENTATION

4.1 Experimental Parameters
In this section, we discuss the implementation of the LION, TIGER

and LIGER components for our hybrid key management system.
The Crossbow Mica2 mote [3], with a 4 MHz Atmel ATmega128L
processor, 128 KB of program Flash memory, 512 KB of measure-
ment flash memory, and a 916 MHz ChipCon radio is used as the
platform for L1 nodes. The L2 node consists of a Mica2 mote
mated with a Crossbow Stargate with a 400 MHz Intel PXA255
Xscale processor, 64 MB of SDRAM and 32 MB of flash memory.
Additional tests were run using an L2 node with the Stargate re-
placed with a desktop computer with a 2.80 GHz Intel Pentium 4
processor and 512 MB of RAM running Fedora Core 2 with Linux
Kernel 2.6. Where applicable, the KDC was executed on a desktop
computer with the same configuration as described above.

We chose RC5 as the symmetric key cipher for this system due
to the fact that it has already been implemented and tested for the
Mica2 platform in TinySec [7]. An implementation is also available
in the OpenSSL cryptographic library, making it the most suitable
algorithm for symmetric keying operations for current implemen-
tations of secure sensor systems. RSA using 1024-bit keys from
the same libraries was also used in order to implement secure com-
munication between the L2 and KDC nodes. The implementation
of the protocols on the L1 nodes occupied approximately 19, 16

Table 5: Size (in bytes) for various applications, with and without LIGER for Mica2 motes
Application Size in ROM Projected size in ROM with LIGER Size in RAM Projected size in RAM with LIGER
CntToLedsAndRfm 10948 31930 447 979
OscilloscopeRF 11828 32810 504 1036
SenseToRfm 11562 32544 465 997
TinyDBApp 62854 83836 2828 3360

!"#$%&'()er -./ 0()er -./

72#37&'()er 45 0()er 45

'()er '% 0()er '%
36#7!&

'(on '%

32#%$&

Figure 7: Functionality overlap and code reuse for components
for LION, TIGER and LIGER schemes. The percentage values
represent the number of lines of code that are reused between
two modes.

and 21 KB of ROM and 500 bytes of RAM for LION, TIGER and
LIGER, respectively (see Table 1).

4.2 Software Design Issues
Providing sensor networks with an architecture that allows them

to take advantage of resources as they become available increases
the robustness of such systems. Because these devices are so con-
strained, however, the cost of flexibility must be carefully consid-
ered. We therefore examine the efficiency of implementing such
flexibility for security mechanisms in this environment. Tables 2, 3
and 4 enumerate the functions used in LION, TIGER and LIGER
in the various schemes in which they are employed. Below we
discuss the implementation of L1 nodes, L2 nodes and the KDC,
communication limitations, and system integration.
L1 Node Implementation: Table 2 shows the functions used in
the LION, TIGER and LIGER schemes in L1 nodes. In spite of
LION and TIGER begin fundamentally different means of estab-
lishing keys with neighbors, the implementation of both of these
systems share a large number of common functions. Implemented
as independent schemes, LION and TIGER binaries require 19,636
and 16,148 bytes of program memory and 522 and 458 bytes of
RAM, respectively. However, when combined as LIGER, the total
space required to store the security mechanisms on an L1 nodes is
less than 1KB more than LION and approximately 4KB more for
TIGER (see Table 1). Careful design and extensive reuse of code
make the implementation of LIGER take approximately 58% of the
program memory and 54% of the RAM required for the two modes
implemented alone (see Figure 7). Because the commercially avail-
able platforms such as the Mica2 are limited to 128KB of program
memory and 4KB of RAM [3], such efficiency is necessary for any
security solution in this environment.

The most important design consideration in terms of code size is
the effect any security solution has upon the ability of a sensor node
to perform its primary mission. Simply stated, any implementation
of a security scheme that does not leave space for real applications
to run is in fact not a valid security solution for this environment.
We therefore compare the footprint of LIGER against the space
required for a number of commonly used applications for sensor
networks. Table 5 lists a number of programs provided with the
standard installation of TinyOS and others that have been indepen-
dently distributed. Because of the small size of LIGER, programs
ranging in size from CntToLedsAndRfm [18] to TinyDB [11] can
be implemented securely on the constrained Mica2 platform.
L2 node and KDC Implementation: As shown in Tables 3 and 4,
gateways and KDCs have different functions responsible for the ini-
tial processing of messages in TIGER and LIGER modes. While
memory use is much less of a concern when compared to the L1
platform, the combination of LION and TIGER schemes provides
an extremely efficient implementation. As is demonstrated in Fig-
ure 7, approximately 70% and 59% of the lines of code are shared
between these two modes in the gateway and KDC platforms, re-
spectively. Because the gateway and KDC nodes are built on differ-
ent architecture, a direct comparison of the binaries is not appropri-
ate. In our implementation, the KDC and the GW have both TIGER
and LIGER capabilities. Based on the type of packet received from
L1 nodes, the gateway forwards the request to the KDC, and then
sends the reply to the L1 node(s). The KDC also responds to re-
quests from the gateway based on the type of the request. Hence
the key establishment scheme to be used is entirely decided by the
request type originating at L1 nodes.
Communication Constraints: One of the major constraints on im-
plementing any scheme on a sensor platform is the small available
payload size of packets. Under TinyOS specifically, this limitation
is set to 29 bytes. Accordingly, all of the wireless interactions be-
tween nodes in the LION, TIGER and LIGER schemes must adhere
to this restriction. The sizes of all of the components are therefore
carefully considered. Each of the symmetric keys deployed in L1
nodes are 8 bytes, which matches the key size used for the TinySec
implementation of the RC5 block cipher [7]. Both node identifiers
and nonces occupy 2 bytes each. We believe that 2 bytes is suffi-
cient for both fields because it permits the network size to be ex-
tremely large and also provides sufficient protection against reused
nonces due to current battery lifetimes. Authentication is provided
by CBC residue and occupies a total of 4 bytes, as provided by
TinySec. While not appropriate for other environments, an online
attack of this authentication mechanism would require an average
attack span of 20 months because of the limited bandwidth in this
setting [7].
Integration: One of the major contributions of this work is the
ability of this system to switch between standalone and infrastructure-
supported modes. In so doing, we allow for our network to take
advantage of the greatest available resources to help with the pro-
cess of establishing security associations between nodes. Accord-
ingly, nodes will always begin their attempts to establish session
keys with their neighbors under the infrastructure-supported mode

Table 6: Microbenchmark results for LION and TIGER modes.
LION

Operation Mica2 (µsec) Stargate (µsec)
RC5 Key Setup 5720.7 (σ=21.2) 24.7 (σ=1.3)
MAC Initialization 11060.0 (σ=6.6) 24.6 (σ=1.1)
MAC (54 Byte Input) 15953.3 (σ=29.9) 42.6 (σ=1.2)
RC5 Decryption 3312.5 (σ=12.6) 6.4 (σ=0.9)

TIGER
Operation Desktop KDC (µsec) Desktop GW (µsec) Stargate GW (µsec)
Public Key Encrypt 169.6 (σ=8.9) 124.5 (σ= 64.0) 1823.4 (σ=18.9)
Private Key Decrypt 4065.4 (σ=66.2) 4310.4 (σ=748.2) 76164.2 (σ=15891.2)
Execution Time 4588.1 (σ=107.9) 32450.4 (σ=25080.8) 112370.7 (σ=30478.5)
RC5 Encryption 3.6 (σ=0.5) 3.6 (σ=0.5) 6.6 (σ=0.9)

of LIGER. The advantages to starting in this mode include not only
harnessing the resources of a KDC, but also not revealing any in-
formation about the key identifiers stored in each L1 mode. If no
backhaul link to a KDC is available, nodes then default to LION
mode and attempt to establish keys with their neighbors. If a link
can be established with a KDC at some future point, nodes can opt
to rekey with their neighbors (selectively or in total). While the L2
node can provide a much weaker authentication of L1 nodes be-
cause it likely shares a small set of keys with each of its neighbors,
nodes that need more concrete guarantees can force their neigh-
bors to be verified by a central authority as soon as this link can be
established.

The combination of LION and TIGER schemes therefore yields
not only a robust and efficient system in terms of security, but it
also can be implemented in a manner that is not overly burdensome
on constrained platforms.

5. PERFORMANCE EVALUATION
In the following subsections we present experimental results of

the LIGER system implementation. In the first subsection we present
benchmark results for processing on individual nodes. In the next
two subsections we present results on network initialization times
obtained via simulation using TOSSIM.

5.1 Node Benchmarks
A series of microbenchmarks were conducted in order to char-

acterize the load placed upon each of the platforms. The average
of these timing experiments, which were recorded over 10,000 it-
erations of the protocols (σ = standard deviation), are shown in
Table 6.

The timing comparison between the two potential gateway plat-
forms for TIGER illustrates the tradeoffs between performance,
portability and expense. For example, the processing time of the
L2 gateway function on the desktop is more than three times faster
than the Stargate version. While a laptop computer could certainly
be equipped with the same specifications as this desktop, placing
such a device in an unattended setting may not be a realistic option.
Furthermore, it may or may not be desirable to provide a user inter-
face as part of the gateway device. The implications of particular
platforms should therefore be carefully considered before deploy-
ment of each system.

A second observation of TIGER is that the processing associated
with the secure link between the L2 node and the KDC accounts for
approximately 70% of all processing on the Stargate gateways. An
obvious improvement is to use a symmetric key between the KDC
and GW. This reduction would allow the Stargate to process packets

at rate greater than their arrival, thereby making it equivalent to
the desktop option. If the Stargate were the cheaper of the two
platforms, the network could then be constructed for a reduced cost
without negative consequences to performance.

From the results of the LION benchmarking it is evident that
the L1 nodes are a processing bottleneck. This further supports
the unbalanced key distribution design of LION in which L2 nodes
offload a great deal of processing from the L1 nodes.

5.2 Network Initialization Results

5.2.1 Simulation Model
We focus on the initialization time using LION as it places the

highest processing burden on the network and nodes. Also, it is
likely in many scenarios in which a network deployment is required
in response to an emergency, that the network may be deployed in
an ad hoc fashion without initial access to a KDC. We specifically
compare the performance of the balanced and unbalanced key dis-
tribution strategies.

Because the TinyOS packet size is limited to 29 bytes of data and
L1 nodes may contain between 10 and 328 keys, multiple packets
must be broadcast to advertise all identifiers. Because a continuous
sending of these packets fails in TOSSIM (and since spin locks
do not exit in TOSSIM), we employed a daemon mechanism to
handle sending packets from a node. A node maintains a list of
packets to be transmitted. Whenever a packet to be sent is generated
by the node, it is appended to this list. The packet at the head of
this list is delivered to the medium every α seconds. We set α =
20 msec in our simulations because this provides sufficient spacing
for TOSSIM while still allowing for maximum channel utilization.

In the simulations, we pre-deploy a sufficient number of keys in
each node to provide 0.99999 network connectivity as described in
Section 3.1. We consider a network to be initialized when all nodes
have established keys with at least 90% of their neighbors. In all
scenarios tested, we fix the total number of nodes to 100. Each
node has a transmission range of 50 feet.

In order to simplify simulations, all nodes in the network were
assumed to have the same processing power. As discussed in Ta-
ble 6, real Stargate nodes will achieve much lower processing de-
lays than the Mica2 motes, so our results in this section are very
conservative.

We use “passive” key establishment to further improve perfor-
mance. Suppose A broadcasts its key IDs. B replies to A, which
gets an active key match with B. At the same time, B gets a pas-
sive key match with A since B knows which keys A has and then
can find a match key. This will reduce the communication overhead

 1

 10

 100

 1000

 10000
T

im
e

(s
ec

)
Balanced

Unbalanced

Figure 8: The termination of individual nodes in the network
for both the direct (lower clusters) and indirect (upper clusters)
phases of initialization. Subsequent phases are spaced at 400
seconds.

and hence reduce the network initialization time. For the active key
match, A challenges B, so it is sure about this key match. For the
passive key match, B did not challenge A, so it is not sure about
this key match since someone else can launch an attack by using
A’s ID. As a result, this passive key match may not be a real match.
However, this is not necessarily a problem since B can challenge A
during its direct phase. Additionally, the “Request for Assistance”
message could be encrypted in the key shared between the two par-
ties, A is able to demonstrate its knowledge of the shared key with
B. If we assume that there is no compromise during network ini-
tialization, as is often done in this area of research [21, 22], passive
matching is a good solution.

5.2.2 Parameter Setting
One immediate observation from the simulations was that due to

the nature of the key establishment protocols, many collisions oc-
curred on the air interface during network initialization. To limit
the number of collisions, nodes broadcast key requests with an ini-
tial random jitter. We chose the jitter value based on simple anal-
ysis and experimentation. Given the data rate of the wireless in-
terface and the number of packets broadcast per node, with perfect
scheduling it requires approximately 40 seconds for all nodes to
complete their broadcasts. We ran simulations for jitter times of
30-60 seconds. With a random jitter of 40 seconds or lower, we
found that the number of collisions that occurred precluded nodes
from reaching their expected level of key matching in each round,
thus delaying network initialization. For values of greater than 50
seconds, we found little improvement in connectivity over the case
of a 50 second jitter. Therefore, to keep the total delay of each
phase low, and to allow nodes to reach their ultimate connectivity
quickly, we set the random jitter to 50 seconds.

The necessity for this additional jitter highlights the need for
more resilient MAC layer protocols in sensor networks. Because
events, in this case the establishment of keys, are likely to create a
significant amount of traffic, it is critical that each layer is optimally
designed to maximize the use of the spectrum. From the results of
this work, it becomes obvious that a backoff algorithm that spaces
retransmission attempts out more evenly would be extremely valu-
able.

Table 7: The effects of varying the number of L2 nodes.
L2 Nodes Initialization Delay (sec) x̄ Messages/L1
0(Balanced) 1865.170 1199.180

1 355.038 62.141
2 336.178 61.704
5 274.667 58.968

10 244.910 56.956

5.2.3 Results: Initialization Time
In order to determine the amount of time required for the di-

rect and indirect phases of LION, we set inter-phase timers to large
values such that each stage becomes easily discernable. Figure 8
demonstrates the separation of the direct and subsequent indirect
phases on networks implementing the balanced and unbalanced
keying schemes with 5 L2 gateway nodes deployed. Each point
on the graph denotes a node completing the phase by achieving at
least 90% connectivity (key matching) with its neighbors.

As seen in Figure 8, the balanced scheme requires eight phases
(direct and seven indirect) for all nodes to achieve the target con-
nectivity, while the unbalanced case requires three phases. The
additional phases in the balanced case were required for two rea-
sons. First, because nodes only have a 0.5 probability of having a
key match directly with a neighbor in this case, multiple rounds of
the indirect phase of the protocol are required for nodes to assist
in establishing keys. Second, due to the large volume of traffic,
many collisions occur despite the random jitter, further reducing
the probability of successfully finding key matches in each round.
In the unbalanced case, nodes have a high probability of having a
key match with an L2 gateway, so fewer rounds are required.

Efficiently setting timers to achieve minimal inter-phase time-
outs in real networks is challenging. Using short timers increases
the number of nodes competing for the medium and therefore adds
the potential for more collisions. With increased collisions comes
the need to launch additional rounds of the indirect phase in the
future. Setting timers too conservatively, as was purposely done
to determine the lifetime of each phase in Figure 8, unnecessarily
increases the time required to bootstrap the network. In a man-
ner reminiscent of setting the retransmission timers for TCP, we set
the interphase timer to be the sum of the average stage termination
time of each phase and a multiple of the standard deviation (σ) of
the termination time. Based on experiments with several values of
timer, we choose the average time plus 0.5σ as the timer value.

Table 7 demonstrates the average initialization times for grid net-
works containing 0, 1, 2, 5 and 10 L2 nodes with inter-node spacing
at five feet. The case of 0 L2 nodes corresponds to a balanced key
distribution. The relationship between initialization time and the
number of L2 nodes is inversely proportional; however, the addi-
tion of L2 nodes to the network represents an increase in the cost
of deployment. In order to balance robustness to failure with eco-
nomics, the remainder of the experiments involving an unbalanced
key distribution therefore assume the presence of five L2 nodes per
neighborhood.

Figure 9 shows the network initialization times for varying node
densities for both the balanced and unbalanced (5 L2 gateways)
cases. As is evident, the unbalanced key distribution provides much
lower network initialization times for dense sensor networks. The
main reasons for this are the reduced number of rounds required
when using the unbalanced key distribution as shown in Figure 8,
and a reduced number of packet collisions as discussed below.

While our network initialization time results are shown for cases
in which 90% key matching with neighbors is required in a net-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

151311975

T
im

e
(s

ec
)

Inter-node Spacing (Ft)

Balanced + Timer
Unbalanced + Timer

Figure 9: Balanced and Unbalanced network initialization
times for the LION scheme with varying inter-node spacing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

%
 N

ei
gh

bo
rs

 D
ir

ec
tly

 C
on

ne
ct

ed

#Search Rounds

Balanced
Unbalanced

Figure 10: The percentage of nodes with 90% connectivity di-
rectly to their neighbors across a number of key establishment
rounds.

work, random graph theory [5] tells us that a node only needs to be
directly connected to a small subset of its neighbors for a network
to be fully connected. Establishing so few direct links in a real net-
work decreases the opportunities for optimal routing. Our experi-
ments therefore strive to achieve 90% direct connectivity between
nodes and their neighbors in order to minimize path lengths. Such
initially high, direct connectivity may be unnecessary in many net-
works. For example, the administrator of a network may deem that
having all nodes establish secure relationships with at least 60% of
their neighbors is enough to meet some expectation of performance.
Alternatively, a network could be deployed in an emergency situ-
ation and would therefore strive to gain the maximum secure con-
nectivity possible within a given time limit. The cumulative distri-
bution function of the network initialization points, shown for the
five feet spacing case in Figure 10, therefore allows the number of
indirect key establishment rounds to be picked depending upon the
administrator’s guidelines for direct connectivity.

 1

 10

 100

 1000

 10000

151311975

#L
1

M
es

sa
ge

s

Inter-node Spacing (Ft)

Balanced
Unbalanced

Figure 11: The average number of messages per L1 node to
initialize networks with varying inter-node spacing.

5.2.4 Results: Message Complexity
Figure 11 shows the number of messages that must be broadcast

by the L1 nodes in order to achieve secure relationships with their
neighbors. In the worst case, each L1 node in the balanced case is
required to send two orders of magnitude more messages than in the
unbalanced case. Because transmission bandwidth is limited (38.4
kbps theoretical maximum), the sheer number of packets needed to
establish secure connections is overwhelmingly the source of de-
lay in the system. This problem is not realistically solved simply
by the introduction of higher bandwidth radios such as those in-
cluded with the new MICAz [3]. Due to the power constraints in-
herent to wireless sensor devices, the number of packets that must
be transmitted is far too expensive for real implementations. The
balanced key management approach is therefore inappropriate for
most dense sensor networks.

Performance improvements in these networks, however, are not
only limited to decreased packet volumes. The nature of the un-
balanced key management system implemented in LION is such
that certain nodes throughout the network, specifically L2s, are ex-
pected to process an elevated level of packets compared to their
neighbors. Table 7 demonstrates decreased network quiescence
time without a significant decrease in the number of messages trans-
mitted by L1 nodes. This reduction is directly proportional to the
number of L2 nodes sharing the processing load. The addition of
L2 nodes to real sensor networks would therefore have performance
benefits additional to those recorded via TOSSIM.

5.3 Single Node Initialization
In addition to network initialization time, we determined the

amount of time for a single node to establish key matches with 95%
of its neighbors in the five feet spacing case. This is important for
cases in which a sensor node is added to the field after the network
is in operation, perhaps to increase density or replace a failed node.

For the unbalanced case, a single L1 node was able to reach this
goal in a single round of direct and indirect searching. The total
time required was 5.526 seconds. For the balanced case, a node
required one direct and two indirect searches for a total time of
143.435 seconds to achieve the same connectivity. This illustrates
another benefit of using unbalanced key distribution.

6. CONCLUSION
To the best of our knowledge, this is the first paper to address

hybrid key management issues in heterogeneous sensor networks.
Networks can be made more robust when they leverage all avail-

able resources. It is for this reason that we have presented LIGER,
a hybrid key management scheme for heterogeneous sensor net-
works. We have demonstrated that this system can be efficiently
implemented to not only take advantage of the presence or absence
of a KDC without the need for additional key storage, but also to
reuse functionality to require a minimal footprint for this robust-
ness. Furthermore, we have shown that the probabilistic method of
authentication is robust to a variety of situations including a high
number of node compromises.

Through performance analysis, we demonstrate the savings in-
herent to the unbalanced key management scheme. We also show
that the use of different cryptographic algorithms can affect the
composition of a network for reasons of economics. Most impor-
tantly, we demonstrate that the use of a hybrid key management
scheme in heterogeneous sensor networks is practical, robust and
customizable to varying mission constraints.

In this work we determined efficient timer settings experimen-
tally to show the utility of the LIGER system and unbalanced key
distribution. In our experiments we found that the average phase
completion time was tightly coupled to the node density. One pos-
sible approach to dynamically setting interphase timers is for nodes
to estimate the network density by counting neighbors, and then
having each node set its own timer. We will explore such solutions
in further work.

7. ACKNOWLEDGMENTS
We would like to thank our reviewers, anonymous or otherwise,

who helped us with their insightful and constructive comments. We
also extend a special thanks to Mahadev Satyanarayanan for his
assistance during the shepherding process.

This work was supported in part by The Technology Collabora-
tive (TTC), Army Research Office (W911NF-05-1-0270) and the
National Science Foundation (CNS-0524156 and CNS-0519460).
Any opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not nec-
essarily reflect the views of The Technology Collaborative, Army
Research Office, or National Science Foundation.

8. REFERENCES
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.

A survey on sensor networks. IEEE Communications
Magazine, August 2002.

[2] H. Chan, A. Perrig, and D. Song. Random key predistribution
schemes for sensor networks. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2003.

[3] Crossbow. Wireless sensor networks.
http://www.xbow.com/Products/Wireless Sensor Networks.htm.

[4] W. Du, J. Deng, S. Han, and P.K. Varshney. A key
management scheme for wireless sensor networks using
deployment knowledge. In Proceedings from the Conference
of the IEEE Communications Society (Infocom), 2004.

[5] L. Eschenauer and V. Gligor. A key management scheme for
distributed sensor networks. In Proceedings of the ACM
Conference on Computer and Communication Security
(CCS), 2002.

[6] A. Fox and S. Gribble. Security on the move: indirect
authentication using kerberos. In Proceedings of the

Conference on Mobile Computing and Networking
(MobiCom), 1996.

[7] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer
security architecture for wireless sensor networks. In
Proceedings of the ACM Conference of Embedded
Networked Sensor System (SenSys), 2004.

[8] J. Kohl and B. Neuman. The Kerberos Network
Authentication Service (V5), 1993.

[9] D. Liu and P. Ning. Establishing pairwise keys in distributed
sensor networks. In Proceedings of the ACM Conference on
Computer and Communication Security (CCS), 2003.

[10] D. Liu and P. Ning. Location-based pairwise key
establishments in static sensor networks. In Proceedings of
the ACM Workshop on Security of Ad Hoc and Sensor
Networks, 2003.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: an acquisitional query processing system for sensor
networks. ACM Transactions on Database Systems,
30(1):122–173, 2005.

[12] S. Marti, T.J. Giuli, K. Lai, and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks. In Proceedings of
the Conference on Mobile Computing and Networking
(MobiCom), 2000.

[13] V. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and
N. Shroff. A minimum cost heterogeneous sensor network
with a lifetime constraint. IEEE Transactions on Mobile
Computing, January 2004.

[14] R. Needham and M. Schroeder. Using encryption for
authentication in large networks of computers.
Commuinications of the ACM, 21:993–999, 1978.

[15] A. Perrig, R. Canetti, D. Tygar, and D. Song. The tesla
broadcast authentication protocol. RSA CryptoBytes,
5(2):2–13, 2002.

[16] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
Spins: Security protocols for sensor networks. ACM Wireless
Networking, September 2002.

[17] C. Shannon. Communication theory of secrecy systems. Bell
System Technical Journal, 28, 1949.

[18] TinyOS. http://www.tinyos.net, 2005.
[19] Patrick Traynor, Heesook Choi, Guohong Cao, Sencun Zhu,

and Thomas La Porta. Establishing pair-wise keys in
heterogeneous sensor networks. In Proceedings of IEEE
INFOCOM, 2006.

[20] H. Yang, X. Meng, and S. Lu. Self-organized network layer
security in mobile ad hoc networks. In Proceedings of the
ACM Workshop on Wireless Security (WiSe), 2002.

[21] W. Zhang and G. Cao. Group rekeying for filtering false data
in sensor networks: A predistribution and local
collaboration-based approach. In Proceedings from the
Conference of the IEEE Communications Society (Infocom),
2005.

[22] S. Zhu, S. Setia, and S. Jajodia. Leap: Efficient security
mechanisms for large-scale distributed sensor networks. In
Proceedings of the ACM Conference on Computer and
Communication Security (CCS), 2003.

[23] S. Zhu, S. Xu, S. Setia, and S. Jajodia. Establishing pair-wise
keys for secure communication in ad hoc networks: A
probabilistic approach. In Proceedings of the IEEE
International Conference on Network Protocols, 2003.

