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Summary. The importance of neuroproteomic studies is that they will help eluci-
date the currently poorly understood biochemical mechanisms or pathways underly-
ing various psychiatric, neurological and neurodegenerative diseases. In this paper,
we focus on traumatic brain injury (TBI), a neurological disorder currently with no
FDA approved therapeutic treatment. This paper describes data mining strategies
for proteomic analysis in traumatic brain injury research so that the diagnosis and
treatment of TBI can be developed. We should note that brain imaging provides
only coarse resolutions and proteomic analysis yields much finer resolutions to these
two problems. Our data mining approach is not only at the collected data level, but
rather an integrated scheme of animal modeling, instrumentation and data analysis.

1 Introduction

With the complete mapping of the human genome, we are now armed with
a finite number of possible human gene products (human proteome). There
are approximately 30,000 to 40,000 hypothetical protein products transcrib-
able from the human genome [2, 25, 26, 31, 32, 60, 61]. The study of the
proteome is also aided by recent advances of protein separation, identification
and quantification technologies not available even 3-5 years ago. Yet, the pro-
teome is still extremely complex because by definition, proteome is organ-,
cell type-, cell state- and time-specific. Proteins are also subjected to various
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posttranslational modifications. In addition, cellular proteins are almost con-
stantly subjected to various forms of posttranslational modifications (PTM),
including phosphorylation/dephosphorylation by different kinases and phos-
phatases, proteolysis or processing acetylation, glycosylation and crosslinking
by transglutaminases or protein conjugation to small protein tags such as
ubiquitin or SUMO [35, 58, 59]. It has been proposed that a more feasible
approach is to focus on a subproteome, such as that of single tissue or a sub-
cellular organelle [33]. On the other hand, we proposed that focusing on the
study of the proteome of the central and peripheral nervous systems (CNS
and PNS) maybe more manageable and productive [17]. We further submitted
that although the applications of proteomic technologies to nervous system
disorders (e.g. neural injury, neurodegeneration, substance abuse and drug
addiction) is still in its infancy, the potential insights one would gain from
such endeavors are tremendous. The importance of neuroproteomic studies
is that they will help elucidate the currently poorly understood biochemical
mechanisms or pathways underlying various psychiatric, neurological and neu-
rodegenerative diseases. The example we will focus on here is traumatic brain
injury (TBI), a neurological disorder currently with no FDA approved thera-
peutic treatment. In general, proteomic studies of TBI create a huge amount
of data and the bioinformatic challenge is two-fold: (i) to organize and archive
such data into a useful and retrievable database format and (ii) to data-mine
such database in order to extract the most useful information that can be
used to advance our understanding of the protein pathways relevant to TBI.

This paper reports the bioinformatics component of the TBI research at
the Center of Neuroproteomics and Biomarkers Research and Center for Trau-
matic Brain Injury Studiesat the University of Florida. In particular, we de-
scribe data mining strategies for proteomic analysis in TBI research so that
the diagnosis and treatment of TBI can be developed. We should note that
brain imaging provides only coarse resolutions and proteomic analysis yields
much finer resolutions to these two problems. Our data mining approach is
not only at the collected data level, but rather an integrated scheme of animal
modeling, instrumentation and data analysis. Thus computing infrastructure
is essential at all the protein separation, protein identification/quantification
and bioinformatics levels.

The organization of the paper is as follows. In Section 2, we describe trau-
matic brain injury (TBI). Section 3 considers animal models, while Section 4
deals with the source of biological materials. Sections 5 and 6 address samples
collection and pooling. Proteomic analysis is overviewed in Section 7. In Sec-
tion 8, we present bioinformatics for TBI proteomics. Finally in conclusion we
consider our future work and the prospect of systems biology in TBI research.
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2 Traumatic Brain Injury (TBI)

Traumatic brain injury or traumatic head injury is characterized as a direct
physical impact or trauma to the head, causing brain injury [17]. Annually
there are 2 million traumatic brain injury (TBI) cases in the U.S. alone.
They result in 500,000 hospitalizations, 100,000 deaths, 70,000-90,000 people
with long-term disabilities and 2,000 survive in permanent vegetative state.
Medical costs of TBI are estimated to be over $48 billion annually in U.S. The
cause of TBI can be broken down into the following catalogues: motor vehicle
accidents (50%), falls (21%), assault & violence (12%), sports & recreation
(10%) and all others (7%) Importantly, 30-40% of all battlefield injuries have
a head injury component.

Due to intensive research in both clinical setting and experimental ani-
mal models of TBI, there is now a general understanding of the pathology of
TBI. It all starts with the impact zone, where there is mechanical compression-
induced direct tissue injury and often associated with hemorrhage. Significant
amount of cell death will occur very rapidly in this zone. More distal to the
injury zone, due to the impact of the force, contusion injury also result, long
fiber tracts (axons) are especially at risk to this type of injury. Usually af-
ter the first phase of cell injury/cell occurs, there is also the secondary injury
which is believed to be mediated by neurotoxic glutamate release (neurotoxic-
ity). Other significant alterations include inflammation responses by microglia
cells, astroglia activation and proliferation and stem cells differentiation. Over
time, if the TBI patient survives, these events lead to long-lasting brain tis-
sue remodeling. Therefore, the spatial and temporal levels of biochemical and
proteomic changes of TBI can be investigated.

3 Animal models of TBI

Over the past decades, basic science researchers have developed several animal
models for TBI [19, 54]. There are several well characterized models of TBI,
including controlled cortical impact (CCI) with compressed gas control, fluid
percussion model that transduce a contusion force due to the movement of
fluid in the chamber, and the vertical weight drop model with which a weight
is dropped from a certain height within a hollow chamber for guidance. Thus
it creates an acceleration force which direct on the top of the skull (either
unilateral or bilateral injury [19]). In our work, we employ the rat CCI model
of TBI. We have argued that the use of proteomic will greatly facilitate the
biochemical mechanisms underlying the various phases of TBI pathology [17].

4 Source of Biological Materials

Proteomic studies for traumatic brain injury can be generally categorized
into human studies, animal and cell culture-based studies. For the purposes
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of this review, cell culture-based studies will not be discussed further. When
comparing human vs. animal studies, there are pro and con in each scenarios.
Regarding the sample types that can be exploited for proteomic analysis, they
will include brain tissues, cerebrospinal fluid, blood (serum and plasma). For
human TBI studies, samples that are the easiest to obtain would be blood
samples (which are further fractionated into plasma or serum). Interestingly,
there is increasing interests now focus on using cerebrospinal fluid (CSF) as
its status will reflect the status of the central nervous system itself. Following
severe traumatic brain injury, spinal shun or spinal tap are routinely done
thus obtaining the CSF is not an issue. One of the major challenges of using
clinical samples-based proteomic studies is that it is extremely difficult to
control individual (biological) and environmental variables

(I) Brain Samples

Human brain materials from TBI would inevitably come from deceased TBI
patients. These brain samples will be subjected to postmortem artifacts, com-
pounded by various and significant time delay before samples can be obtained.

The biggest advantage of animal neuroproteomic studies over human coun-
terparts is the ability to obtain brain tissues in a controlled laboratory envi-
ronment. Furthermore, it is possible to harvest samples from defined anatomic
regions. For example, for traumatic brain injury studies, we often focus on cor-
tical and hippocampal samples. This is important as different brain regions
might be selectively more vulnerable to traumatic or ischemic insults.

(II) CSF

CSF can be collected from the cisterna magna from lab animals, such as rats
and mice. CSF contains rich brain proteome information that is relevant to
disease diagnosis [16]. However, only about 50-100 ul can be withdrawn from
a rat and 25-30 ul from a mouse. Care must also be taken not to contaminate
samples with blood due to puncture. While more than one CSF draw might
be possible, in our laboratory, we generally withdraw only one CSF sample
followed by sacrifice. In the case of human TBI, CSF can also be collected
routinely from ventriculotomy or from spinal tap.

(III) Blood Samples (Serum and Plasma)

In both human and animal traumatic brain injury studies, blood can be rou-
tinely collected and usually further processed into either serum or plasma
fractions before subjecting to proteomic analysis. Like CSF, most proteomic
researchers believe there is significant proteomic information in the blood
that would reflect the status of the brain, particularly after TBI with possible
blood-brain barrier compromise [53, 57].
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5 Samples Collection and Processing Consistency

It needs to be emphasized here that for proteomic to be consistent and repro-
ducible, one needs to take extra attentions to ensure the variables can be kept
to minimal. All sample collection procedure should be discussed and finalized
and the operators made familiar with the procedures. Some practice runs are
highly desirable. For human studies, detailed record keeping is extremely im-
portant for future analysis or trouble-shooting purposes. For human studies,
for example, CSF or blood samples should be taken at consistent intervals and
ideally, food consumption might significantly affect blood proteomic profile.
For animal studies which are conducted in controlled environment, it should
be possible to keep brained and befouled sample collection time and rou-
tine as standardized as possible. Also, for animal studies, the animal subjects
should be tagged and observed carefully and regularly; with any out-of-the
norm observations recorded. They might become very helpful in enhancing
proteomic analysis. Both tissue and biofluid samples, once obtained and pro-
cessed, should be snap frozen and store at -85C until use.

6 Sample Pooling Considerations

There is also an important decision to be made before the proteomic analysis,
i.e. whether to pool samples for analysis or analyze individual samples. Pool-
ing samples significantly reduce minor individual variability and reduce the
amount of workload. Yet, at the same time, its disadvantage is that it might
miss certain proteomic changes that are present in only a subset of samples.
On the other hand, analysis of individual samples has the advantage of being
an exhaustive analysis of individual proteomic profile but it can be highly
time-consuming and cost-prohibiting. If the protein amount in the samples
are limiting factor, it would be useful to pool samples. Additionally, if there
is a biochemical marker that correlates with TBI (such as alphaII-spectrin
breakdown products), it can be used as positive controls for quality assurance
and might even be used to guide inclusion criteria for sample pooling [51, 52].
It is also possible to incorporate both pooling and individual proteomic anal-
ysis in the same studies. For example, for pilot studies or initial proteomic
profiling of TBI, pooled samples can be used while the final detailed analysis
can be done with individual samples.

7 Proteomic Analysis Overview

Regardless whether we are dealing with human or animal samples or whether
they are tissue lysate or biofluid (CSF, serum or plasma). The strategy we de-
veloped can be organized into three interacting scientific disciplines or phases:
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protein separation, protein identification and quantification and bioinformat-
ics analysis. By design, any proteomic center should spend two-thirds of its
scientific and financial resources to establish robust readily usable proteomic
platforms. However, it is equally important for the center to develop new or
improve existing neuroproteomics technologies on all fronts.

7.1 Protein Separation Methods

In TBI neuroproteomic studies, we are less interested in descriptive and ex-
haustive characterization of the whole neuroproteomic, but rather we will
focus on protein level or posttranslational changes that occur in TBI. With
this in mind, it is important to devise methods in comparing and contrasting
the two proteomic data sets: “control” versus “TBI”. In order to productively
identify all the proteins in a specific system of interest (subproteome) or a sub-
set of proteins that are differentially expressed in TBI, it is essential that com-
plex protein mixtures (such as brain sample or biofluid) be first subjected to
multi-dimensional protein separation. Since proteins differ in size, hydropho-
bicity, surface charges, abundance and other properties, to date there is no
single protein separation method that can satisfactorily resolve all proteins in
a proteome.

Currently, there are two main stream protein separation methods used
for proteomic analysis: (i) 2D-gel isoelectrofocusing/electrophoresis and (ii)
multi-dimensional liquid chromatography.

(i) 2-dimensional gel electrophoresis approach

Two-Dimensional gel electrophoresis (2D-gel) is the most established protein
separation method for the analysis of a proteome or subproteome [7]. It is
achieved by subjecting protein mixtures to two protein separation methods
under denaturing condition, in the presence of 6-8 M urea and cationic deter-
gent such as SDS. Traditionally, proteins are first separated based on their PI
value with a tube gel (polyacrylamide) by isoelectrofocusing with the aid of
mobile ampholytes with different PI values. After IEF, the tube gel is placed
atop a polyacrylamide gradient gel within which the SDS-bound proteins are
separated by size. Due to poor gel-consistency, the IEF step (the first di-
mension) is most variable; however, a recent breakthrough in IEF technology
utilizing immobilized pH gradient strips (IPG) for 2D-gel analysis provides
improved reproducibility [6, 24, 31, 36]. Another disadvantage with 2D-gels is
the inevitable gel-to-gel variability in exact location and patterns of protein
spots. This proves problematic when comparing two samples directly (such
as control vs. substance abuse brain). The recent advance of 2D-differential-
in-gel-electrophoresis (2D-DIGE) has resolved this [49, 64]. Two protein mix-
tures are labeled with the fluorescent cyanine dye pairs Cy3/Cy5 that match
in molecular weight and charge but matched have distinct excitation and
emission wavelengths. These advantages are incorporated into our approach.
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They include in particular the high resolving power for complex mixtures of
proteins, and the capability of resolving post-translationally modified pro-
teins, including acetylation, phosphorylation, and glycosylation and protein
crosslinking [35, 58]. It is possible to annotate each protein of a proteome by
PI and molecular weight values as X-Y coordinates to form a 2D protein map
of which there is already a wealth of 2D-brain protein coordinates in publicly
accessible and searchable databases [3, 20, 21, 42, 44]. There are however,
several persistent weaknesses of 2D-gels. Proteins of extreme PI or minute
quantity and proteins that are either very small or very large may be missed.
Also, integral membrane proteins of which many are CNS disorder drug tar-
gets (membrane-bound receptors or neurotransmitter transporters) are lost
due to their extreme hydrophobicity.

Regarding protein separation, there are also research in the direction of
microfluidic 2D- protein separation with miniaturized IEF and electrophoresis.
This approach is the advantage of reducing waste and sample usage without
compromising detection sensitivity [18, 56].

(ii) 2-dimensional liquid chromatography approach

Alternative protein separation methods are needed to overcome some of the
shortcoming of 2D-gels. Recently, there is significant movement toward multi-
dimensional liquid chromatography methods to resolve complex protein mix-
tures [50]. The general idea draws on classic chromatographic principles in-
cluding size chromatography (SEC) (gel filtration), ionic interaction (strong
cation exchange (SCX) and strong anion exchange (SAX), hydrophobic in-
teraction (C4- or phenyl-agarose chromatography), and isoelectrofocusing
chromatography. One can envision combining multiple chromatographic ap-
proaches in series to achieve multidimensional separations. When selecting
chromatographic separation methods, considerations must also been given to
take advantage of the size, pI and hydrophobicity differences of the proteins
of interests. IN addition, when dealing with membrane-bound proteins, the
chromatographic method must be compatible with the use of proper neutral
detergent (such as Triton X-100 or CHAPS). Importantly, minute proteins
can be further concentrated to enhance their detectability. One weakness of
this approach is that even with 2D LC separation, it is often not possible to
separate all proteins individually. This problem will be addressed under the
“Protein identification and Quantification” section. In summary, when com-
pared to the 2D-gel electrophoresis method, the tandem liquid chromatogra-
phy method described here is more compatible with membrane-bound proteins
as well as can enrich proteins in minute quantity.

7.2 Protein Identification and Quantification Methods

The approach we are taking represents an effort to apply systematically the
most contemporary proteomics approaches to identify and develop clinically
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useful biomarkers for brain injury from traumatic causes, disease or drugs.
Classical methods of protein identification involving protein separation by
gels or liquid chromatography coupled to mass spectrometry to provide a po-
tent and novel methodological array never applied systematically before to
the detection of biomarkers of CNS injury, either alone or in combination.
This integrated strategy makes possible both “targeted” analyses of known
potential biomarker candidates as well as “untargeted” searches for novel pro-
teins and protein fragments that could prove even more useful. Each of these
technologies has advantages and disadvantages that together are complemen-
tary to each other. Thus, multiple proteomic strategies optimize opportunities
for successful brain injury proteomic studies. Lastly, protein identification re-
search also benefited from improved bioinformatics tools for protein database
searching [9]. Thus, importantly, research designs must incorporate appropri-
ate bioinformatics support.

(i) Mass spectrometry approach

(a) MALDI-TOF (matrix-assisted laser desorption ionization mass spectrom-
etry) - time-of-flight (TOF) approach: the most classical method for pro-
tein identification in a given protein mixture is to perform 2D gel elec-
trophoresis followed by in-gel digestion of gel band(s) of interest followed
by identification of proteins by mass spectrometry. The 2D-gel method has
been improved by the use of immobilized pH gradient strips for the first
dimension and the ability to label protein samples from control and experi-
mental tissues with Cy dyes (Cy3 and Cy5) that form co-migrating labeled
samples that are compared in the same gel. Differentially expressed pro-
teins are easily found, cut from the gel, digested in the gel spot by trypsin,
and then identified by MALDI-TOF [5]. It is important to understand
that MALDI identifies peptides based on accurate determination of pep-
tide masses since each amino acid has a unique mass and thus any given
peptide which is composed of a unique combination of sequence will have
a unique mass. However, this method of protein identification is not infal-
lible. Although rare, peptides can have identical amino acid composition
with which the order of these amino acid residues could be different. Thus,
it is common practice that in order to positively identify the presence of a
specific protein, at least two peptide fragments from the protein must be
independently identified based on their mass. In addition, any posttrans-
lational modifications when occurs at significantly high tachometric ratio,
will make this type of mass prediction extremely difficult. This method
is useful for distinguishing proteins that are either up-regulated or down-
regulated due to injury, but it is also sub-optimal for finding small peptides
from basic, very acidic, or hydrophobic proteins. Complementary to this
method are direct mass spectrometry procedures that capture the entire
range of proteins and peptides, but may not distinguish proteins that are
post-translationally modified, also the maximal protein size is limited to
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about 25,000 to 30,000 Delton. This approach is taken advantaged of by a
modified MALDI approach called SELDI (invented by Ciphergen) which
combines a protein separation phase with the MALDI using an affinity
matrix based “Protein Chips” [65].

(b)LC-MS/MS approach. There are several 1D- and 2D-chromatography tech-
niques [1] that can substitute for the 2D-gels that give reasonable res-
olution and include proteins that could be missed by the gel methods.
These chromatography techniques can now be coupled to protein fragmen-
tation (trypsinization) and reverse-phase chromatographic peptide sepa-
ration, which is then coupled in-line with mass spectrometers. The main
advantage of the in-line techniques is better recovery of peptides and thus,
greater sensitivity. It is now possible to identify proteins that are present in
tissues at the pM range. High-powered mass spectrometers including the
quadrupole ion-trap (LCQ-Deca), the quadrupole time-of-flight (QSTAR),
and the FT-ICR (Bruker BioApex 4.7) mass spectrometers can be used for
identifying proteins. These methods work extremely well, especially when
coupled with database searching and bioinformatics. Importantly, some
of these MS can be configured to become tandem MS. The advantage of
tandem MS (MS/MS) is that it can provide peptide sequence information
while single MS can also provide peptide mass (see above) [29]. Briefly,
in MS/MS, when peptides are ionized at the ion source in the first mass
analyzer, selected peptide ions were further ionized in the collision cell.
Due to the high energy of ionization inside the collision cells, peptides are
actually fragmented randomly along the peptide backbone. Depending on
whether the fragmentation site is at the N-terminal or the C-terminal,
for each residue site, pair of a- b- and y-daughter ions will be generated.
The exact mass of all the b-and y-daughter ions are then determined in
the second mass analyzer. Thus, by analyzing this mass information using
now available bioinformatic software, the sequence of peptide of interest
can be reconstructed without ambiguity.

(ii) Protein and peptide quantification by MS

There are now no less than half a dozen MS-based protein/peptide quan-
tification methods, which are reviewed recently [17]. In this section, we will
focus on two most validated quantification methods that are applicable to
TBI proteomics.

(a) ICAT : A direct chromatographic approach to evaluate differential expres-
sion is the use of isotope-coded affinity tags (ICAT) [28]. These tags can
be used to label the protein samples on cysteine residues that are then
compared mixed together following digested by trypsin. Fragments that
are labeled by the tags can then be selectively isolated and analyzed by
mass spectrometry. Differential expression is determined by relative peak
heights of the two samples, and MS/MS sequencing and database searching
directly identify the differentially expressed proteins [50, 66]. This method
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is very powerful and quick. We already have experience with this approach
and it works well.

(b)AQUA: Another innovative method to quantify differential expression is
through the use of Absolute QUAntitation (AQUA) probes [22], which in-
volves creating synthetic peptides containing heavy isotopes that can be
spiked into the trypsin digest to act as exogenous calibrants for quantita-
tion. For this method to work one must first identify by other means the
protein that is differentially expressed, for example 2D-gel electrophore-
sis coupled to mass spectrometry or ICAT. The calibrant peptide is then
synthesized and used within tryptic digests. This is a much quicker way
of evaluating the effectiveness of a biomarkers and validating differential
expression than waiting a specific antibody to be developed. Our prelimi-
nary experience with this method suggests that it will be a powerful way
to proceed.

(iii) Antibody panel /array approach

Protein identification is also assisted by the availability of various platforms of
antibody arrays or panels (Zyomyx protein Biochips, BD Powerblot and BD
antibody arrays] [27, 34, 41, 48]. These methods all rely on antibody-based
capturing of protein of interest. The quantification of the captured protein is
either achieved by pre-labeling (including differential labeling) of protein with
fluorsencent dye (dye-labeling detection), such as BD antibody arrays, simi-
lar to the gene chip mRNA quantification method. Alternatively quantitative
detection with a second primary antibody specific to the same protein anti-
gen (sandwich detection), similar to the sandwich enzyme-linked immunoab-
sorbant assay (sandwich ELISA) method (such as the Zyomyx protein chips).
Thirdly, the BD Powerblot, as a variant, is in fact a high-throughput western
blotting (immunoblotting) system with two distinct protein samples differen-
tially subjected to a set of 5 blots. Each blot has 39 usable lanes with the use
of a manifold system. Each lane is developed with 5-6 different fluorophores-
linked monoclonal antibodies (toward antigen with non-overlapping molecular
weight) Thus with this method, the samples will be probed with a total of
1,000 monoclonal antibodies. We have actually conducted several Powerblot
experiments with animal TBI studies.

The major advantage of the antibody panel or array approach is that pro-
teins of interest can be readily identified since all antibodies used have known
antigens and their positional assignment on the antibody chip or panel is
known Also, quantification is already built-into this antibody-based approach,
without any additional effort. On the other hand, the major disadvantage of
this approach is that it is practically impossible to be exhaustive as one would
only have high fidelity antibodies to a subset of proteins. Furthermore, if anti-
bodies are collected from many different sources it will likely results in uneven
detection sensitivity. As in other immunoassay methods (Western blotting, im-
munostaining or ELISA). It is a given that antibody based method will likely
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detect specially bound protein as well as non-specifically bound proteins or
other substances. This will likely give rise to high background or false posi-
tive reactions or both. The authors believe that despite its shortcoming, the
antibody-based protein identification approach is a perfect complement to the
MS-based approach discussed above.

8 TBI Proteomic Bioinformatics

The current advance in databases and web portals has a natural convergence
for knowledge and data sharing among local and remote scientists in any NIH
domain. Large databases will be networked, while web portals will “federate
and access” large databases. Such efforts need to develop for the neuropro-
teomic domain. Neuroscience has one of the most complex information struc-
tures - concepts, data types and algorithms - among scientific disciplines. Its
richness in organisms, species, cells, genes, proteins and their signal transduc-
tion pathways provides many challenging issues for biological sciences, compu-
tational sciences, and information technology. The advances in neuroscience
need urgently developing portal services to access databases for analyzing
and managing information: sequences, structures, and functions arising from
genes, proteins, and peptides (e.g. protein segments and biomarkers) [9].

In this bioinformatics component, two interlinked mandates are: (i) to
build a local user-friendly proteomic databases, and (ii), to develop interop-
erable proteomic tools and architecture for multiple data integration and to
integrate user and public domain-based databases. Data analysis applications
should be interoperable with database operations and portal access. The TBI
proteomics core technologies will provide an integrative approach to genomic
and proteomic information by developing a common portal architecture, the
TBI proteomics portal, at the University of Florida for data archiving and
retrieval among core researchers and end users, and data linking and sharing
to national and international neuroproteomic websites (e.g., Human Proteome
Organization (HUPO, USA) [30] and Human Brain Proteome Project (Ger-
many) [47]). (iii) Lastly, bioinformatics tools and software are also needed to
enhance our ability to mine data, as well as to study protein-protein inter-
action, protein pathways and networks and complex post-translational mod-
ification such as (protein phosphorylation, processing, crosslinking and con-
jugation). This will help us develop knowledge bases about neuroproteomic
functions and signal transduction pathways in terms of dynamic objects and
processes [45, 46, 55, 62]. In addition, clinical information should be inte-
grated with genomic and proteomic databases. The following diagram depicts
the neuroproteomics bioinformatics core:

The three major functions of the bioinformatics component of TBI pro-
teomic research can be further explained as follows:
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Fig. 1. Neuroproteomics Bioinformatics Core

(i) Permanence

Permanence is defined here as developing local databases for proteomics
separation and identification, and link with national and international data
sources. Local databases will include chromatograms, mass spectra, gel im-
ages, peptide and protein sequences, and fMRI images for control and diseased
samples. Data modeling and semantics will be developed by proteomics and
computer scientists together so that semantic equivalence of search attributes
and semantic associations can be established.

Our Bioinformatics Core is in the process of combining different data se-
mantics and knowledge trees in separate genomic, proteomic, and clinical
databases. Our main contribution will be the development of data modeling
and semantics by proteomics and computer scientists together so that seman-
tic equivalence of search attributes and semantic associations can be estab-
lished. A key requirement is the development of semantics (or ontology) of bio-
logical information, which are then captured in two components - semantic in-
dexing and meta-information - of the intelligent search engines. A recent book
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of S. Chen [15] has described these two important methods. Semantic index-
ing extends the existing full-text, hypertext, and database indexing schemes
to include semantics or ontology of information content. Meta-information (or
metadata) means “information about information” concerning content, con-
text, and archival description. Both semantic indexing and meta-information
are necessary to the semantic equivalence in intelligent search engines. Meta-
information contains information about not only individual objects but also
whole data collections and even resources. It provides collection-wide seman-
tics to organize a widely distributed collection of information resources bet-
ter. Furthermore both semantic indexing and meta-information complement
each other, reduce the complexity of neural taxonomy and classification, and
correlate semantically the proteomic types and phenotypes (e.g. behavior in
drug abuse) at various (subcellular, cellular, and tissue or fluid) levels of neu-
ral activities. Dissemination to national and international data sources (e.g.
HUPO-USA and HBPP-Germany) will be consistently maintained through
our intelligent search engines.

(ii) Interoperability

Interoperability is defined here as integrating existing data analysis tools with
local databases. A proteomic problem-solving environment will be established
to provide users with rapid access to TBI neuroproteome center databases
and analysis tools. This will include existing tools for proteomics research
and drug abuse research. The range of these tools is very broad, from peptide
sequencing and protein identification to image processing for fMRI images
and data analysis for neuropsychological tests and diagnosis.

A critical component of our Bioinformatics Core will be distributed search
at widely distributed resources of data analysis and multiple levels of pro-
teomic clinical and behavior information. The distributed collections of het-
erogeneous information resources will be large-scale. The intelligent search
engines are beyond the capability of current web search engines and proto-
cols. A distributed information retrieval system, Emerge, has implemented
some aspects of semantic indexing and meta-information of NIH’s PubMed
and Entrez databases, in a collaboration with NCSA of UIUC. The TBI neu-
roproteome center distributed information retrieval component is a set of
search engines extending Emerge. Such an intelligent search engine should
allow nomenclature, syntactic, and semantic differences in queries, data, and
meta-information. It should permit type, format, representation, and model
differences as well in databases. In our TBI neuroproteome research, we have
to compare information among proteomic and clinical data, such as chro-
matograms, mass spectra, gel images, peptide and protein sequences, and
fMRI images. This intelligent search engine must go to different databases to
retrieve various data of potentially different types, formats, representations,
and models. In an asynchronous way, data are compared to an abstract and
conceptual schema for neuroscience domains. The object-oriented data model-
ing helps us to establish these mappings between the abstract and conceptual
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schema and different database schemas. Due to the diverse nature of neu-
roscience information, we will need a set of interoperable search engines to
guide users finding information of various domains, formats, types, and levels
of granularity (e.g. peptide, protein, cell, and system levels). Since some ab-
stract and conceptual schema has been developed for neuroscience domains,
we will need a set of interoperable search engines for a wider set of analysis
tools and databases.

Interoperability with analysis tools will be an important component. The
starting point will provide a point and click interface for rapid access of neu-
roscience databases and analysis tools. The interoperability of databases and
analysis tools will establish a proteomic problem-solving environment. Thus
users of the problem-solving environment will also be factored into the in-
teroperability. Whatever users need - small vs. large data sets, interactive
vs. batch computation - will require design and implementation of data and
event services. For the current research, we intend to develop a neuroproteomic
workbench to gather a collection of data analysis tools for neuroproteomics
as well as TBI neuroproteomic data sets (see data samples below) :

(1) Peptide sequencing and protein identification by MALDI-TOF-MS and
capillary LC-MS/MS [43, 63].

(2) Protein peak patterns and single protein retention time from 1D or 2D-ion
exchange or size exclusion chromatograms.

(3) Protein database searching algorithms such as SEQUEST [67].

The integration of databases with proteomic computational algorithms
will be based on the object-oriented data modeling and data semantics dis-
cussed earlier. The ODMG compliant data analysis and databases are highly
relevant to the Common Component Architecture [8]. In high throughput
computing, in terms of parallel or multi-threaded objects, components (data
and algorithms alike) may be distributed over a wide area grid of resources
and distributed services.

(iii) Data Mining

Our neuroproteomic initiative has placed significant effort in new data min-
ing and analysis tools for differential protein expression, protein network and
modification analysis and validation. A unique data-mining workbench will be
created to explore protein network and pathways underlying the pathobiology
of TBI from a neuroproteomic perspective. Novel data-mining tools will in-
clude a differential analysis tool for research on proteins and protein fragments
involved in TBI and construction of cognitive maps [4, 40, 68, 69], a graph-
ical network method to represent knowledge and information. Furthermore,
the cognitive maps will be used for TBI-induced Differential Neuroproteome
Validation and possible brain injury diagnosis and severity monitoring. These
data mining steps are described in the following:
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Fig. 2. Observed Data of Tryptic Peptides

Fig. 3. Data Mining Steps
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a) Creating Cognitive Maps for TBI-induced differential proteome

New data mining tools for TBI-induced differential proteome analysis and val-
idation are being developed at our center. There are three major zones of neu-
roproteomics information (i) pathophysiological stasis (including TBI, other
CNS injuries, such as ischemic stroke, aging, environmental toxin or substance
abuse-induced brain injury, neurodegenerative diseases such as Alzheimer’s
disease or Parkinsonism), (ii) neuroproteome stasis (such as differential pro-
tein expression, protein synthesis and metabolism, alternative mRNA splic-
ing and RNA editing, protein-protein interaction, enzymatic activity or pro-
tein functions) post-translational modifications (such as protein crosslinking,
acetylation, glycosylation protein proteolysis and processing, phosphoryla-
tion) and protein-protein interaction networks and signal transduction path-
ways and (iii) sources of neuroproteomic data (brain tissue from different
areas or anatomical regions of the brain, such as hippocampus), biological
fluids such as the cerebrospinal fluid (CSF), blood samples (including plasma
and serum) where brain proteins stasis might be reflected upon via diffusion-
based equilibrium or blood brain barrier compromise (e.g. from brain to CSF
to blood).

Collection of data from these three components will enable the construc-
tion of multiple cognitive maps [4, 40, 68, 69]. For instance, cognitive maps
can be constructed for the TBI-induced differential proteome in the following
figure. Automated reasoning and knowledge discovery algorithms on the cog-
nitive maps [10, 11, 12, 13, 14, 15, 39] will distill the information and present
the knowledge gained from a systems biology perspective. Thus, cognitive
maps will enable the brain trauma researchers to gain a greater understand-
ing of the entire TBI-induced differential neuroproteome and hopefully the
mechanistic protein-pathways of TBI.

b) Using Cognitive Maps for TBI-induced Differential Neuroproteome
Validation

A statistical analysis tool is also being developed for TBI-induced differential
neuroproteome validation and possible TBI protein-pathways elucidation. For
example, up- or down-regulation of multiple proteins and protein fragments in
control and injured samples will be quantified by ICAT, AQUA, or ELISA to
validate differential TBI neuroproteome. Linear discriminant analysis (LDA)
will be used to calculate the probability of a correct diagnosis given the number
of injury-specific biomarkers measured the number of samples, etc. Thus, sta-
tistical analysis tools are expected to provide an important component for all
the neuroproteomics research conducted at our neuroproteomic center. These
statistical analysis data will be fed into the cognitive maps to reach decision on
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Fig. 4. Input Data for Neuroproteomics Cognitive Maps

diagnosis, monitoring and treatment. We have both statistical/probabilistic
and fuzzy reasoning capabilities in our cognitive maps [40, 68, 69].

Cognitive maps are directed graphs representing relations (by links) among
concepts/attributes (by nodes). Cognitive maps include several knowledge
representation schemes. Semantic networks or frames form a special class of
cognitive maps. Inference networks and causal networks form other classes of
cognitive maps. In cognitive maps, link weights may be assigned to relations
representing their compatibility degrees, and node values may be assigned to
concepts and attributes representing relevance factors. A hierarchical cogni-
tive map consists of several cognitive maps, each of which represents gene
network interaction or metabolic pathway. The knowledge bases of hierarchi-
cal cognitive maps will effectively capture the complex behavior of biological
systems. A hierarchical cognitive map is alternatively represented as a large
cognitive map combining several individual ones in the following diagram.

Cognitive maps can extend to probabilistic, or fuzzy cognitive maps, and
further to neural network learning maps. These numerically enabled cognitive
maps can be interfaced with other numerical simulation packages in biology.

Now we briefly describe the relaxation computation in a cognitive map.
Let Σ be a collection of biological objects {x1,...,xn} (e.g., gene sequences,
protein structures, metabolites, genotypes, and phenotypes), and let Λ be a
collection of labels {λ1,...,λm} with any mathematical structure (e.g., concen-
trations and intensities). The labeling problem is to find a consistent labeling
of biological objects in Σ by Λ, given a set of relations among objects and
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Fig. 5. Hierarchical Cognitive Maps

a set of constraints among objects and their labels. For each xi, let Λi be a
subset of Λ that is compatible with xi. For any pair {xi,xj} of objects (i, j
distinct), let Λij be a subset of compatible pairs of labels in Λi × Λj . A la-
beling L = {L1,...,Ln} is an assignment of a set of labels Λi in Λ to each
xi. L is consistent if for each i, j and all λ in Λi, ({λ} × Λj) intersects with
Λij . L is unambiguous if it is consistent and assigns only a single label to
each object. The semantic labeling of cognitive maps determines the results
of TBI-induced differential neuroproteome validation. The semantic labeling
is to assign a measure mi(λ) to the statement “λ is the correct label of xi”. An
arbitrary labeling of a neuroproteome may not be consistent and unambigu-
ous, because the constraint satisfaction is required among either objects or a
combination of new input evidences. The interaction with external users and
systems is through a query system. At the initial stage, the mi(λ) is either
estimated by the user or is provided by another cognitive map or simulation
tool. Now the initial measures go through a constraint satisfaction checking by
the label relaxation, which iterates the process until the convergence to final
measures is reached. The final measures are sent back to the query subsystem
for either clinical decision or further data analysis.

The relaxation scheme is mathematically described as follows. An initial
assignment of measures {mi(0)(λ)} to {xi} is given at time 0. A relaxation
operator R is defined to transform one set {mi(k)(λ)} of measures to another
set {mi(k + 1)(λ)}. The limit {m∗

i (λ)} of {mi(k)(λ)} gives the unambiguous
labeling under compatibility constraints, as k approaches to infinity. In reality,
we expect the limit to be attained after a finite number of iterations. In
practice, the limit {m∗

i (λ)} may not be unique (we are not always getting an
unambiguous labeling). The multiple labelings are sent back to the users so
that they can select an appropriate result for further analysis.

There are several ways to define the relaxation operator R. A relax-
ation operator R should produce mi(k + 1)(λ) from the combination of
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mi(k)(λ) and support si(k)(λ) by some update equations, where si(k)(λ) =
Σrij(λsλ′)mj(k)(λ′), where rij(λ, λ′) is the compatibility function of “label λ
is assigned to xi and label λ′ is assigned to xj”, and j-indices are indices of
all source nodes leading to the i-th node. A relaxation operator R is defined
by the following update equations:

mi(k + 1)(λ) = min[1,max(0, mi(k)(λ) + si(k)(λ))],

si(k)(λ) = Σ(rij(k)(λ, λ′) + ∆rij(k)(λ, λ′))mj(k)(λ′),

∆rij(k + 1)(λ, λ′) = aij∆rij(k)(λ, λ′) + bijmi(k + 1)(λ)mj(k)(λ′),

where aij and bij are learning parameters. The first equation makes sure that
mi(k+1)(λ) stays between 0 and 1. The second equation provides the network
input to the (i, λ)-th node. The third equation includes the Hebbian learning
rule.

9 Conclusion

In summary, proteomic studies of both human and rat traumatic brain in-
jury, if approached systemically, is a very fruitful and powerful analytic tech-
nology. In order to obtain a comprehensive TBI neuroproteome data set, it
is important to integrate multiple protein separation and protein identifica-
tion technologies. Equally important is the optimization of individual protein
separation identification methods. Bioinformatics platform then becomes the
critical adhesive component by serving two purposes: (i) integrating all pro-
teomic data sets and other relevant biological or clinical information, and (ii)
inferring and elucidating the protein-based pathways and biochemical mech-
anisms underlying the pathobiology of TBI and identifying and validating
biomarkers for the diagnosis and monitoring of TBI [23]. Ultimately, if we
are to be successful in doing these, the TBI proteomic approach outlined here
must be further integrated with genomic, cytomics as well as systems biology
approaches [37, 38].
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58. Schäfer, H.; Marcus, K.; Sickmann, A.; Herrmann, M.; Klose, J.; Meyer,
H. E. (2003) Identification of phosphorylation and acetylation sites in
alphaA-crystallin of the eye lens (mus musculus) after two-dimensional
gel electrophoresis. Anal Bioanal Chem. 376(7): 966-972.

59. Schwartz, D. C.; Hochstrasser, M. (2003) A superfamily of protein tags:
ubiquitin, SUMO and related modifiers. Trends Biochem Sci. 28(6):321-
328.

60. Service, R. F. (2001) Gold rush - High-speed biologists search for gold in
proteins. Science. 294(5549): 2074-2077.

61. Smith, R. D, (2000) Probing proteomes–seeing the whole picture? Nature
BioTech, 18: 1041-1042.

62. Somogyi, R. and Sniegoski, C. A. (1996) Modeling the complexity of
genetic networks: understanding multigenic and pleiotropic regulation,
Complexity, 1, 1996, pp. 45-63.

63. Tabb, D.L., McDonald, W.H., and Yates, J.R., (2002) DTASelect and
contrast: Tools for assembling and comparing protein identifications from
shotgun proteomics, Journal of Proteome Research, 1 (2002) 21-26.

64. Unlu, M.; Morgan, M. E.; Minden, J. S. (1997) Difference gel electrophore-
sis: a single gel method for detecting changes in protein extracts. Elec-
trophoresis. 18(11): 2071-2077.

65. Wiesner A. (2004) n of Tumor Markers with ProteinChip(R) Technology.
urr Pharm Biotechnol. 2004 Feb;5(1):45-67.

66. Yates, J.R. III, Carmack, E., Hays, L. Link, AJ., Eng, J.K. (1999) Auto-
mated Protein Identification using Microcolumn Liquid Chromatography-
Tandem Mass Spectrometry. In: Methods in Molecular Biology, Vol 112:
2-D Proteome Analysis Protocols (A.J. Link, Ed) Human Press Inc, To-
towa, NJ, pp 553-569..

67. Yates,J.R., Morgan,S.F., Gatlin,C.L., Griffin,P.R., and Eng,J.K., (1998)
Method to compare collision-induced dissociation spectra of peptides: Po-
tential for library searching and subtractive analysis, Analytical Chem-
istry, 70 (1998) 3557-3565.

68. Zhang, W.R., Chen, S., Wang, W. and King, R.S. (1992) A cognitive
map based approach to the coordination of distributed cooperative agents,
IEEE Trans. SMC, 22, 1992, pp. 103-114.

69. Zhang, W.R., Chen, S., and Bezdek, J. C. (1989) Pool2: A generic system
for cognitive map development and decision analysis, IEEE Trans. SMC,
19, 1989, pp. 31-39.


