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1 Introduction and Significance

Approaches for characterizing, classifying, decomposing, solving and navigating the solution set of generically
wellconstrained geometric constraint systems have been studied extensively, both in 2D [16, 8, 9, 10, 15, 13]
and in 3D [18, 4]. Significant progress has also been made in understanding generically overconstrained systems
[14, 7]. However, while the study of underconstrained systems is acknowledged to be important and crucial for
both the classical CAD, Robotics and newer molecular modeling applications of geometric constraint solving,
this study is still at a nascent stage partly due to the following reason. In the process of solving and navigating
the solution set of well and overconstrained systems, the combinatorial and algebraic ingredients are naturally
demarcated: there are clearly defined questions that concern only their constraint graphs. These questions
are, for example, related to characterization, classification, and recursive decomposition of constraint graphs
and their subgraphs. Answering these questions is necessary for efficient solving and solution set navigation.
Moreover, one obtains combinatorial measures of complexity for solving a generic or worst case system that
corresponds to a particular constraint graph. However, the combinatorial and algebraic ingredients in the
process of solving underconstrained systems are not, to date, clearly demarcated.

Organization. In Section 2 we recall the problem (*) of “solution existence determination and solution set
navigation of geometric constraint systems.” We dwell at some length on commonly accepted formalizations
of these problems for generically well-constrained systems in order to motivate their extension to generically
underconstrained systems, but point out the difficulties in formulating such an extension. In Section 3 we
first lay out a program of study by isolating a set of well-defined combinatorial questions that are natural and
meaningful and, in our opinion, necessary, to make progress on (*) for underconstrained systems. We motivate
these with simple examples. We then state preliminary results that initiate this program of study.

2 Statement of the Problem

We restrict ourselves here to 2D distance constraint systems (G, d) which consist of a distance constraint graph
G whose vertices represent point objects and the edges represent pairwise distance constraints, and where the
distance values associated with the edges give the tuple d. We refer the reader to [4] for definitions of generically
well, over and underconstrained systems - these properties depend only on the constraint graphs of these systems
and we will hence refer to well, over and underconstrained graphs.

The solution existence problem for a constraint system is to determine (constructively) if there exists (and
find) a 2D realization or embedding of the points on the Euclidean plane so that the distance constraints are
satisfied.

In the case of well-constrained systems, the solution set is finite, and we generally assume the problem of
navigating the solution set to mean: giving all such solutions or realizations. For well-constrained graphs
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(generically well-constrained systems) the two problems are generally believed to have the same worst case time
complexity. Intuitively, for every well-constrained graph G, there is some corresponding system or distance
tuple d, which has the largest number mg of realizations; and given any algorithm A that solves or finds one
realization, there is some distance tuple d for which A would have to check at least mg candidate realizations
before it finds one.

Furthermore, in the case of generically well-constrained systems, most algorithms - for both the existence and
the navigation problems - deal with two distinct subproblems. The first subproblem (a) is to obtain a so-called
Decomposition-Recombination plan [1], which is a purely combinatorial object that involves only the constraint
graph GG. A DR-plan D¢ for a well-constrained graph G can be viewed as an efficient combinatorial description
or roadmap of a set S of candidate realizations that is meaningful for all generically well-constrained systems
(G, d) that correspond to G.

The second subproblem (b) involves the distance tuple d: the problem is to effectively search the candidate
set S¢ and obtain one realization r¢ q (in the case of the existence problem) or obtain the entire set Rg.q of
realizations (in the case of the navigation problem). Both these involve finding all real solutions to the subsystems
corresponding to the nodes in the DR-plan. Intuitively, the candidate solution set S is a combinatorial
description that captures the set of all possible realizations.

For example, in subproblem (a), if the DR-plan D¢ decomposes G into k child subgraphs C4, ..., Ck, which
are combined by a set C of active edges to form G, then the candidate solution set Sg described by this DR-plan
is recursively defined as S¢ X (S¢, X ... x S¢, ). In subproblem (b), recursively searching the S¢, corresponds
to finding all real solutions R¢, q to the subsystems C;,d. Then, each element of Rc, g X ... Rc,,q yields a
different subsystem corresponding to the edges C': finding the real solutions to m of these systems corresponds
to m searches through Sc.

It is important to notice the tradeoff relationship between the complexities of the two subproblems (a) and (b).
For example, one correct, but trivial DR-plan would be a single node representing G itself, i.e., one solution to
the first subproblem would be to not decompose G at all. While this reduces the complexity of the subproblem
(a), this does not yield a particularly efficient description of the candidate solution set as it does not offer
any assistance for the subproblem (b). On the other hand, an optimal DR-plan, is an efficient description
as it minimizes the size of the largest subsystem for which the subproblem (b) finds real solutions. This is
a combinatorial measure of size of the DR~plan that captures the complexity of subproblem (b). Finer such
combinatorial measures of algebraic complexity can be found in [6]. In this context, the complexity of subproblem
(b) is defined for the worst case tuple d and is hence treated as a combinatorial property dependent only on
the constraint graph G. This complexity could be associated with a specific type of algorithm for finding the
realization, given the DR-plan D¢g: the definition of the DR-plan’s size would vary accordingly. However, for
most common notions of size, finding an optimally sized DR-plan is NP-hard [17] even for the 2D distance
constraint systems being considered here. In other words, the efficiency of description of the candidate solution
set is directly related to the complexity of the subproblem (b) and inversely related to the complexity of
subproblem (a).

The above discussion shows that we can extract the combinatorial content of (b) and incorporate it into (a)
to get unified combinatorial questions useful for answering problem (*) for well-constrained graphs G. Many
questions falling into these categories have been studied in the literature.

(w1*) Characterize interesting subclasses of well-constrained graphs G that have a a DR-plan of size at most
b1(|G|) and relate these classes to each other. Give an efficient algorithm to recognize the graphs in such a
class. For example, triangle decomposable graphs [5], Henneberg 1 graphs [16], and quadratically solvable
graphs [10, 11, 12] are such classes. In general, choosing a particular algorithm or method A for finding
DR-plans, characterize the class C'4 of well-constrained graphs G for which A finds a DR-plan of size at
most b1 (|G|). Further, given 2 such algorithms A and A’ how do the corresponding classes C'4 and C 4/
relate to each other?

(w2*) For general graphs G, or graphs G in a class defined in (w1%*), give an algorithm that finds such a DR-plan
in time at most by(|G|).

There are clear difficulties in extending such formalizations meaningfully for generically underconstrained sys-
tems. As a start, while the existence problem is still meaningful as stated above, the navigation problem is not,



since the solution set is not finite. Moreover, the 2 subproblems of the existence problem are not meaningful:
unlike in the case of well-constrained graphs, the subproblem (a) of finding a good DR~plan is not particularly
useful for subproblem (b). This is because any DR-plan of an input underconstrained graph stops with a com-
plete set of maximal well-constrained subgraphs [2, 17]: even an optimal DR-plan leaves the “underconstrained
part” of the graph untouched. It does not provide an efficient description of a candidate solution set from which
a realization is significantly easier to obtain.

3 Contribution

We first formulate extensions of the combinatorial questions in Section 2 that are meaningful for undercon-
strained graphs. We motivate these with simple examples. Next we briefly state preliminary new results that
initiate this program of study.

3.1 Formulating meaningful combinatorial questions about underconstrained graphs

As pointed out in Section 2, while a good DR-plan is an efficient combinatorial description of the solution set
of generically well-constrained systems, this is not directly true for generically underconstrained systems.

A natural way to leverage the concept of a DR-plan is to parametrize the (infinite) solution set of a k-degree-
of-freedom (k-dof ) underconstrained system (also called mechanism) (G,d). The parameters are k independent
distances that are not explicitly specified, i.e., an appropriately chosen set U of edges not present in G such
that G U U is well-constrained. Specifically, the DR-plan of G U U would serve as an efficient description of
the (finite) candidate solution set for a generically well-constrained system (G U U, < d,dy >), for any tuple
of distance values dy for the edge set U. The walid set of distance values dy - for which a realization exists
for (GUU, < d,duy >) - is the projection of the real solution variety of the system (G,d) onto the distance
variables given by U.

The choice of this set U of edges, i.e., the choice of parametrization or projection, gives rise to a first set of
combinatorial questions about underconstrained graphs G that address one part of (*).

(ul*) Given an efficient algorithm to choose a set of edges U such that GUU is a well-constrained graph, i.e., a so-
called completion of G [18]. Some care needs to be taken to ensure that U does not cause overconstrained
subgraphs. An simple, efficient method for obtaining such completions for arbitrary underconstrained
graphs G - from a so-called complete DR-plan for G [17] - is given in [18].

(u2*) We can now directly extend questions (w1*,w2*) by combining them with (ul*) above: characterize
and relate classes of underconstrained graphs for which a set of edges U can be chosen such that the
resulting well-constrained graph G U U has a DR-plan of small size. We can add on the requirement that
the DR-plan be found quickly by some specified algorithm. Here “small” and “quickly” are appropriately
specified. In particular, combining (w1*) and (ul*), we can ask to characterize and relate classes of
underconstrained graphs G for which there is a set of edges U for which G U U has a small DR-plan, is
triangle decomposable, Henneberg 1, quadratically solvable etc.

For one such class, [3] gives an algorithm for finding such edges. However, we observe that, without further
qualification, the picture is not rosy for general 2D distance constraint graphs. We can find underconstrained
graphs of arbitrary size that are 1-degree-of-freedom mechanisms (have 1 extra dof more than well-constrained
graphs) such that for any (singleton) completion edge e the well-constrained graph G U {e} is effectively not
decomposable, i.e., any DR-plan has size Q(|G|). In fact, Figure 1 shows even a planar graph with this property:
two n-cycles are connected as shown, with 1 additional vertex connected to alternate vertices in the inner cycle
and a second additional vertex connected to alternate vertices in the outer cycle. The largest 1-dof proper
subgraphs are the quadrilaterals: no larger 1-dof proper subgraph exists.

The above combinatorial problems address only a portion of the problem (*) for underconstrained graphs. A
complete combinatorial description Cg of the underconstrained solution set for G would consist not only of the
following:

(i) the set of completion edges U; and



Figure 1: Arbitrarily large graph G such that for any additional edge e, G U {e} only has DR-plans of size
atleast Q(|G|)

(ii) a DR-plan D¢y for G U U which serves as a description of the (finite) candidate solution set Sg,u for a
generically well-constrained system (G UU, < d,dy >), for any tuple of distance values dy for the edge set U.
In addition, C¢ it should also contain

(iii) a description Vg i of a candidate finite set of distance values T,y from which it can be efficiently determined
whether there is a valid value of dy for which a realization exists for (GUU, < d,dy >) and from which such
a value of dyy can be efficiently found. In other words, T, captures at least one valid value of of dyy for which
(GUU, < d,dy >) has a realization (provided (G, d) has a realization).

Note. The above definiton of candidate value set differs crucially from the candidate solution set described
by a DR-plan for well-constrained systems such as in (ii) following way: the latter captures all realizations,
but the former is guaranteed to capture only one. Specifically, the set of all valid values for the dy (i.e., the
projection mentioned above) is infinite for generic underconstrained systems (G, d) but T,y is finite. Another
point of difference is that the DR-plan is a canonical or uniform type of description, although special algorithms
for finding DR-plans may result in special types of DR-plans. At this early stage in the investigation of
underconstrained systems, it seems prudent to allow somewhat more leeway in the type of the description Vg 17,
although it is likely that a canonical type of description will evolve that encompasses all of these types.

Recall that the size and other measures of the DR-plan were required to identify and/or rule out trivial DR-
plans and to capture the complexity with which a (all) realization(s) could be obtained from the DR-plan (recall
the the complexity of subproblem (b) in Section 2). Now we use similar measures which we, as in Section 2,
collectively refer to as size: these capture the efficiency of the description Vi 7. As in Section 2, these measures,
in turn, capture the complexity of searching T¢ 7, in other words, determining - from the description Vg i -
whether there is a value of dy for which a realization exists for (G UU, < d,dy >) and finding such a value of
dy. As in Section 2, this complexity is understood to be worst case, over all d, and could be associated with
a specific type of algorithm for processing the description Vg y: the definition of its size or efliciency varies
accordingly.

In general, when possible, we favor separable descriptions Vi 17, i.e., those from which existence of a realization
and a valid value of dy can be determined without having to determine a (partial) realization i.e., without solving
for position values for any of the points using the DR-plan for (GUU, < d,dy >) from (ii). Such descriptions
permit items (ii) and (iii) above to be dealt with separately.



Figure 2: A well-triangulable graph: dotted are completion edges in U

3.1.1 Example

We give a simple example that illustrates the concepts discussed above concerning Item (iii) of the description
Cqg. Consider an underconstrained graph G which is an n-cycle with bridge edges or diagonals that do not
cross. See Figure 2.

The graph can be made well-constrained by triangulating it. We call such graphs well-triangulable. This
additional set U of edges ensure a simple version of Henneberg 1 DR-plan D¢ iy for the graph G U U, taking
care of Parts (i) and (ii) of the description Cg. In this case, this DR-plan also directly yields a linear polytope
description Vi 7 consisting of a set of triangle inequality expressions relating variables representing d and dy.
For specific values of d, Vg, defines a polytope in RIYI containing exactly the valid values of dy. Technically,
the description Vi 7 gives a a generic such polytope whose extreme points could be taken as the finite candidate
set Tg,u of valid values for dy: they are guaranteed to contain at least one valid value for which (Gd) has a
realization. (In fact, in this case, the polytope describes the generically infinite set of valid values - the projection
of the real solution variety of (Gd) onto the distance variables defined by U). This description Vg v is separable
since given specific values of d, we can determine whether or not this polytope is empty (i.e., determine whether
a valid value of dy exists and find it) without actually finding a (partial) realization of (GUU, < d,dy >). &

Thus, Item (iii) of the description Cg gives rise to further combinatorial questions about underconstrained
graphs, necessary for answering (*). Just as question (u2*) concerned Item (ii) of the description Cg, namely
the difficulty of obtaining an efficient DR-plan D¢y, the following question concerns Item (iii): the difficulty
of obtaining an efficient, (possibly separable) description Vg u.

(u3*) Characterize and relate classes of underconstrained graphs G for which there is a set of edges U, for
which G U U has an efficient or small size description Vg i (of some specified type). We can add on the
requirement that Vi, be found quickly by some specified algorithm. Here, “small size” and “quickly” are
appropriately specified.

We can further combine (u2*) and (u3*) to ask the following.

(u4*) Characterize and relate classes of underconstrained graphs G for which there is a set of edges U, for which
G UU has a small size description Vg ¢y (of some specified type), and a small size DR-plan Dg. We can
add on the requirements that Vo v and Dg be found quickly by some specified algorithms. Here, “small
size” and “quickly” are appropriately specified.



3.2 Preliminary results

We now state (informally and without proof) some preliminary results we have obtained related to Questions
(ul*)-(ud*) given above.

e We give a characterization of a large subclass of graphs for which there is a set of edges U, for which GUU

has an efficient description Vg iy satisfying a natural generalization of the linear polytope property given in
the example above. We further give an efficient algorithm for finding such a description, including the set
U. We additionally generalize and quantify the notion of separable, by which the new type of description
turns out to be nearly separable: we give an efficient method, given specific values d of determining
existence of (and finding) a valid value dy for which a realization of (GU U, < d,dy >) exists without
determining most of the realization.

We characterize and relate two subclasses of 1-dof underconstrained graphs obtained by removing 1 edge
from triangle decomposable, well-constrained graphs. These classes are defined by the existence of 2
types of efficient descriptions Vi, ¢, which we call respectively backward propagation description and ez-
tremal distance description. These two could be viewed as further generalizations of the linear polytope
description, however, the extremal distance description is not known to be separable. Since these are
1-dof graphs, the set U is a singleton set consisting of a single edge and the set of valid values of dy is
generically a set of intervals in R. The candidate value sets T'p ¢y corresponding to these 2 descriptions
are guaranteed to contain all the end points of these intervals. Interestingly these descriptions and their
efficiency and size are based on not just one but several DR-plans for GUU. As in the previous result, we
give efficient algorithms for finding such descriptions (including the set U); and for determining existence
of (and finding) valid values dy for which a realization of (GUU, < d,dy >) exists. (Since the extremal
distance description is not known to be separable, realizations are found in the process).

References

[1]

2]

8]
[9]

[10]

C. M. Hoffmann and A. Lomonosov and M. Sitharam. Decomposition of geometric constraints systems,
part i: performance measures. Journal of Symbolic Computation, 31(4), 2001.

C. M. Hoffmann and A. Lomonosov and M. Sitharam. Decomposition of geometric constraints systems,
part ii: new algorithms. Journal of Symbolic Computation, 31(4), 2001.

Robert Joan-Arinyo and Antoni Soto-Riera and S. Vila-Marta and Josep Vilaplana-Pasto. Transforming
an under-constrained geometric constraint problem into a well-constrained one. In Symposium on Solid
Modeling and Applications 2003, pages 33—44, 2003.

Jack E. Graver and Brigitte Servatius and Herman Servatius. Combinatorial Rigidity. Graduate Studies
in Math., AMS, 1993.

I. Fudos and C. M. Hoffmann. Correctness proof of a geometric constraint solver. Intl. J. of Computational
Geometry and Applications, 6:405-420, 1996.

Jorg Peters and JianHua Fan and Meera Sitharam and Yong Zhou. Elimination in generically rigid 3d
geometric constraint systems. In Proceedings of Algebraic Geometry and Geometric Modeling, Nice, 27-29
September 2004, pages 1-16. Springer Verlag, 2005.

C Hoffman and M Sitharam and B Yuan. Making constraint solvers more useable: the overconstraint
problem. CAD, 36(4):377-399, 2004.

B. Bruderlin and R. Roller ed.s. Geometric constraint solving and applications. Springer-Verlag, 1998.

X. S. Gao and S. C. Chou. Solving geometric constraint systems. 1. a global propagation approach. CAD,
30:47-54, 1998.

X. S. Gao and S. C. Chou. Solving geometric constraint systems. II. a symbolic approach and decision of
rc-constructibility. CAD, 30:115-122, 1998.



[11] John C. Owen and Steve C. Power. The nonsolvability by radicals of generic 3-connected planar graphs.
In Automated Deduction in Geometry, pages 124-131, 2002.

[12] John C. Owen and Steve C. Power. Are all 3-connected generic constriant configurations of points on a
plane non-radical. In Automated Deduction in Geometry, 2004.

[13] I. Fudos. Geometric Constraint Solving. PhD thesis, Purdue University, Dept of Computer Science, 1995.
[14] B. Hendrickson. Conditions for unique graph realizations. SIAM J. Comput., 21:65-84, 1992.

[15] G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

[16] G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331-340, 1970.

[17] Andrew Lomonosov. Graph and Combinatorial Analysis for Geometric Constraint Graphs. Technical report,
Ph.D thesis, Univ. of Florida, Gainesville, Dept. of Computer a nd Information Science, Gainesville, FL,
32611-6120, USA, 2004.

[18] M Sitharam. Graph based geometric constraint solving: problems, progress and directions. In D. Dutta
and R. Janardhan and M. Smid, editor, AMS-DIMACS volume on Computer Aided Design, 2005.



