GENERALIZED BOUNDED QUERY
HIERARCHIES

by

MEERA SITHARAM

A thesis submitted in the partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON
1990

GENERALIZED BOUNDED QUERY
HIERARCHIES

Meera Sitharam

Under the supervision of Professor Deborah A. Joseph
at the Department of Computer Sciences

University of Wisconsin-Madison

Abstract.

The power of an oracle computation is determined by three basic factors:
the complexity of the computation, the complexity of the oracle and oracle
access restrictions. Although it is natural to expect that the influence of these
factors are correlated, this thesis establishes that the influence of the third
factor is largely independent of the first two. In other words, we establish
that the influence of natural oracle access restrictions on the power of an
oracle computation remains the same for all reasonable and natural choices
of oracle and computation complexities. We consider the following access
restrictions in oracle computations: 1. restrictions on the number of queries
to the oracle, and 2. restrictions on how the oracle’s answers are used by
the computation. The influence of these restrictions on polynomial-time
computations that make a constant number of queries to NP oracles has
been much investigated in recent years, since many interesting problems can
be solved by such restricted computations. We give uniform generalizations
of these studies to general oracle classes that include RNC, RP, NEXP,

RE, etc; general computation complexities that, for instance, include any

deterministic complexity class stronger than log-space; and general bounds

on the number of queries.

Acknowledgements

My advisor, Deborah Joseph, has taken the time to instruct me on how
to start formalizing an idea and how to present a result. She introduced me
to Paul Young, Danilo Bruschi, and Tim Long. Working with the four of
them, I learnt much. Paul Young provided the main push to work on the
problems that this thesis is based on, and a big portion of Chapter 2 relates
to work done jointly with him. Anne Condon, and Eric Bach patiently sat
through my talks, read my thesis with care and have given helpful comments
on both. Kenneth Kunen has given me much time, inspiration and ideas on
just about any research problem.

Giri Narasimhan’s enthusiasm about Theory and his help during my
screening exam preparations contributed much to my initial involvement
in the area. Judy Goldsmith has given me much useful advice from her
experiences as a starting researcher, and has been a source of encouragement
throughout; Kirk Pruhs gave me his thesis format, and practical suggestions
that have mitigated the aggravations of finishing up; and Jorg Peters and
Gautam Das have gone through the finishing up process with me and have
shared these aggravations. All of these people and Divesh Srivastava have
discussed work with me at some level, making it more fun.

Narendran, Victor Shoup, Jon Sorenson and Marty Wolf have all been
fun colleagues, sat through many a practice talk and given useful suggestions.

I thank all of these people.

Table of Contents

1. Introduction and unified review.

Preliminary definitions and notation.
Main result of this thesis.
Organization.

1.1. The Boolean hierarchy over NP: background and definitions.

1.2. The Boolean hierarchy over NP: examples.
Optimization problems.
Critical problems.
Definitional problems.
Examples for nonconstant query classes.
Counting problems.
Counting problems for nonconstant query classes.

1.3. The Boolean hierarchy over NP: properties.
Robustness.
Relationship to constant query classes.
Consequences of collapse.
Miscellaneous properties.

1.4. Previous generalizations of the Boolean hierarchy over NP.
The extended Boolean hierarchy over NP.
Other reducibilities and base sets.

1.5. A table of results.

1.6. Other related work.

2. Generalized bounded query hierarchies.

Organization.

2.1. Generalized nonadaptive reductions.

On generalized truthtables.
2.2. Generalized base classes.
Indexing.

Closure requirements.

2.3. Generalized Boolean hierarchies: definitions and examples.

Example problems.

2.4. Generalized Boolean hierarchies: properties.
Robustness.
Relationship to other bounded query classes.
Conclusions.

Bibliography.

. 99
. 62
. 63
. 64
. 67
. 69
.72
.13
. 84
. 86
. 90

Chapter 1

Introduction and unified
review.

The power of an oracle computation is determined by three basic factors:
the complexity of the computation, the complexity of the oracle and the
oracle access restrictions. Although it is natural to expect that the influence
of these factors are correlated, this thesis establishes that the influence of
the third factor is largely independent of the first two. In other words, we
establish that the influence of natural oracle access restrictions on the power
of an oracle computation remains the same for all reasonable and natural

choices of oracle and computation complexities.

We consider the following access restrictions in oracle computations:
1. restrictions on the number of queries to the oracle, and

2. restrictions on how the oracle’s answers are used by the computation.

Since many interesting problems can be solved by computations with such
restrictions, the influence of these restrictions on polynomial-time (resp. NP)
computations with NP oracles has been much investigated in recent years in
[PaYa 82], [WeWa 85|, [Kre 86], [CaHe 86|, [K6ScWa 87|, [Be 87], [Ka 88|,
(resp. [BoWr 81], [BoLoSe 84,85], [Lo 85]) et cetera (see surveys in [Wa
88] and [CGHHSWW 88,89]). It was shown in [PaYa 82] that while many of
these problems require computations that make a constant number of queries
to an NP oracle, they depend on both positive and negative answers from

the oracle, so that the membership of these problems in NP would imply

that NP = coNP. The following is a standard example of an optimization
problem whose solution requires one positive and one negative answer from

an NP oracle.

EXACT OPTIMUM TSP ROUTE.

Instance: An m x m distance matrix denoting the (integer) weights on the

edges of a complete graph, and an integer M.

Question: Is it true that the optimum TSP route has cost M7 (Is it true
that there is TSP route of cost M, but there is no TSP route of cost < M?)

The transparent definition of this problem makes clear that while both SAT
and SAT can be <” -reduced to it, neither of the reverse reductions is possible

unless NP = coNP.

Besides requiring a constant number of queries to the NP oracle, deter-
mining membership in such languages as EXACT OPTIMUM TSP requires
little processing of the oracle’s answers: a simple fixed Boolean combination
of the oracles answers determines membership.

This leads us to the second oracle access restriction under consideration:
how does the oracle computation utilize the oracle’s answers? Many possibil-
ities arise: Does the computation use the oracle’s answers to previous queries
to decide what future queries will be, or does the computation make all the
queries together (in parallel)? Is there an arbitrary computation after the
oracle’s answers are received, or are the oracle’s answers processed in a highly
restricted manner? For computations with an NP oracle, the above questions

have been investigated quite thoroughly in recent years. (See surveys in [Wa

88] and [CGHHSWW 88,89]).

All of the papers mentioned so far are mainly geared towards the study
of oracle access restrictions on polynomial-time (or sometimes log-space)
computations with NP oracles. Naturally, therefore, the proofs that appear
in these papers utilize properties that are specific to these complexity classes.
In addition, most of these papers severely narrow the range of possibilities
for the first oracle access restriction under consideration: the results in most
of these papers deal only with computations that make a constant number of
queries to an oracle, although a restriction on the number of queries to the
oracle does not prevent this number from being a slowly growing function of
the input.

This thesis establishes that many of these earlier results - predominantly
about polynomial-time computations that make a constant number of queries
to an NP oracle and use the oracle’s answers in a restricted manner - gen-
eralize naturally in the following sense: they extend to analogous results
about fairly general computations that make a bounded but not necessarily
constant number of queries to oracles from fairly general complexity classes,
but still use the oracle’s answers in a restricted manner. In other words, the
influence of natural oracle access restrictions on the power of oracle com-
putations remains the same whether the oracle class is NP or any other
natural complexity class, and whether the computation (or reduction) has

polynomial-time complexity or any other natural complexity.

Before providing a formal statement of the main result, and some com-
ments on how we proceed with its proof, we first subject the reader to a

description of our basic notation.

Preliminary definitions and notation.

We assume the reader’s familiarity with well-known classes such as L =

4

DSPACE[O(log n)], NC, P, NP, coNP, RP, BPP, EXP, NEXP, UP, FewP,
sparse sets, tally sets, and with the standard notation used in complexity
theory (see [Sc| and [BaDiGal).

Unless otherwise mentioned, all languages consist of strings over {0, 1}.
The letters, X, Y, Z, usually denote languages, and the letters, B,C. D, E. F,
@, R denote specific complexities, their corresponding complexity classes, or
function classes depending on the context. For instance, one could refer to
an algorithm of complexity C, a complexity class C, or a function class (of
complexity) C. The letters, f,g,h,r, s,t,u,v usually denote functions, a,b
vectors, k,[,m, constants, and y, z, strings. The letter, L, is reserved for
the complexity class DSPACE[O(log n)|, N, for the set of natural numbers,
x, for the input string, and n, for the length of the input. We denote the
{0, 1}-valued characteristic function of a set, X, by ex(.).

For sets, X, Y, complexity class, C, and function, r, we say X §9_red Y
if membership in X can be determined by an algorithm of complexity C that
makes at most r(n) queries to an oracle, Y, to which the oracle returns values
of ¢y for the queried strings. (Recall that n is the length of the input). We
refer to the function, r, as the norm of the reduction. If the above algorithm
formulates a list of all the queries to be made to Y before actually querying

Y, then the bounded query reduction is nonadaptive. Otherwise the

D

reduction is adaptive. The bounded query class, C._,[r], over a general

base class, D, consists of all sets, X, for which X <¢ D, i.e, there is a set

—r—red

Y € D such that X <¢ . V.If the function, r, above is in fact a constant, k,

then <¢ . -reductions are called constant query reductions and C” []

is called a constant query class.
General bounded query nonadaptive reductions, <¢ are in general

—r—red’

no stronger than (many-one, single query) <¢-reductions, and no weaker

5}

than (bounded query Turing) <¢ n-reductions, which are adaptive. Recall-
ing that weaker reductions generate larger bounded query classes, we have:
D =CP C P lr] € CP[r]. The reader should note that we usually omit
the subscript, 7. Bounded query nonadaptive reductions have been stud-
ied since the 1960’s in the context of recursion theory ([Ro 67]) and their
polynomial-time bounded versions were first studied in [LaLySe 75].
Bounded query nonadaptive reductions fall into various categories.

When X <¢ . Y, the reduction algorithm that determines membership
in X could perform an arbitrary computation in C' after Y’s answers to a
list of parallel queries is obtained. Alternatively, the reduction algorithm
could input the list of Y’s answers into a Boolean circuit, formula, or full
truthtable whose output determines membership in X. We now give formal

definitions for the bounded query classes associated with the above types of

nonadaptive reductions.

1. X € Cﬁ[r] <= dY € D and an algorithm, M, of complexity, C, such
that on input, z, M computes a tuple, (z1,...,%,(n)), of queries to ¥ and
then decides membership of * € X by an arbitrary computation in C' on the

tuple, (cy(z1),...,cy(zy(n))), of answers returned by Y.

2. X € CR[r] <= 3Y € D and an algorithm, M, of complexity, C, such
that on input, z, M computes a tuple, (t,z1,...,Z.(y)), arepresentation, ¢, of
a Boolean circuit with r(n) inputs, and r(n) queries to Y so that © € X <

the circuit (represented by) ¢ outputs 1 on the tuple, (cy(z1),...,cy(Zrn))).

A §Ett—1‘eduction is a §kc_tt—1‘eduction for some constant k. Hence, a set, X,

is §bctt—complete for a class, D, if, for all Y € D, there is a constant, k, such

that ¥ <¢ . X.

The next two definitions are obtained from the one above by replacing

“Boolean circuit” by “Boolean formula” and “full truthtable” respectively.

3. X € C[r] & 3Y € D and an algorithm, M, of complexity, C,
such that on input, z, M computes a tuple, (t,z1,...,Z,(n)), consisting of a
representation, ¢, of a Boolean formula in r(n) variables, and r(n) queries to
Y so that # € X <= the formula (represented by) ¢ evaluates to 1 when its

variables assume the values, cy(z1),...,cy(Zp(n)).

4. X € CR,[r] & 3Y € D and an algorithm, M, of complexity, C,
such that on input, z, M computes a tuple, (t,z1,...,2.(y)), consisting of
a representation, t, of a full 2"(") x (r(n) + 1) truthtable in r(n) variables,
and r(n) queries to Y so that @ € X <= the truthtable (represented by) ¢

evaluates to 1 when its variables assume the values, cy(z1),...,cy(Zy(n)).

We defer the formal definition of Boolean hierarchies to Section 1.1. Intu-
itively, Boolean hierarchies are generated by a simpler type of nonadaptive
reduction that the ones defined above. The oracle set, Y, is replaced by a
collection of k sets from a base class, C, and the reduction algorithm makes
one query to each set in this collection. If membership in X is determined
by a fized Boolean combination of the oracles’ answers, then X falls into the
k' level of a Boolean hierarchy over C. Higher levels of these hierarchies
are formed by allowing larger collections of oracles and more queries. A nat-
ural extension - allowing the number of oracle queries to be a slowly growing
function of the input, while still deciding membership as an easily specifi-
able Boolean combination of the oracles’ answers - generates an extended

Boolean hierarchy over C.

Main result of this thesis.

We give a rigorous and uniform justification of the following statement.

e Various definitions of Boolean hierarchies over fairly general complexity
classes are equivalent just as in the case of NP. Furthermore, at least
at lower levels, all extended Boolean hierarchies, satisfy these same def-
initional equivalences. Moreover, the characteristics of bounded query
classes defined by polynomial time computations that make a constant
number of queries to an oracle in NP, for example, the influence of
the number of queries, and the the relationship between adaptive and
nonadaptive queries, extend to fairly general computations that query

oracles from fairly general complexity classes, C. For instance, C' could

be RP, FewP, RNC, NEXP, or the recursively enumerable sets, RE.

The development of this thesis calls for a few general comments. First,
since our aim is to provide a uniform treatment of all the complexity classes
and computations (reductions) mentioned in the above statement, a sizable
portion of this thesis, especially Chapter 2, will be devoted to developing
the required machinery, and to formalizing the definitions of “fairly general”
complexity classes and computations. We note that these definitions are
based on closure under certain basic operations and are quite unrestrictive;
for instance, the definition of “fairly general” base classes admits complexity
classes that have no complete sets.

Second, a rigorous justification of the above statement involves the gen-
eralization of earlier work that is specifically tuned toward polynomial-time
computations with NP oracles. We take this opportunity to make a careful
and comprehensive review of such earlier studies. Although surveys on this

topic already exist in [Wa 88] and [CGHHSWW 88,89], the intent to gener-

alize in a new direction gives our review a substantially different character,
by finding a new common thread with which to tie earlier results together.
For instance, along with the proof of each earlier result we will analyze those
specific assumptions made in the proof that do not hold for general classes
or reductions, thus setting the stage for a rigorous separation of superflu-
ous assumptions from those that are, in fact, necessary for the proof to go
through. Moreover, we review those earlier, narrower generalizations with
a similar view towards reducing superfluity and providing sharper insight.
As a consequence, our review yields more “minimalistic” proofs of earlier
results.

Third, the development of this thesis will revolve around the classes
and hierarchies that are generated by the simplest type of bounded query
reductions, namely Boolean hierarchies. Investigations of more complicated

bounded query classes will be built on this foundation.

Organization.

This thesis consists of two chapters.

Chapter 1 is divided into six subsections and reviews earlier studies on
Boolean hierarchies and relevant bounded query classes in a unified manner
that prepares the reader for the generalizations of the following chapter.

Section 1.1 gives the necessary background to familiarize the reader with
the Boolean hierarchy over NP.

Section 1.2 gathers from the literature a sizable collection of example
problems for the Boolean hierarchy and bounded query classes over NP and
presents them under an accessible classification.

Section 1.3 reviews the known properties of the Boolean hierarchy over

NP. The proofs of those results that are to be generalized in Chapter 2 are

analyzed carefully to pinpoint the assumptions that are specific to Boolean
functions of constant norm and to the base class NP. In addition the notation
required in these proofs is carefully set up to facilitate their generalization
in Chapter 2.

Section 1.4 reviews earlier generalizations of the Boolean hierarchy over
NP to Boolean functions of nonconstant norms, and earlier investigations
of the hierarchy’s relationship to bounded query classes that are based on
various types of reductions. Here again, the assumptions that are specific to
the base class NP are pinpointed. This is followed by a review of an earlier
study of Boolean hierarchies over general base sets.

Section 1.5 provides a table of results both from earlier work and from
this thesis, compares them and thus puts the latter in perspective.

Section 1.6 touches briefly upon various aspects of bounded query classes
that have been studied in the literature but are not strongly related to this
thesis.

Chapter 2 develops the machinery required for the definition and uni-
form treatment of (extended) Boolean hierarchies over general complexity
classes, formalizes the notions of “fairly general” complexity classes and re-
ductions, generalizes results from Chapter 1 and thereby proves the main
result of this thesis.

A more detailed note on the organization of Chapter 2 can be found in

Chapter 2 itself.

1.1. The Boolean hierarchy over NP:

background and definitions.

10

Boolean hierarchies are typically formed by taking classes of sets that
are closed under union and intersection but not complementation, and then
forming a Boolean closure of the classes by iterating closure under operations
involving union, intersection and complementation. We start with basic def-
initions.

Definition 1:

Let tx be any k-ary Boolean function. Then for any collection, C' of sets in

{0,1}7,
tk[C] =def { X dXy,..., X el [Cx(l’) = tk(CXl(JC),---,CXk(J?))] }

That is, each set in tx[C] is a specific Boolean combination, defined by tj,
of the finite collections of sets taken k at time from the class, C. Boolean
hierarchies are typically obtained by taking some reasonable collection of
Boolean functions, { Ak 1}, that are uniformly specifiable from %k, and which

are so chosen that the containments
t[C] C [C] C ... C [0 ...

are obvious. True hierarchies are obtained when the containments turn out
to be proper.

From another point of view, the k' level of a Boolean hierarchy over
some base class is a constant query class defined by a nonadaptive fized
truthtable reduction that makes one query to each of k oracles from the base
class. The truthtable involved in the reduction is invariant for all the sets in
the k' level and is uniformly generated from k. However, the collection of k

oracle sets could be different for each set in the k" level.

11

Notice that for a class like NP that is closed under <Z -reductions (Chap-
ter 2 contains a detailed list of the far less restrictive list closure operations
that are, in reality, involved) and has <P -complete sets, classes t;[NP] can

be alternatively defined as follows.

Definition 2:

For each k, let t; be a k-ary Boolean function. Then

tp[NP] =4ey { X :3Y € NP and f a function computable in
polynomial-time such that f(z) = (x1,...,2k) and

[ex(z) = trley(@a),... ev(a))]}

In other words, a level of a Boolean hierarchy over a class like NP, is its

closure under fized truthtable reduction of constant norm.

As early examples, Boolean hierarchies were studied by Hausdorff in
1914 in the context of descriptive set theory ([Ha 78]), and the Boolean hier-
archy over the recursively enumerable sets was defined and studied by Ersov
([Er 68a], [Er 68b], [Er 69]) who in [Er 68b] noted the connections between
its transfinite extension through the recursive ordinals and the work done
by Putnam, [Pu 65], on “mind changes” of recursive sequences. Together,
the work of Putnam on mind changes of recursive sequences and of Ersov on
extensions of Boolean hierarchies through recursive ordinals shows that the
use of either truthtables or mind changes provides characterizations of the
class ©)NIIJ in the arithmetic hierarchy. Independent of the work of Putnam
and Ersov, Boolean hierarchies were also applied to Logic by Addison ([Ad
65]).

12

A Boolean hierarchy over NP was introduced in [PaYa 82] in order
to classify the complexity of certain combinatorial optimization problems.
Boolean hierarchies over NP have since been defined in various ways, in
[WeWa 85], [CaHe 86|, and [K6 85] and [K6SchWa 87], who chose various
sequences of Boolean functions for #; in Definition 1. These papers study
structural properties of the hierarchy and most of the results that appear in
them are contained either in an excellent survey by Wagner ([Wa 88]) or in
the journal versions, [CGHHSWW 88,89]. For regular Boolean hierarchies
over NP, the various definitions used by these authors have all been proven
equivalent ([WeWa 85], [K6SchWa 87]; elaborated in Section 1.3, Theorem
5).

Definition 3:

1. The Difference hierarchy was defined over NP by Koébler and
Schoéning ([Ko 85], [K6ScWa 87]), and was denoted by them as Diff, =qey
parity [NP], where

parity(z1,...,2k) = x1 B ... Dy (& = xor).

2. The Wechsung-Wagner hierarchy over NP was defined by Wech-
sung and Wagner ([WeWa 85]). They denoted it as ¢gx[NP], where

g1, .., 2k) = (maxy Axg) V..oV (mag—1 A xg)
for k even, and
ge(x1, .. xk) = (mxr Ax2) V.oV (mxg—2 Axg—q1) V "xg

for £ odd.

13

3. The Hausdorff hierarchy ¢;[C], is ¢x[C] with the additional

requirement that for all ¢, 7 such that j > ¢, x; =1 = z; = 1. That is,

9 = 9k /\ (zj = zjt1).
1<j<k

Hausdorff ([Ha 78]) showed that g¢,[D] = gx[D] for all classes, D, that are

closed under union and intersection.

4. The Boolean hierarchy was defined over NP by Cai and Hemachan-
dra ([CaHe 86]). They denoted it as hy[NP], where

hi(z1s. . zk) = (((z1 A=2a) Vas)..)V zx_1) A~k
for k even, and
hi(ze,. . ok) = (((z1 A=wa) Vas)..) A—zk_y) V 2k
for k odd. .

In each case, these sequences of truthtables can be used to define hierarchies
over general base classes in addition to NP. It is known, (see Theorem 5,
this section) that the four collections of Boolean functions defined in 1 - 4
generate the same Boolean hierarchy over NP. In addition in Chapter 2, we

will show that this equivalence is independent of the base class NP: it holds

for most complexity classes.

1.2. The Boolean hierarchy over NP: example

problems.

14

Example problems in various levels of the Boolean hierarchy over NP
are known, and in fact, this hierarchy was initially motivated in [PaYa 82]
as being useful for classifying certain versions of combinatorial optimization
problems. Since then, many example problems have been found in all the
levels of this hierarchy including complete problems for each level and “prob-
ably noncomplete” problems in each level, that is, problems that have been
shown to be noncomplete in reasonable relativizations [BlGu 82], that is,
relativizations in which statements that are strongly believed to be untrue
do not become true and vice versa.

The former complete problems fall roughly into three categories: opti-
mization problems ([PaYa 82], [PaWo 85] [Wa 86] [BuHa 88]), critical prob-
lems ([PaYa 82], [CaMe 86]), and “definitional” problems i.e., problems that
are constructed directly from the various definitions of the hierarchy ([CaHe
86], [K6ScWa 87], [BuHa 88]). The latter noncomplete problems are based
on counting ([GuWe 86, 87]) and are generalizations of the unique solution
problems introduced and studied in [PaYa 82] and [BlGu 82]. We give a short
background and description for example problems in each of the categories

named above.

NOTE: in the remainder of this section, “completeness” will mean <2 -
completeness, and we will denote the k" level of Boolean hierarchies defined
by all of the truthtables of Definition 3 as NP[k], and its complement as
co- NP[k|. This uniform notation will be justified by Theorem 5.

Optimization problems.
In an early attempt to classify combinatorial optimization problems by

complexity, it was demonstrated in [LeMo 81] that the “exact optimum”

problems listed below are in AY — (NP U coNP) unless NP = coNP. Subse-

15

quently, the class NP[2] was brought into use in [PaYa 82] (and denoted as
D) when these exact optimum problems and many other natural problems
were shown to be not only in, but also complete for this class (see also [PaWo

85]). Below, we list some of these problems.

EXACT OPTIMUM TSP ROUTE.

Instance: An m x m distance matrix denoting the (integer) weights on the
edges of a complete graph, and an integer, M.
Question: Is it true that the optimum TSP route has cost M?

Status: Complete for NP|[2].

Other exact optimization problems that are complete for NP[2] include EX-
ACT MAXIMUM CLIQUE, EXACT MINIMUM VERTEX COVER and
EXACT CHROMATIC NUMBER which are defined in the obvious manner.

Another natural class of problems that was shown (in [PaYa 82] and
[PaWo 85]) to be complete for NP[2] is the class of “facets of optimization”
problems. Roughly, a combinatorial optimization problem such as finding
the OPTIMUM TSP ROUTE in a n-vertex weighted complete graph, or the
MAXIMUM CLIQUE or MINIMUM VERTEX COVER of a given graph
typically requires the minimization of a linear functional over a finite set of
points (of cardinality at least exponential in n) in n-space. This turns out
to be equivalent to minimization of the functional over the convex hull of
the same set of points. Hence the complexity of the problem now rests on
how hard it is to list, in a nonredundant fashion, the linear (in)equalities
that represent the facets of the convex polyhedral feasible region. Thus,
it was shown in [PaYa 82] that given an NP-optimization problem and an

inequality, the question: “does the given inequality represent a facet of the

16

convex feasible region for the given optimization problem?” is complete for

NP[2]. We give an example below in our standard format.

TSP FACETS.
Instance: A complete graph, G, with edge weights and an inequality, .

Question: Is it true that I represents a facet of the convex feasible region for

the OPTIMUM TSP ROUTE problem?

Status: Complete for NP|[2].

Other problems such as CLIQUE FACETS and VERTEX COVER
FACETS can be defined in an analogous manner, and are also complete for

NP[2].

We now turn our attention to systematic generation of complete opti-
mization problems for NP[k], given an arbitrary k. This was achieved in [Wa
86] and [BuHa 88| by generalizing the definition of exact optimum problems

as follows.

APPROXIMATE OPTIMUM ASSIGNMENT SATy.

Instance: A Boolean formula, F, in variables, zy,...,x,, and a set, $ C N,
(resp. S C{finite intervals [a,b] : a,b € N}) such that |S| = k.

Question: If the satisfying assignments for F' are viewed as n-bit binary num-

bers (whose most significant bit is the assignment for z;), does the maximum

assignment of F' belong to S (resp. belong to one of the intervals in S)?

Status: Complete for NP[2k].

The APPROXIMATE OPTIMUM}, problems for VERTEX COVER,
CLIQUE, INDEPENDENT SET, TSP, etc are all defined in the obvious

17

manner and are all NP[2k]-complete. The following sequences of complete
optimization problems (from [Wa 86] and [BuHa 88]) have a slightly different

flavor.

APPROXIMATE OPTIMUM CLAUSE 35AT}y.
Instance: A 3CNF formula, F' and a set, S C N, such that |S| = k.

Question: Is it true that the maximum over all assignments - of the number

of satisfiable clauses of F' - belongs to S7

Status: Complete for NP[2k].

EVEN MAXIMUM ASSIGNMENT PREFIXj.
Instance: A Boolean formula, F, in variables, xy,...,z,.

Question: Is it true that the variable with the maximum index among
xy,...,r - that is assigned 1 by some satisfying assignment of F - has

an even index?

Status: Complete for NPk].

Critical problems.

Detecting if a given graph is critical with respect to a certain property
is a frequently occurring problem in graph theory: a critical graph is one
that does not (resp. does) have a certain property, but deleting any node
or edge creates a graph that does (resp. does not). To a large extent, a
characterization of the class of critical graphs for a property yields a char-
acterization of the property itself. The following examples were shown, in
[PaYa 82], to be complete for the class D¥ (which was later shown, in [WeWa
85] and [K6ScWa 87], to be identical to various other definitions of NP[2] or
the second level of the Boolean hierarchy over NP).

18

MINIMAL HAMILTONIAN GRAPH.
Instance: A graph, G.

Question: Is it true that G 1s Hamiltonian but removing any single edge from

G creates a graph that is not Hamiltonian?

Status: Complete for NP|[2].

MINIMAL HAMILTONIAN DIGRAPH.
Instance: A directed graph, G.
Question: Same as above.

Status: Same as above.

CRITICAL INTEGER PROGRAMMING.
Instance: A linear system of inequalities, T' =40y Az <b

Question: Is it true that 7" has no integer solution but omitting any single

inequality from T creates a system that has?

Status: Complete for NP|[2].

Notice that the membership of the above problems in NP[2] is rather trans-
parent. Therefore, the major part of the work in [PaYa 82] goes into proving
that the above problems are complete for NP[2]. The same paper stated the
following problem as an example in NP|[2], but expressed the belief that prov-
ing its completeness would be difficult. A proof of completeness appeared

later, in [CaMe 86].

MINIMAL 3-UNCOLORABILITY.

Instance: A graph, G.

19

Question: Is it true that G i1s not 3-colorable, but omitting any single vertex

from G creates a graph that is?

Status: Complete for NP|[2].

In addition, it was proved in [CaMe 86| that the above problem is complete
for NP[2] even if it is restricted to planar graphs that consist of vertices with

degree at most 5.

Definitional problems.

Following a straightforward result in [CGHHSWW 88|, and results in
[WeWa 85] and [K6ScWa 87] about the equivalence of the various hierarchies
of Definition 3 (see Section 1.3, Theorem 5), complete problems for each level
of the Boolean hierarchy over NP can be systematically generated by just
replacing the base sets for any of the hierarchies in Definition 3 by an NP

-complete set, as in the next three examples from [CGHHSWW 88|, and
[K6ScWa 87].

GENERIC COMPLETE PROBLEM; .
Instance: A k-tuple, (1, 22,...,2¢).

Question: Let X be an NP-complete set and t; be any one of the truthtables

in Definition 3; does tx(cx(x1),...,cx(xg)) evaluate to 17

Status: Complete for NPk].

In particular, replacing tx by the Parity, truthtable, and X by SAT in the

above, yields the following complete problem.

PARITY 4T,

Instance: A k-tuple of Boolean formulas, (z1,z3,...,2%).

20
Question: Does Parity,(csar(x1),...,csar(zr)) evaluate to 17

Status: Complete for NPk].

The following problem is a modification of the above problem by including
a truthtable specification with the input. The status of the resulting problem
follows directly, and is independent of the representation of the truthtable.

We state the problem, however, for a full truthtable representation.

FULL TRUTHTABLE;*".

Instance: A (k + 1)-tuple, (24,21, 22,...,2), where 4 encodes a full
truthtable, ¢, with k variables, and zy, ..., x; are Boolean formulas.
Question: Does t(csar(x1),...,csar(xr)) evaluate to 17

Status: Hard for NP[k]; in NP[k+ 1] N co-NP[k + 1].

The next three examples, from [CaHe 86], and [BuHa 88] are not generic
problems, but are more “natural.” Their completeness follows in a straight-
forward fashion from the different definitions of the hierarchy and either from

well-known reductions between NP-complete problems (as in
VERTEX COVER;y, below) or the completeness of critical problems ([CaMe
86]) for NP[2] (as in ODD COLORABILITY i, below).

ODD COLORABILITY .
Instance: A graph, G.

Question: Let k& € N; does G have an odd chromatic number that lies
between 3k and 4k7

Status: Complete for NPk].

21
VERTEX COVER;.
Instance: A tuple, (G,1), where G is a graph and [is an integer.

Question: Let k € N, and let k be odd; does G have a minimum vertex cover
of size [+ 1+ 1 for some 0 < 7 < k? (For k even: does G have a minimum

vertex cover whose size is either < [or equal to [+ ¢ for some 0 < ¢ < k7

Status: Complete for NPk].

ODD SAT PREFIXj.
Instance: A Boolean formula, F, in m variables, x1,..., Ty,.

Question: Among the first k variables, z;,...,z, are there an odd number

that are assigned 1 by some satisfying assignment of F'7

Status: Complete for NPk].

Example problems for nonconstant query classes over NP.

The authors of [BuHa 88], [K6ScWa 86|, and [Wa 86] were quick to
point out a by-product of finding sequences of complete problems going up
the levels of the Boolean hierarchy over NP: the limits or w-jumps of these se-
quences turn out to be complete problems for different nonconstant bounded
query classes over NP, for example, PN = AP PNP[log n] = P)F (by

Theorem 7, Section 1.3), and P} ¥[log n].

GENERIC COMPLETE PROBLEM,,.
Instance: A tuple, (m,z1,22,...,Tm).

Question: Let X be an NP-complete set and t,, be any one of the truthtables

in Definition 3; does t,,(cx(z1),...,cx(xm)) evaluate to 17

Status: Complete for PY T .

22

PARITY 24T

Instance: A tuple, (m,z1,22,...,2y), where z1,..., 2, are Boolean formu-
las.

Question: Does Parity,,(csar(x1),...,csar(xy)) evaluate to 17

Status: Complete for PY L.

The following shows that the w-jumps of two sequences of problems - both
complete for the levels of the Boolean hierarchy over NP- are complete for

different nonconstant query classes over NP.

FULL TRUTHTABLE>AT.

Instance: A tuple, (x4, 21,22,...,&m), where z; encodes a full truthtable,
tm, with m variables, and xy,...,z,, are Boolean formulas.
Question: Does ty,(csar(x1),...,csar(xm)) evaluate to 17

Status: Complete for P [0(log m)]
Next we list the w-jumps of a few optimization problems.

APPROXIMATE OPTIMUM ASSIGNMENT SAT,,.
Instance: A Boolean formula, F, in variables, zy,...,x,,, and a finite set,
S C N (resp. S C{finite intervals [a,b] : a,b € N}.)

Question: If the satisfying assignments for F' are viewed as m-bit binary
numbers whose most significant bit is the assignment for z;, does the max-
imum assignment of F belong to S (resp. belong to one of the intervals in

S)?

Status: Complete for PY L.

23

The APPROXIMATE OPTIMUM,, problems for VERTEX COVER
CLIQUE, INDEPENDENT SET, etc are all defined in the obvious manner
and are all P}F-complete. In fact, the set, S, in these examples could be

infinite in certain special cases. Examples follow.

ODD OPTIMUM ASSIGNMENT SAT.,.
(or (0 MOD b) OPTIMUM ASSIGNMENT SAT_).

Instance: A Boolean formula, F, in variables, xq,...,Z,.

Question: If the satisfying assignments for F' are viewed as m-bit binary

numbers whose most significant bit is the assignment for =1, is the maximum

assignment of F' odd (or 0 mod b; b fixed)?

Status: Complete for PY L.

The ODD OPTIMUM,, problems for VERTEX COVER, CLIQUE, INDE-
PENDENT SET, etc. are all defined in the obvious manner and are all P} -
complete. In addition, the APPROXIMATE OPTIMUM CLAUSE 35AT,,,
ODD OPTIMUM CLAUSE 35AT, and the EVEN MAXIMUM ASSIGN-
MENT PREFIX,, problems are the w-jumps of the corresponding sequences
of optimization problems mentioned earlier, and are also complete for Pj'F.

It is interesting that APPROXIMATE OPTIMUM TSP, and ODD
OPTIMUM TSP, however, are PV -complete, thus providing an instance
where the w-jumps of two different sequences of problems, both complete for
the levels of the Boolean hierarchy over NP, can be complete for different
nonconstant query classes over NP. The main reason for this is that to deter-
mine the cost of the optimum TSP route, one needs to perform binary search
on the interval in which the cost may lie, and the length of this interval may

not be polynomially bounded in the size of the instance. However for the

24

the problems of the previous paragraph, such a polynomial bound does exist
on the length of the search interval.

It should be noted that many of the above problems have been listed in
papers that are not specifically concerned with the levels of Boolean hierarchy
over NP (e.g., [Ka 87], [Kr 86] [Pa 82]). As a result, their significance - as the
limit points of underlying sequences of complete problems for the levels of

the Boolean hierarchy over NP - is not explicitly mentioned in these papers.

The next two problems are additional examples from [Pa 82] and [Ka
86] and have a different flavor. These are “unique optimum” problems and
although they resemble counting problems (described in the following subsec-
tion) they are fundamentally different in that they are complete for noncon-
stant bounded query classes over NP, while counting problems are generally

believed not to be complete. The first of the problems below was mentioned

in [Pa 82] and the second in [Ka 87].

UNIQUE OPTIMUM TSP.
Instance: A complete weighted graph, G.

Question: Is there a unique TSP route in G that is shorter than all other
TSP routes?

Status: Complete for PVP.

UNIQUE OPTIMUM CLAUSE SATISFIABILITY.
Instance: A CNF formula, F.

Question: Is it true that all assignments that satisfy the maximum set of

clauses of F' satisfy the same set of clauses?

Status: Complete for PY T .

25

The next problem appears in [Kr 86] as an example of an optimization prob-

lem in P} ¥'[log(log n)+ O(1)], but the question of its completeness is open.

ODD OPTIMUM BIN PACKING.

Instance: A finite set, F, of items, an integral size for each item, and a
positive integer bin capacity, b.
Question: Is it true that the minimum k - such that F' can be divided into

k disjoint sets each of which has total size at most b - is odd?

Status: In Py T[log(log n) + O(1)].

Counting problems.

Variants of the problem of counting the number of satisfying assignments
of a given formula have been studied in different contexts and are scattered
over a wide range of complexity classes. In [PaYa 82] the following counting

problem was first stated as an example in NP[2].

UNIQUE SAT.
Instance: A Boolean formula, F'.
Question: Does F' have exactly one satisfying assignment?

Status: Hard for coNP; in NP|2], relativizations exist in which the problem

is not complete for NP[2].

An interesting result followed in [BIGu 82] showing that there are reason-
able relativizations in which UNIQUE SAT is not complete for NP[2], and
yet NP = coNP. In subsequent papers, [CaHe 86], and [GuWe 86,87], the
UNIQUE SAT problem was generalized to yield counting classes with differ-

ent “finite acceptance types.” These classes are intertwined with the levels of

26

the Boolean hierarchy over NP and hence provide examples (given below) for
all the levels. Furthermore, [GuWe 87] gives a generalization of the result in
[BIGu 82] that provides relativized evidence that all of these counting prob-
lems are probably not complete for their corresponding levels of the Boolean

hierarchy over NP.

SAT ASSIGNMENT COUNTY.

Instance: A Boolean formula, F, and a finite (cofinite) set, S C N, such that
S1 =k (IS] = k).

Question: Does the number of satisfying assignments of F' belong to S7

Status: Hard for coNP; in NP[k], relativizations exist where the problem is
not complete for NP[k].

Counting problems in nonconstant bounded query classes over NP.

Examples of counting problems in the nonconstant bounded query class
PHT appear in [Ka 87]. These problems fall under the “unique optimum?”
class of problems some of which were listed earlier in this section as opti-
mization problems that are complete for other nonconstant bounded query
classes (e.g., UNIQUE OPTIMUM TSP - complete for PN¥ and UNIQUE
OPTIMUM CIAUSE SATISFIABILITY - complete for PYF). The unique
optimum problems listed below, however, are believed to behave more like
counting problems as apparent from an open question posed in [Ka 87] that
asks whether relativized results analogous to [BlGu 82] can be obtained to

give evidence that the following problems are not complete for PP,

UNIQUE OPTIMUM ASSIGNMENT SAT.

Instance: A CNF Boolean formula, F.

27

Question: Is it true that there is a unique assignment of 0’s and 1’s to the

variables of F' that satisfies more clauses of F' than any other assignment?

Status: Hard for coNP; in PYP.

Other problems such as UNIQUE OPTIMUM CLIQUE, UNIQUE OPTI-
MUM VERTEX COVER and UNIQUE OPTIMUM COLORING, defined
in the obvious way, are also in P ¥ but have not been proven complete. It
is probable ([Ka 87]) that relativized evidence exists for their noncomplete-
ness.

To illustrate how different variants of the same unique optimum problem
can behave quite differently, we give two examples from [Ka 87]. The first
is complete for PJ'Y, (reduction to UNIQUE OPTIMUM CLAUSE SAT)
although it is a variant of the UNIQUE OPTIMUM CLIQUE problem. The
second behaves like a counting problem (i.e., completeness proofs seem un-

likely) but is a variant of UNIQUE OPTIMUM TSP which is complete for
PNP,
UNIQUE OPTIMUM GROUPED CLIQUE

Instance: A graph, G, partitioned into maximal independent sets.

Question: Is it true that all maximum cliques of G contain vertices from the

same collection of independent sets from the given partition?

Status: Complete for PY L.

UNIQUE OPTIMUM BOUNDED TSP

Instance: A weighted graph, G = (V, E), with edge weights bounded by a
fixed polynomial in |V].

Question: Is it true that there is a unique optimal TSP route in G?

Status: Hard for coNP; in PYP.

28

1.3. The Boolean hierarchy over NP:

properties.

In this section we will give proofs for the known properties of the Boolean
hierarchy over NP, and point out the hidden assumptions in these proofs that
are specific to fixed truthtable reducibilities of constant norm, and to the base
class NP. Furthermore, we will set up some of the notation required in these

proofs in a unified manner in order to facilitate the exposition in Chapter 2.

Robustness: equivalence of the various definitions.

The next theorem from [K6ScWa 87] and [WeWa 85] shows that the
four Boolean hierarchies in Definition 3 are equivalent. More generally, this
theorem characterizes the Boolean functions, ¢, for which the classes, t{NP],
are contained in the k‘* level of the Boolean hierarchy over NP. The proof
uses the concept of “mind changes” of Boolean functions first introduced
in recursion theory by Putnam [Pu 65]. This concept was first used in a
complexity theoretic setting by Beigel to relate adaptive and nonadaptive
constant query classes ([Be 87a], Theorem 7, this section).

For the following theorem, we will be interested in various orderings of
the variables of the truthtables. Orderings will be used to define “mind-
changes” of truthtables, that in turn are used as a means to find mappings
between truthtables. Such mappings will be necessary to establish unique-
ness and equivalence of the classes based on these truthtables. We will expend
some effort here in setting up the notation carefully in order to facilitate ex-
position in later sections. A concrete ordering of a truthtable with k variables
is just a permutation of the set, {1,2,...,k}. We use the term “concrete” to

differentiate between specific orderings and ordering functions that will play

29

a role in Chapter 2.

We leave the readers to supply their own definition, but we observe that
any permutation of {1,2,...,k} can always be realized with a complete table
of (bit) length roughly klog k.

For any ordering, O, of the variables, z1, 22, ..., 2k, and for any value,

1 <t <k, we define Ordp (i) as the position of the variable, z;, in O.

Definition 4:

Let tx be any finite truthtable with k variables and associated ordering O of
{1,2,...,k}. We denote the length k vectors or k-tuples of all zeroes and of

all ones by 0 and 1y, respectively, and often drop the subscript, k, when
the context is clear. We denote the function that counts the number of ones
in a Boolean vector, b, by #1(b). Suppose that a = (a1,...,ar) and b =

(b1, ..., by) are Boolean vectors with all a; < b;. We say that t; changes its

mind from « to Z if tk(g) #* tk(Z) In addition we let ,utk,o(g,i) denote

the number of mind changes of ¢; that have been obtained just after ¢ bits

are flipped from 0 to 1 when transforming 0 to b, where the transformation

is accomplished one bit at a time, always flipping a “0” to a “1” in the order

—

specified by the ordering, O. We frequently abbreviate 1, o(b,#l(Z)) to

—

simply 14, 0(b). By convention, for j > #1(2), we define p¢, o(b,j) to be

—

simply s, ,0(b, #1(b)).
Perhaps the most important thing to notice about mind changes is that

for any order, O,

tk(bl,...,bk): tk(O)—I—/,Lt’o(b) mod 2.

30

and furthermore,

Since in calculating ps, 0(b), we always are interested in the pairs, (O, Z>, it
will be useful to combine such pairs as follows: A partial concrete order-
ing is a function, 7, that maps some number, j, of elements of {1,2,... k}
to 0 and the remaining k — j elements of {1,2,...,k} in a one-one fashion to
{1,2,...,k — j}. (A concrete ordering is then just the special case in which
J = 0.) For any partial concrete ordering, 7, we denote by a, that Boolean
vector that has its j'* bit, Zr,]‘, equal to 0if 7(3) = 0 and Zr,j equal to 1 if

7(7) > 0. We shall use the notation, /,Ltk,,-(g,-), in the obvious manner. That

is, /,Ltk,,-(g,-) is the number of mind changes of t; in going from 0 to ZT in

the order determined by (the nonzero portion of) 7. .

It is not hard to see that there are at most O(2¥1°8 ¥) partial concrete order-
ings of {1,2,...,k}. For our purposes in the following proofs, these must be
coded into strings or integers in some “nice” way, so that the encodings are
“easily” recognized. Equally important, we require of these codings that all
of the partial concrete orderings of {1,2,...,k} be coded as strings of length
roughly less than 2%1°8 ¥ By leaving details to the reader, we are now ready
to state the theorem. Although we state the theorem for the specific case of
the base class NP, in Chapter 2, we will examine the assumptions made in
the proof that are specific to NP, show that they can be dispensed with and

therefore demonstrate that the theorem holds independent of the base class.

Theorem 5:

31

—

1. ([WeWa 85]) Let s and t be arbitrary Boolean functions and let s(0)

—

= t(0), and let 7 denote any concrete ordering of the arguments of s and ¢.

Then
maz {jis,r (1)} = maz,{ju-(1)} = s[NP] = t[NP],

and

mawr{/,L&,.(T)} < mawr{pt,T(T)} = s|[NP] C {[NP].

2. ([K6ScWa 87]) Recall the Boolean functions of Definition 3. For all

Diff {[NP] = gi[NP] = g} [NP] = h,[NP].

Proof:

We demonstrate a mapping between the truthtables, s and ¢, under
the conditions given on their maximum number of mind changes over all
orderings, 7. The proof consists of two parts denoted &. The first part shows
that there is a special sequence of fixed truthtable reductions, {A\m special ,, },

such that for any truthtable, s,

m > maw,.{,us,,.(T)} = s[NP] C special ,,[NP].
The second part shows that for any truthtable, ¢,

m < maw,.{/,bt,,.(T)} = special ,,[NP] C t{NP].

The latter implication in Part 1 of the above theorem follows directly, and
the former implication follows simply by conducting the above argument

in the reverse direction, from t to s. Part 2 follows since for each of the

32

—

truthtables, t; of Definition 3, #4(0) = 0 and maz,.{,utk,,.(T)} = k (for
illustration, consider the parity, truthtable: a standard left to right ordering

— —

of the variables gives k mind changes from 0 to to 1.

e Let s be any k-ary Boolean function and let X be a set in s[NP]. By
Definition 2, the set, X, can be defined as:

ex(z) = s(eyr(f(z, 1), ey (fla, k), ()

where f is a function computable in polynomial-time and Y’ € NP. We will

prove that there is a set, Y, such that

1.
m“IT{HS,T(T)} _
ex(z) = >, levGo)] 4 s(0) mod2, (#)
=1
2.
VaVe [ey (i + 1,2) < ey(e,2)], and
3. Y € NP.

All of these requirements will define the special truthtable reduction,

special ,, that satisfies:

m > maw,.{,us,,.(T)} = s[NP] C special ,,[NP].

It is clear that to establish Requirement 1, it is adequate to define the set,
Y, in such way that for every choice of x there is some concrete ordering, 7/,

of the arguments, {1,2,...,k}, of s such that

mafT{NS,T(T)}

S lev(ia)] = py ey (@, 1), eyi(f(e, k).

=1

33

We will define Y to be
Y =45 {(it,2): for some concrete ordering, 7', of {1,2,...,k}

there exist at least ¢ mind changes of s

between 6 and
(CY’(f($7 1))7 tee JCY’(f(:EJ k)))}
Notice that Requirement 2, namely the monotonicity of the function, cy, is

satisfied, and since cy (7, z) is always 0 when ¢ > maz{y, (1)}, the sum
in Requirement 1 is justified by the above definition of Y. As an aside, we

could in fact have replaced the preceding inequality by

i > maz {mazg{p,,.(5)}},

to give a more succinct summation, and meet a stronger Requirement 1,

since

V1 [maxr{maxg{,us,,.(Z)}} < mawr{/,L&,.(T)}.

It remains to locate Y in NP. We give the following NP algorithm for

Y.

Input: (i,)

Guess: a concrete partial ordering, 7, of {1,...,k}.
Check:

—

1. does there exist at least : mind changes of s between 0 and .7 and

ii. does 7 satisfy:
i lar=1 = cyi(f(z.4)) =1]7

In other words, for all j such that Z,.,j: 1, does Y accept f(x,7)?

(#88)

34

The first check takes at most k time steps, and the second check is a posi-
tive membership question to ¥’ and simply requires the running of the NP

algorithm for Y.
o We will now show that for all sets, X, if there is a set, ¥ € NP, such
that the special,,-reduction:
ex(z) = Z [ey(i,2)] 4+ initval mod 2,
=1
where m and initval € {0,1} are constants; and the set, Y, satisfies

VaVi [ey (i + 1, 2) < ey(z,2)],

then for any truthtable, ¢,

[m + initval < ma:p,.{/,Lt,,.(T)} + t(a)] = X € t[NP].

Assume that t is a [-ary Boolean function, and let O be the (total) order-

ing (that value of 7) that maximizes p -(1). We will obtain the above result
by performing a simple substitution of the values of ¢y into the arguments

of t.

The truthtable ¢, with its variables ordered by the ordering O has enough

mind changes to do a mod 2 count of the values (¢, z) for which the value of

cy(i,2) s “1,” since m < maw,.{/,Lt,,.(T)}. Hence, if we substitute
cy(Lz),...,ev(Ll,2),ev(2,2),. .. ev(2,2),...,ey(m,x),...,cy(m,x)

into the variables for ¢ in the order dictated by O, beginning the substitu-

tion of the next new variable at the position where the next mind change

35

of t occurs, then ¢, with these substitutions, must give a mod 2 count of

—

Yo, lev (7, 2)]. Since for any vector b

—

t(5) = eo(b,0) +10) mod 2,

doing the proper substitutions gives us the required result, provided the ini-

tial values, initval and t(0), are identical, which is assumed in the statement

of the theorem, since in the course of finding a mapping from s to ¢, we

— —

simply substitute s(0) for initval. If the two variables, initval and ¢(0) are
not identical, then we must do enough substitutions to effect one more mind

change. g

Analysis of specific assumptions.

e Equation (f) uses Definition 2 for the class, s|[NP], that is generated
by the truthtable, s. On the surface, the existence of the set, Y’ € NP and
the function, f, use the fact that NP has complete sets.

e The NP algorithm (#4) for the set, Y, explicitly uses nondeterminism.

e Our entire exposition of the above proof is done under the assump-
tion that the truthtables, s and ¢, are fized truthtables, and therefore are

necessarily of constant norm.

The above theorem shows that the k** level of the Boolean hierarchy over
NP is a unique, robust and well-defined class which we will denote as NP [k].
The complement of NP[k] will be denoted, in the usual manner, as co-NP[k].

An examination of the above proof gives the following normal form that

characterizes the class NPk].

Theorem 6: ([WeWa 85])

36

For each k,

NP[k]|={X | Y € NP [VaVi [ey(t + 1,2) < ey (e, 2)] and

ex(z) =35 | ey(i,z) mod2]}.

Relationship to other constant query classes over NP.

Recall from the definition of the Boolean hierarchy, and from the fact
that NP is closed under < -reductions and certain simple operations like
finite unions, that sets in its k" level are reducible to a set in NP by a
fixed truthtable reduction of constant norm (see Definition 2). The following
theorem of Beigel ([Be 87a]) shows that the converse is also true. That is,
any set that is reducible to a set in NP by a truthtable reduction of norm
k, (here the truthtables are not fixed - they depend on the input), lies in
NP[k 4+ 1] N co-NP[k + 1]. In other words the constant truthtable hierarchy
over NP, PYT[k] for k € N, interleaves the Boolean hierarchy over NP.
In addition, the following theorem exhibits a relationship between constant
adaptive and nonadaptive query hierarchies over NP.

Before we state the theorem we first note that when dealing with
polynomial-time or log-space truthtable reductions to NP that are of con-
stant norm, the actual representation of the truthtable is immaterial: the

representation might be a Boolean formula, or a full truthtable.
Theorem 7: ([Be 87a])
For each k,

1. NP[k] U co-NP[k] C Py¥[k] C NP[k + 1] N co-NP[k + 1].

2. PYT[2F —1] = PNP[E].

37

Proof:

1. The first containment in Part 1 is straightforward from Definition
2: sets in NP[k] U co-NP[k] are <P, -reducible to sets in NP (using fixed
truthtables). The second containment is established as follows: replace the
fixed truthtable, s, in the second implication of Theorem 5(1) by a truthtable,
st, that is of constant norm, but is generated in polynomial-time from the
input in the course of a <, -reduction. The existence of the set, Y, exactly
as in the proof of Theorem 5 (Equation ff) follows in a straightforward
manner. Furthermore, replace the truthtable, ¢, in Theorem 5(1) by the
fixed truthtables that generate NP[k] (or co-NP[k].) Then, the second part
of the proof of Theorem 5, namely the substitution of the values of ¢y into

the arguments of the fixed truthtables that generate NP[k] (resp. co-NP[k])

also follows, provided the initial value s5(0) is 0 (resp. 1) for all z. Since,
in general, neither of these requirements are met by all <P -reductions,

we need the additional query in the right hand side of the containment,

PYPIk] C NP[k+1] N co-NP[k + 1].

The containment, P€[k] C PS[2* — 1], is obtained in the straight-
forward manner by gathering all possible adaptive sequences of queries that
correspond to all possible answers from the oracle into a set of 2¥ — 1 non-
adaptive queries, an operation that is viable within polynomial time since k
1s a constant.

The reverse containment is obtained as follows. Consider any set, X,
that is reducible to a set, Y’ € NP, in terms of the set, Y, as in Equation

(#8) in the proof of Theorem 5. Since the function, ¢y, is monotone in ¢, the

k
sum, 2?21_1 ¢y (i,2), can be computed merely by finding that j such that

38

cy(j,z) =1, but ey (5 + 1,2) = 0. However, this “turning point,” j, can be
located by performing a binary search on the interval, [1,2¥ —1], and making

at most k adaptive queries to Y. The result then follows. g

Analysis of specific assumptions.

e The assumptions that are specific to the base class, NP, are identical
to those in the proof of Theorem 5.

e While we dealt only with fixed truthtables in the proof of Theorem
5, here we deal with (constant norm) truthtables that vary with the input.
However, by applying Definition 2, we could restrict ourselves to deal only
with (constant norm) truthtable reductions to a single set, thus allowing an
easy transition from fixed to varying truthtables.

e We assume that the conversion of adaptive queries to (a larger number
of) nonadaptive queries is a polynomial-time process and hence we need the

fact that the reductions that we are dealing with are <! -reductions.

—k—tt

The next theorem was proved independently in [BuHa 88] and [Wa 87a] and
shows that when the base class is NP, general polynomial-time nonadaptive

reductions of constant norm, or §kp_”—1‘eductions do not differ from the corre-

sponding truthtable reductions, or <kP ;-reductions. Furthermore, log-space

and polynomial-time reductions of constant norm over NP are equivalent.

Theorem 8:

For each k,

1. PYP[k] = P{'P[k] = LYP[k] = LYP[k], and

2. LNP[k] = LNP[2F — 1].

39

Consequences of collapse.

The following theorems in [Ka 88] and [ChKa 90] give evidence that
the Boolean hierarchy over NP is proper. They show that if the Boolean
hierarchy over NP collapses to any finite level, then the polynomial-time
PNP[

hierarchy collapses to the level: PN log n]

. The technique used in the
first proof is to show that if the Boolean hierarchy over NP collapses, then
SAT is reducible to a set in coNP by a < -reduction that queries a sparse
oracle in the second level of the polynomial-time hierarchy. The collapse
of PH follows from of an inductive counting technique similar to the ones
used, for instance, in [Ma 82], [Lo 85] and [Ka 87]. Later, the above result
was strengthened in [ChKa 90] leading to a corollary that the collapse of
the Boolean hierarchy over NP to its k'* level implies the collapse of the
Boolean hierarchy over 1" (defined analogously to the hierarchy over NP)
to its k" level. The various standard definitions of the latter hierarchy are

also equivalent, and just as in the case of NP and its k'" level and complement

are correspondingly denoted X¥[k] and co-X¥ k] respectively.

Theorem 9:

For each &
1. ([Ka 88]) NP[k] = co-NP[k] = PH C PNP""liog n],

2. ([ChKa 90]) NP[k] = co-NP[k] = PH C PNP"llog k+1] 45
NP[k] = co-NP[k] = ZL[k] = co-2L[K].

Miscellaneous properties.
The following is a brief sketch of various other properties of the Boolean

hierarchy over NP (mainly relative o some oracle) that were proved in [CaHe

86], and appear in journal form in [CGHSWW 88] and [CGHSWW 89].

40

Theorem 10: ([CGHHSWW 88,89])

1. There exist some relativizations in which the Boolean hierarchy over
NP is proper, and others where it collapses to any chosen level that, in
addition, coincides with PSPACE. In the former relativization, the Boolean
hierarchy over NP has no < complete sets, since such a set would be in
some finite level of the hierarchy, resulting in a collapse. Notice, however,

that any NP-complete set is <} -complete for the Boolean hierarchy over

NP.

2. For a set X and class C' we say that X is C-immune
(C-bi-immune) if X (both X and X) contain(s) no infinite subsets that are
in C. Notice that no set in the Boolean hierarchy over NP is NP|[2]-immune,
since any set in NP[k] is a finite union of NP[2] sets from Definition 3(2),
or NP- or coNP-bi-immune. However, a structural asymmetry between the
levels of the Boolean hierarchy over NP and their complements is apparent
from the following: there exist relativizations in which NP[2] has co- NP[2]-
immune sets. There also exist relativizations in which AZ contains sets that

are immune to the Boolean hierarchy over NP.

3. No proof that relativizes can much improve the result in [KaLi 80]
that if NP has sparse <I-hard sets then PH = XI'. More precisely, no
proof that relativizes can show that if NP has sparse <F-hard sets then
PH = J,cny NPIE].

4. The result in [HalmSe 83] that
E =4.5 DTIME[2°")] = NE =g4.; NTIME[2°(")] <=
NP — P has no sparse sets.

can be extended to show that

NP — P has no sparse sets <

41

Vk NP2k + 1] — NP[2k] has no sparse sets <>
Vk NP[k] — P has no tally sets.

The first equivalence above shows a disparity between odd and even levels
of the Boolean hierarchy over NP that is further supported by the following:
there are relativizations in which no odd levels of this hierarchy have sparse

sets, but all even levels do.

5. While the result in [HalmSe 83] does not differentiate between sparse
and tally sets (the existence of sparse and tally sets in NP — P are equiva-
lent), the second equivalence above does: tally sets can be removed from the
Boolean hierarchy over NP while still leaving other sparse sets in its even
levels. Furthermore, this gap can be narrowed: it is possible to show that
capturable sets - sets that are subsets of sparse NP sets - behave much like

tally sets although they form a richer class.

NP — P has no sparse sets = Yk NP[k] — P has no capturable sets.

1.4. Previous generalizations of the Boolean

hierarchy over ~P.

Recall that one of the the goals of this thesis is to investigate the prop-
erties of extended Boolean hierarchies - Boolean hierarchies generated by
truthtables whose norms are slowly growing functions of the size of the in-
put - over general base classes. In this section, we will will first review those
properties of the constant levels of the Boolean hierarchy over NP that have
been previously generalized to the extended Boolean hierarchy over NP. Fol-
lowing that, we will review results in [Ch 89] on Boolean hierarchies over

general base sets.

42

The extended Boolean hierarchy over NP.

The first problem that arises in studying extended Boolean hierarchies
is to find a consistent and robust definition that is also intuitive. Wagner
([Wa 87a]) uses the following generalization of the normal form of Theorem

6 to define the extended Boolean hierarchy over NP.

Definition 11:

Let r(|z|) be polynomially bounded in |z|.
NP[r] =45 {X | Y € NP [VaVi [ey (i + 1,2) < cy(i,2)] and
ex(z) = E:ﬁf“ cy(i,2) mod 2] }.

We denote the complement of NP[r| as co-NP[r].)

Before we critique the above “normal form” definition and suggest alterna-
tives, we first list some results that support this definition.

The next theorem states that the various natural hierarchies over NP
that are generated - by allowing the Boolean functions in Definition 3 to
have nonconstant norms - are not only equivalent to each other, but also
coincide with Wagner’s extended Boolean hierarchy over NP, thus giving
evidence that his definition is robust. The statement of the theorem is a

minor variant of one proved by Wagner in [Wa 87a).
Theorem 12:
Let r(|z|) be polynomial-time computable from z and polynomially bounded
in |z|, and let
Diff,[NP] =44 {X | 3Y € NP and a function f computable in
polynomaal-time such that f(x) = (z1,...,Tpz))

and cx(x) = Ei(zlfl)q/(xi) mod 2}.

43

Define g,[NP], g.[NP], and h,[NP] (suggested by Cai and
Hemachandra in [CaHe 86]) in an analogous manner based on the functions

in Definition 3. Then

Diff ,[NP] = ¢,[NP] = g.[NP] = h,[NP] = NP[r].

The proof is a generalization of that of Theorem 5.

Analysis of specific assumptions.

e The generalization from truthtables of constant norm to truthtables
of nonconstant, possibly polynomial norms brings to light that our proof for
Theorem 5 makes assumptions about NP that are not really necessary. For
instance, the NP algorithm (§1f) for the set, Y, in the proof of Theorem 5 can
be abandoned in favor of a careful construction of the set, Y, through finite
(approximately 2% : recall that k is the norm of the truthtable s) unions and
intersections of sets in NP that are <Z -reducible to the set, Y. However, in
generalizing the proof to the above theorem, we allow the truthtable, s, to
have polynomial norm, and hence a full use of nondeterminism is required
to show that the set, Y, is in NP.

e By being similarly careful, Definition 2 for the constant levels of the
Boolean hierarchy over NP can be obtained from Definition 1 without using
the fact that NP has <P -complete sets, but merely by using the fact that
NP is closed under reductions simpler than <’ -reductions, such as <Z-
reductions, and under finite unions and intersections. However, the use of the
single set, Y, as opposed to a sequence of sets in the definition of Diff , [NP]
in the above theorem can be justified only by the fact that NP has a recursive

enumeration of machines and has complete sets.

44

The next theorem shows that the interleaving of the constant levels of the
Boolean hierarchy and the constant query hierarchies over NP extends also

to nonconstant levels.

Theorem 13:
1. NP[r] U co-NP[r] C Py F[r] C NP[r + 1] N co-NP[r + 1], for r(|z|)

computable in polynomial-time from z, and polynomially bounded in |z|.

2. PYT[2" — 1] = PNP[r], for r computable in polynomial-time, and

logarithmically bounded.

3. Pi" = Uren NP[n*].

The proofs of Parts 1 and 2 are generalizations of the proof of Theorem 6,
and utilize Theorem 12 instead of Theorem 5. Part 3 follows directly from
Part 1.

The assumptions made in this proof are identical to those made in the

proof of Theorem 12.

Wagner extended Kadin’s collapse theorem for certain “well-behaved” non-

constant levels of his Boolean hierarchy over NP as follows. ([Wa 87b]).

Theorem 14: ([Wa 87b])
Let r(|z|) be a sublinear function such that Min,,[r(mn) = m] is defined
everywhere and computable in polynomial-time (many natural functions r

satisfy this property, e.g, n'/* log(log n)). Then

NP[r] = co-NP[r] = PH collapses to its third level.

We now discuss some of the problems with using Definition 11 for the ex-

tended Boolean hierarchies over general complexity classes.

45

First, the justification for Wagner’s normal form rests on several hidden
assumptions mentioned after Theorem 12 (and Theorem 13) that may be
made in the case of NP, but not in the case of general base classes. It would
be preferable if the definition were more philosophically straightforward and
made intuitive sense independent of whether or not Theorems 12 and 13 hold
for a general base class. Moreover, once such a definition is formalized, it
will be of interest to characterize base classes for which the results mentioned
above do hold.

Secondly, Definition 11 is counterintuitive even when the base class is
NP, for the following reason. The classes NP[r] as in this definition are not
closed under <”_reductions, making them awkward to manipulate. For in-
stance, <P -complete sets for NP[g] may lie in NP|[f] even when the function,
f, grows much slower than the function, ¢, and furthermore, sets in all levels
of this extended hierarchy are < -reducible to sets in sublinear levels. The
reduction just pads the input by a polynomial factor. We discuss this issue
in greater detail with te conclusions at the end of Chapter 2.

Cai and Hemachandra’s suggestion for defining the r'* level of the ex-
tended Boolean hierarchy over NP as h,[NP| (see Theorem 12) partially
surmounts at least the first of the above problems. By using their method,
it is straightforward to define extended Boolean hierarchies over base classes
that have recursive enumerations and complete sets. For general base classes,

however, their definition faces both of the above problems.

Other truthtable reducibilities and base sets.
Recall that our goal not only includes a study of extended Boolean hier-
archies over general base classes, but also the relationship between Boolean

hierarchies and bounded query classes defined over the same base class using

46

a fairly general type of reduction. Here, we review earlier work in [Wa 87a)
and [BuHa 88] on bounded query classes over NP that use log-space instead
of a polynomial-time reductions.

The next theorem is a set of results proved independently in [Wag 87a]
and [BuHa 88] about the relationship between bounded (but nonconstant)
query classes defined using different kinds of nonadaptive reductions, between
reductions that use different kinds of truthtable representations and between

log-space versus polynomial-time reductions.

Theorem 15:
For r(|z|) polynomial-time computable from x and polynomially bounded in
|z,

1. Pﬁvp[r] = ijgp[r] = PYP[r] and

2. Pﬁtp = P} P[0(log n)] and

For r log-space computable and polynomially bounded,

3. L|]|VP[T‘] = Lévfp[r] = LYP[r] = PYP[r].

For r log-space computable and logarithmically bounded,

4. PNPl] = LNPy] = LNP[2r — 1].

5. The class Diff

poty| VP] remains unchanged if the function f in its

definition (see Theorem 13) is required to be log-space computable.
6. Duff 01, [NP] = Uren NP[n*] = PYP = LYY = PNP[O(log n)] =
LYF[0(log n)).

7. PR = L§i = P{"[0(log n)] = Ly "[O(log n)].

Notice that the earlier work on Boolean hierarchies that has been reviewed

so far deals exclusively with the base class NP. In the latter part of this

47

subsection, we review a result of Chang ([Ch 89]) that can be viewed as a
first step towards investigating Boolean hierarchies over general base classes.
He studies Boolean hierarchies over individual sets in NP, with the specific
view of generalizing Kadin’s collapse result ([Ka 87]; see Theorem 9, this
section). His results establish properties of Boolean hierarchies over those
subclasses of NP that contain P but do not behave as well as NP, for instance
the levels of the low and high hierarchies of Schoéning ([Sc 82,83]). We first

define the Boolean hierarchy over individual sets in NP.

Definition 16:
Let X € NP. The following sequence of sets represents the Boolean hierarchy

of sets over X. For each k,

X[Z]{?] =def {<I1,...,$2k> | <l‘1,...,$2k_1> EX[Z]{?—]_] A T2k EY},

and
X[2]€ - 1] =def {<CC1, e 7I2k_1>|<]717 e ,$2k_2> € X[Zk - 2]
V Zop—1 € X}
The complements of the above sets are denoted co-X[k].)

Before we state the theorem, we define the low and high hierarchies of
Schéning ([Sc 82,83]). Let C be the class of sets that are recognized by

(C'-machines with oracle X.
high; ={X | X € NP A ZkP’X _ ZkP’SAT}-

low, ={X | X € NP A APYX = AP}

48

Clearly,

lowg C ml C low; C mg C lowy C ..., and

)

highy C high, C high, C

In addition, Schoning shows that all NP-complete sets are high, and
lowy, = high, = PH = XL

It follows from these results that the first statement in the following theorem

is a straightforward consequence of the second.

Theorem 17: ([Ch 89])
Jk SAT[k] <P co-SAT[k] = PHis finite.
More generally, let X,Y € NP; then

X[k] <P coY[k] = X € lows.

m

49

1.5. A table of results.

The row and column headings in the following table are self-explanatory.
The entries in the table refer to theorems in this thesis: the entries with
asterisks refer to generalizations in Chapter 2, and the remaining entries
refer to earlier results reviewed in Chapter 1. To explain double entries:
while Theorem 12 shows robustness of Wagner’s normal form definition of
the extended Boolean hierarchy over NP Theorem 34 does the same for a
more intuitive definition of the extended Boolean hierarchy over general base
classes, and shows the equivalence of this definition to Wagner’s definition for
the case of NP; and while Theorem 15 considers the special case of log-space
nonconstant query reductions to NP, (instead of the usual polynomial-time
reductions as in Theorem 13) Theorem 35 considers general nonconstant
query reductions to a general base class. Finally, note that Theorem 17 only
considers consequences of the collapse of Boolean hierarchies over base sets
in NP to constant levels, and therefore covers only a small portion of its

place in the table.

50

BH over NP, EBH over NP; EBH over a
constant norm, general norm, general base
poly-time or poly-time or class;
log-space log-space general norm,
reductions. reductions. general
reductions.
Examples, Section Section * Section
Complete 1.2 1.2 2.3
problems.
Robustness, 5) 12
uniqueness. * 34 * 34
Relation-
ship to 7 13 15
<7 and 15 * 35
<ut - *35
Relation-
ship to 8 13 15
<ps and 15 * Page 59
<fur - * 35
Consequence 9 14 17
of collapse.
Miscellaneous 10

properties.

1.6. Other related work on bounded query
classes.

o1

We list various directions of study all of which deal with bounded query

classes and reducibilities, but will not be considered further in this thesis.

e The counting hierarchy over NP was introduced and studied in [GuWe
87] for the purpose of finely classifying the counting problems that are
generalizations of the UNIQUE SAT problem introduced in [PaYa 82]
(see Section 1.2., this chapter). This hierarchy interleaves the Boolean
hierarchy over NP and counting problems can be found in all levels of
the latter hierarchy. However, there is evidence ([BlGu 82|, [GuWe 87])
based on relativizations that counting problems are not complete for
the levels of the Boolean hierarchy over NP, and intuitively clear that
the Boolean hierarchy is too coarse to capture the essence of counting

problems.

e Bounded query function classes over NP were popularized in [Kr 86]
in the context of classifying optimization problems. These classes are
designed for evaluation problems just as the bounded query classes re-
viewed in this chapter are designed for decision problems. These classes
were further studied in [Ga 86], [GaPe 88] and [Be 87a,88¢]. While
the two hierarchies are defined in a similar manner, they behave quite

differently in many aspects.

e P-terse and P-cheatable sets were defined in [AmGa 87] and studied in
[Be 87¢,88a,88¢], [AmBeGa 88|, [GaHeHo 90], and [GoJoYo 88a,b]. A
set X is P-terse (resp. P-superterse) if, for all k, it is not possible
to answer k polynomial-time computable nonadaptive queries to X by
making only £ — 1 polynomial-time computable adaptive queries to X
(resp. any set V). A set X is P-cheatable if there is a k, a set Y and a

polynomial-time computation that determines membership of 2% strings

52

in X by making only k£ adaptive queries to Y. The papers mentioned
above study the relationship of these concepts to traditional concepts
in Complexity Theory, such as P-selectiveness and P-closeness, and [Be
88c¢| considers the consequences of the assumption that NP-hard sets

are not P-terse.

e As mentioned earlier, Boolean hierarchies were first introduced by Ersov
([Er 68,69]) in recursion theory, where bounded query classes were al-
ready well-studied (see [Ro 67]). More recent work on Boolean hierar-
chies, bounded query classes, terseness, cheatability, and other related
notions in a recursion theoretic context can be found in [Hay 78], [Ep
79], [EpHaKr 81], [BeGaHa 87], [BeGaOw 87], [BGGO 87], [Be 88b],
[BeGa 87,88a,b], and [Ow].

e The relationship between bounded query classes over NP, NP compu-
tations with sparse NP oracles, and NP computations with restricted
access to oracles were studied in [BoLoSe 84,85] and [Lo 85|, and later
in [ScWa 87]. Similar studies on polynomial space bounded computa-
tions can be found in [Bo 81], [BoWr 81], [BoLoSe 84], [Lo 85], and
[BaBoSc 85]. Some form of the inductive counting techniques that ap-
peared originally in [Mah 82], and more recently, for instance, in [Ka 87]
figure prominently in most of the former papers. These techniques were
unified in [ScWa 87] and, as an aside, similar techniques were used in
several hierarchy collapse results of [LaJeKi 87], [He 87] and [To 87] that
preceded (and were superceded by) the result proved independently in
[Im 88] and [Sz 87] that nondeterministic space is closed under comple-

ment.

e General properties of constant truthtable reductions to sparse sets was

93

the subject of study in [BoKo 87] and [Ko 88]. More specific investiga-
tions in [Ye 83], [Yap 83], [Wat 88] dealt with the consequence of the
assumption that all sets in NP are reducible to a sparse set by constant
truthtable reductions. The results in these latter papers were recently

superceded by a result in [OgWa 90] that the above assumption is false
unless P = NP,

o4

Chapter 2

Generalized bounded query
hierarchies.

The goal of this chapter is to uniformly establish the relationships be-
tween different bounded query classes that are generated by fairly general
reductions to fairly general base classes; in other words, a uniform gener-
alization of the core results of Chapter 1. As a substantial portion of this
endeavor, we will first define our “fairly general” reductions, §?_re 2 by
specifying the requirements that they satisfy: this will involve a formal spec-
ification of a typical class () of reduction complexities, and of the various
nonadaptive oracle access mechanisms (the only adaptive reduction we will
consider is the Turing reduction, S?—T .) Second, we will specify the require-

ments that our fairly general base classes satisfy, thus enabling us to study

C

the relationships between the classes Q...

;4 as the oracle access mechanism,
red, varies.

Unlike most of Chapter 1, which dealt with constant query classes, this
chapter will provide a uniform treatment of bounded query classes for all
functions, r, that bound the number of oracle queries in the generating re-
ductions, §?_red)

As in Chapter 1, our investigations will be based on the classes and hier-
archies that are generated by the simplest of nonadaptive reductions, namely

Boolean hierarchies. Here however, we will deal with extended Boolean hi-

erarchies, or, in other words, we will give a uniform treatment of constant

95

and nonconstant levels of Boolean hierarchies.

As mentioned earlier, (see Section 1.4), finding a formal definition of ex-
tended Boolean hierarchies that is also intuitive provides a modest challenge.
The normal form definition of Wagner for the extended Boolean hierarchy
over NP (see Definition 11) is not straightforward for arbitrary complexity
classes. Intuitively, we aim for a direct extension of Definition 1 to noncon-

stant levels roughly as follows.

Let t be any of the Boolean functions of Definition 3, (Section 1.1).

For a base class, C, just as we defined
6:[C] =y {X:3X4,..., Xk € C Valex(e) = telex,(2),. . ex, ()],
for constant k, we would ideally like to define
t:[C] =ae; { X : 3X1,..., a wniformly specifiable
infinite sequence of sets in C such that (+)
lex(2) = trgeplex; (@), sex) (@) T}

for arbitrary functions, r.

To make such a definition consistent and meaningful, we need to specify
not only an indexed subclass, {Xi,..., X, ()}, of the base class, C, but
also how the sequence, {ti,...,t,(|2|)}, of Boolean functions is generated.
Therefore, notational issues that are obvious while defining constant levels
of Boolean hierarchies become delicate for extended Boolean hierarchies.

. From the above discussion, it should be clear to the reader that the
substance of this chapter is directed as much towards setting the stage for
the generalization, i.e, finding the right definitions, specifying the extent of
generalization, sorting out the notational issues, et cetera, as towards the

generalization itself.

o6

We note that a very brief abstract of this chapter appears in [BBJSY
89].

Organization.

This chapter consists of 4 sections. As mentioned earlier, the develop-
ment of this chapter revolves around extended Boolean hierarchies. Studies
of classes generated by more complicated reductions are built on this foun-
dation.

Section 2.1 develops the machinery for dealing with general bounded
query reductions, and finds a small set of requirements that bounded query
reductions must satisfy in order to be able to generalize the results of Chapter
1 on polynomial-time reductions (over NP).

Section 2.2 develops the machinery for dealing with arbitrary base
classes (especially for those that do not have complete sets), and formalizes
the requirements that base classes must satisfy in order to be able to gen-
eralize, up to varying degrees, the results of Chapter 1 that were specific to
the base class NP.

Section 2.3 gives a formal definition of extended Boolean hierarchies
that is intuitive and independent of the base class. Furthermore, this section
gives example problems in the constant levels of the Boolean hierarchy over
RP, as a practical motivation for studying Boolean hierarchies over arbitrary
base classes.

Section 2.4 generalizes the core results of Chapter 1 to fairly general
base classes and fairly general reductions, thus establishing the main result
stated in Page 7. Finally, this section concludes with a discussion of certain
unsatisfactory gaps that arise from our definition of generalized bounded

query classes, suggests an alternative adjusted definition, and points out

o7

inconsistencies that show that even this new definition is inappropriate for

specific cases.

2.1. Generalized nonadaptive reductions.

In this section, we formalize what we mean by a fairly general nonadap-
tive reduction, §S_red, by specifying the basic requirements that are satisfied
by a typical class, @, of reduction algorithms. We aim to find the minimal
set of such requirements that still allows generalizations of the core results of
Chapter 1. We will see that these requirements are quite nonrestrictive and,
in particular, permit the class, (), to be any reasonable class of complexity
higher than log-space.

We begin with a definition of a minimal class of functions, @), and pro-

ceed to a definition of Q-truthtable reductions followed by a discussion of

more general nonadaptive reductions.

Definition 18:
A minimal class of functions is any class of functions,) : N — N that:
e is closed under substitution (composition);
e contains a (numerical) successor function that we denote by +1;
e contains the constant function, 0(z) = 0;
e contains the usual pairing functions, (z1,...,2,), and projection func-
tions, p(&1, ..., Tiye..,Tpn) = Ty;
e contains the function, Test(z,y, z,w), that returns z if # < y and returns

wif x > y;

o8

e contains the characteristic function of the predicate that tests, of a
string, y, and an input, x, whether y represents a partial concrete or-

dering of {1,2,...,z}.

If () is any minimal class of functions, a subset B C () is called bounded if

f € B implies that 2/1°8(/) is bounded by some function in Q. .

Note that whenever we explicitly take () to be the set of all functions com-
putable in polynomial-time or in log-space, a natural choice for B would be

the class:

{f:f€Q & Japolynomial p such that f(z) < p(|z])}.

Definition 19:
Let () be any minimal class of functions,
1. A Q-truthtable is a function t € @ that on input x, produces the
representation of a concrete truthtable (Boolean circuit),

t*(x1,22,. .., Ty, (s)), such that

—

e the function, Az t*(0,,(,)), is in the class Q,

e the function, Az, 7 /,th’,.(g,.), that computes the number of mind
changes of t where the variable 7 denotes a partial concrete order-
ings of {1,2,...,v(x)}, is in the class @, and

e the function, v¢(z), that simply counts the number of variables in

t® is in the subclass B.

Often we will only be interested in functions, r, such that v4(x) is bounded
by r(lz]).
2. For sets, X and Y, we write X §?_tt Y and say that X is Q-truthtable

reducible to Y with at most r(|z|) (parallel or nonadaptive) queries to

99

Y if there exists a Q-truthtable, ¢, and a function, f € (), such that

ex(z) = ey (f(z, 1), ev(fz,1m(2)))),

where v(z) < r(]z|). We will use the obvious definition for the non-
adaptive S?—ll_’ S?—bf‘? §?_ftt—reductions and the (adaptive) Turing

reduction, X S?—T Y, and we will sometimes refer to {f(z,%)} as the
set of queries to the oracle, Y, and {cy(f(z,%))} as the set of answers

from Y.

Notice that for any minimal representation of truthtables, such as Boolean
formulas or circuits, and for any @Q-truthtable, ¢, v4(x) is smaller than the
size of the representation of ¢*. In most reasonable complexity classes of
functions, and certainly for those at least as strong as log-space, if we can
compute a function, f in @) then the only thing that stops us from computing
2/ and placing it in Q, is that 2/ is too long to write out. The relations,
12v(®)| < |[t*| 4+ 1, and t € Q, thus motivate the requirement that v, € B.
Furthermore, in any complexity class,), of functions at least as strong
as log-space, given the concrete truthtable, t*, from a Q-truthtable, ¢, one

can always calculate both the number of variables in the truthtable and the

value, tf(ayt(m). (As in Chapter 1, we will denote the vector or k-tuple of

v(x) zeroes or ones, for any function v € Q as 04, or 1,(,) and often drop
the subscript when the context is clear). Thus, in classes of functions like

log-space the functions, v, will automatically be in the bounded subclass B

—

and the function, Az t*(0,,(,)), will automatically be in the class, @, if the

function, ¢, that produces the concrete truthtable is in the class, Q.

60

The situation with respect to the function, Az, 7 /,Ltw’T(ET), is only
slightly more difficult. The concrete truthtable, ¢t*, must itself be produced
by a log-space calculation and v¢(z) < [t*|. Thus from the order, 7, we can
successively produce the sequence of vector substitutions into ¢t* and evaluate
the truthtable as we do the substitutions. Clearly the count of mind changes
can be maintained within log-space. Thus in reasonable complexity classes
of functions,), and certainly for those at least as strong as log-space, the
only necessary requirement for a truthtable to be a)-truthtable is that the
function t* be a function in); the additional conditions “e” are all superflu-
ous. However, as we shall see, special truthtables based on Definition 3, have
such nice properties that the calculation of mind changes may be possible by

ad hoc methods even when the underlying functional class,), is not strong

enough to permit the successive substitutions just described.

On generalized truthtables.

The above discussion makes clear that for classes, (), that are at least
as strong as log-space, the actual representation of the concrete truthtable
in a §g—1‘eduction is immaterial. In other words, §g— and §be—1‘educti0ns
are equivalent. Furthermore, for classes,), that are at least as strong as
log-space, a §?_tt—reduction from a set, X, to a set, Y, is equivalent to
any nonadaptive a §?_H—1‘eduction that permits c¢x(z) to be any function

in @ with r(|z|) answers from Y as arguments. If however, we are inter-
ested in full Q-truthtable or §?tt—1‘eductions, the situation is different but
easily manageable. Intuitively, full Q-truthtables, ¢t €), are functions that
on input, x, generate full, redundant (nonminimal) representations of con-
crete Q-truthtables, t*: evaluating ¢* involves no more than a table look-up,

rather than a general computation of complexity, (). However, it will become

61

clear that for classes,), that are at least as strong as log-space, Sg(Z”)—ftt_
reductions - to the fairly general complexity classes that we will consider -

are equivalent to §g(r.)_ .

,reductions. The readers should convince them-
selves of this once we have specified the restrictions on our fairly general
base classes in Section 2.2.

Therefore, without loss of generality, in the remainder of this thesis, we
will only deal with §g—reductions. In addition, when we refer to a truthtable
we always have in mind a @-truthtable for some fixed minimal class of func-
tions, (). When we mean to specify a concrete truthtable instead of a Q-
truthtable, (a truthtable generating function), we will make sure that the
context is clear.

We now extend the definition of partial concrete orderings and mind

changes for concrete truthtables (Definition 4), to ordering and mind change

functions for general Q-truthtables.

Definition 20:

Let () be any minimal class of functions, and let ¢ be any Q-truthtable. Let
O be a function that on input, z, produces a (concrete) permutation, O,
of the set, {1,2,...,1v4(x)}. We extend the definition of the function, Ordo,
(Definition 4) to the ordering function, O, by defining Ordo(z,t) =4y
(0*)71(i), that gives the “position” of the 7" variable of ¢* in the ordering,
O%. Accordingly, we formalize the notion of mind changes for general Q-

truthtables by defining the mind change function, ;¢ o, by

—

Mt,o($7 b) L) = Mtﬁ,oz(b) 1')7
where the reader will recall that pz oz gives the number of mind changes

of truthtable, ¢*, in going from 6),,7?(1,) to b by flipping ¢ bits in the order

62
dictated by the order, O*.

e We say that the ordering function, O, is a Q-ordering of the truthtable,
t, if the functions, Az, Ordo(z,t), and Az,1 pyo(z, 1,2) are in Q.
e For any Q)-truthtable, ¢, and associated @)-ordering, O, we define the

“maximal mind changes” on input, z, as follows:

—

M = e o — — Ly b, .
azit; o(T) =des maw o Vtu)}{”t’o(r vi(x))}

Recall that the functions, vy, and Az, 7 /,th’,.(g,.), were required to be in @)
for the definition of @)-truthtables. However, if we are dealing with a class,
@, that contains all log-space computable functions, if we can compute both
t* and O® within the class, (), then it will eautomatically follow that both of

the functions, Ordo, and p,0 are in (). Furthermore, since p;,0 < vy, pi4,0

will automatically be in the subclass, B, if it is in). Thus in Definitions

19 and 20, the ezplicit assumptions that the functions, v, Ordo, tx(ayt(w))
and the various mind-change functions be in the classes, B or () are only
needed for very minimal classes, @), of functions. For classes, @), of functions
with reasonable computational power and for any reasonable choice of the

subclass, B, there 1s no way to avoid having these functions in) or in B.

With this background, we make some preliminary remarks on extended
Boolean hierarchies based on any of the special families {\k t;}, of Boolean

functions from Definition 3.

Example 21:

63

1. Let {\k ti} be any of the sequences of k-ary truthtables of Defi-
nition 1.2 and suppose that () is any minimal class of functions powerful
enough that, from the string 1/%l we can produce the concrete truthtable,
ty = tr(|z)» by a function, t,, in the class, . (For example, demanding
that @) contain all log-space computable functions is much more than ade-

quate). Let v¢.(x) = r(]z|) be any integer valued function in the bounded

—

subclass, B. First observe that t¥(0) is always identically 0. These functions
are always in (). Thus, ¢, will be a)-truthtable provided that the function,
Az, T g, (2, E,.), is also in the class, @), for any partial concrete ordering,
7, of {1,2,...,r(]z|)}. For minimal function classes, @, at least as large as

log-space, we have seen that this condition will always hold.

2. For any of these four choices for the)-truthtable ¢, based on Defini-
tion 3, consider the identity ordering, O*(:) = i. It is easy to see that
ptr,o(:c,T,i) =1, for ¢ <r(|z|)
(and of course i, o(z, T, t) = r(x) for ¢« > r(x)). Furthermore, Ordo(z,1) =

i. Thus the functions, Az,7 Ordo(z,i), and Azt /,Ltr,o(:l:,T,i) are trivially
in). Thus for any minimal collection of functions, (), and any function,
vi, € B, the identity ordering is trivially a QQ-ordering for the Q-truthtable,
t,, for any choice of ¢, based on the truthtables of Definition 3. °

2.2. Generalized base classes.

In this section we specify a small set of requirements that is sufficient for

base classes, C, to satisfy in order to permit a generalization of the results

64

of Chapter 1 to extended Boolean hierarchies over C' and to bounded query
classes, Q5 [r] and Q°[r], over C. These requirements are based partly on the
desired intuitive definition of extended Boolean hierarchies (see Equation (%),
this chapter) over general complexity classes, and partly from the analyses
of assumptions made in the proofs of Chapter 1 for constant levels of the

Boolean hierarchy over the base class NP.

Indexing.

The straightforward definition of extended Boolean hierarchies (Equa-
tion (*), this chapter) requires the substitution of arbitrary sets, Xi,...,
X, (|z|)» into truthtables that depend on the input, z. For base classes that
have a complete set, ¥, one can hope to code all of the sets, Xi,..., X, (.,
into Y through uniform successive reductions that are no more powerful than
the associated Q-truthtable. For instance, one could define extended Boolean

hierarchies generated by the @-truthtables in Example 2.4 as

t[Cl =ges{X : Y Q-complete for C and 3f € Q
[ex(z) =t7(ey(f(2,1)),. .. ey (f(z,r(lz]))))] }-

However, for base classes that do not have complete sets, we need a suitable
indexing of sets in the base class so that substitutions into the truthtable are

well-defined.

Definition 22:

An indexed collection, I : S — C,is a collection, C, of sets together with a
function, I, mapping some subset, S, of {0,1}* onto C and a decomposition
of C into | JCk, Cr C Ci41. We use the notation, X, for the set I(j) and

the notation, S¥, for the set of indices, I7![C}], and we often abbreviate the

65

above notation and just refer to the class, C, itself as an indexed

collection. °

Intuitively, for machine based complexity classes, the set, S, is normally
chosen to be just some canonical set of machines each of which accepts a
(not necessarily distinct) member of C, and X is just the set accepted by
the machine, j. Note that, for many base classes, C, like RP, Few P, we
can not reasonably demand that the set, S, of machines that define C' be
easily decidable, or even decidable at all. Then, S* could just be the slice
of machines for sets in €' that run within a certain constructible resource
bound. For example, for NP, S* might be the set of machines running
nondeterministically within time bound |z|*. For another indexed collection,
we might take S to be machines running in nondeterministic time 2%l If
we consider a class like the recursively enumerable sets where uniformity is

not an issue, then for each k, Si might simply be all Turing machines.

Closure requirements.

. From the analyses of assumptions that were made for various results in
Chapter 1, 1t 1s not hard to see that Boolean hierarchies that are built from
base classes (such as NP or RP) that are closed under finite intersection,
union, and <’ -reductions behave in a similar fashion up to constant levels.
In order to generalize these notions, we will need to extend the finite closures
under union and intersection to include closure under appropriate slowly

growing, but infinite, unions and intersections.

Definition 23:
Let () be a minimal class of functions with B a bounded subclass of (). Let

I:S — C = |JCk be any indexed collection of sets. We say that C is

66

fully closed under disjunctions (under unions) if for every k and every
function, u € Q, with range (u) C S* and every function, ¢ € Q, the set, X,
defined by

r€X — \/ z € Xyi(€C) (%)

i<q(z)
is also in C. We shall abuse this notation when the meaning is clear and
write X as Uigq(x) Xu(i)- We say that C' is closed under bounded disjunc-
tions (unions) if for every function, u € Q, with range(u) C S* and every
function, v € B, the set, X, defined by (**) with ¢ replaced by v is also in
C'. Similar definitions hold for closure under full and bounded conjunctions

(intersections). We will say that a sequence of sets, Az X, ;) is uniform in

C if u € Q and range(u) C S*.

In the special cases where the class, (), is the set of functions computable
in polynomial-time or in log-space, we sometimes call full closure under dis-
junctions simply closure under exponential unions, and in this case we call

bounded closure under disjunctions closure under polynomial unions.

Definition 24:

We say that an indexed collection of sets, C = [J C}, is uniformly closed
under bounded conjunctive reductions (from the class, @,) if for all
functions, f € Q, for all k¥ and all functions, u € Q, with range(u) € S*,

and for all functions, v € B, there exists a k' and a function, v’ € Q with

range(u') C S such that for all J

67

We say that the sequence, {\j X,/(;y}, is uniformly reducible to the se-
quence, {Aj X,(;)}, and, as in Definition 23, we often simply say that the

sequence, {Aj X,/(;)}, is a uniform sequence in C. o

Note that any class that is closed under bounded conjunctive reductions is
trivially closed under bounded conjunctions or intersections and under <@-

reductions.

Definition 25:

We say that an indexed collection of sets, C', which contains at least one
nontrivial set, that is, a set that is neither empty nor universal, is uniformly
closed if it is closed both under bounded unions and bounded conjunctive

reductions. °

Example 26:
For each uniformly closed class, C, in the following examples, the reader
should choose a reasonable bounded subclass, B.

1. For both the function class (@) of all functions computable in NC and the
function class (@) of all functions computable in log-space, the base class
(C) RNC (Random NC, defined analogously to Random polynomial-
time, or RP) is uniformly closed.

2. For both the function class (@) of all functions computable in
polynomial-time and the function class (@) of all functions computable
in log-space, the base classes C = NP, NEXPU"¢“" NEXPP°'Y RP,
FewP, and RE all are uniformly closed. Furthermore, NP, NEXP!"™¢"
NEXPP°"Y and RE are also fully closed under (exponential) unions.

3. For the class of functions computable in EXP!meer

NEXP""e" NEXPP°"_ and RE are uniformly closed and are fully

, the base classes

68

closed under unions. For both the function class of all functions com-
putable in EXP""" and the function class of all functions computable
in EXPP°Y the base classes NEXPP°" and RE are uniformly closed
and are fully closed under unions.

4. For the class of total recursive functions, the base class, RE, of all re-
cursively enumerable sets is uniformly closed and is fully closed under
unions.

5. Take @ to be the class of functions computable in polynomial time and
let X be any set in NP. Then the base class, C C NP, of all sets <P X
is uniformly closed and its closure under full unions is contained in NP.
If X isin RP, then the same base class, C| is a uniformly closed subset of

RP, but we cannot be sure that its full closure under unions is contained

in RP.

We will be most interested in proving theorems about extended Boolean
hierarchies built over uniformly closed complexity classes. However, we will
point out how to strengthen these theorems for classes like NP that are also
fully closed under unions. A major goal will be to delineate differences in
Boolean hierarchies built over base classes like RP that are merely uniformly
closed and those built over base classes like NP that are also fully closed
under unions. As we shall see, the extent to which base classes are closed
under more than bounded unions directly influences the ease with which one

can build extended hierarchies up to arbitrary levels.

2.3. Generalized Boolean hierarchies:
definitions and example problems.

69

We are finally equipped with sufficient machinery to define extended
Boolean hierarchies over general base classes. Following this definition, as a
practical motivation for studying such hierarchies, we give example problems
in (constant levels of) the Boolean hierarchy over the class, RP, which is not
as well-behaved as NP: assuming NP # RP, RP has no known complete
problems, no known recursive enumeration of machines, and is not fully

closed under unions, unlike NP.

Definition 27:

Let @) be any minimal collection of functions, and let ¢ be any Q-truthtable,
and I : S — C an indexed collection of sets. Analogous to Definition 1
for the regular Boolean hierarchy, we build classes in an extended Boolean

hierarchy by defining
t[C] =acy { X : 3k, Ju € Q with range(u) C S*Va [ex(z) =

tlf(ch(l)(x), ch(z)(.r), ... ,ch(Vt(x))(:E))]}

As the reader will have observed, we will often not use the functions, v(z),
to define the levels of an extended Boolean hierarchy generated by ¢, but
rather the functions, r(|z|), that tightly bound v4(x). Therefore we formally
define the class of functions, r, that correspond to functions, vy, either in @

or in the subclass, B, of ().

Definition 28:
For a minimal class, @), of functions and its bounded subclass, B, the class,
Qexp, (resp. Bexp) consists of all functions, r, for which r(|z|) = v(x) for

some function v in @ (resp. B.) o

70

Now we are ready to define the rt* level of the extended Boolean hierarchy

based on the truthtables of Definition 3.

Definition 29:

Let C be a uniformly closed class,) a minimal class of functions, and B a
bounded subclass of (), and I : § — C an appropriate indexing of C. Let
{Ak tx} be any of the sequences of Boolean functions of Definition 3. Then

the r*P level of a standard extended Boolean hierarchy over C is denoted

t,[C], and defined as follows.

t,[C] =aey {X :3k Ju € Q with range(u) C Sk

[ex(z) = ti(CXu(l)(x)ach(g)(x)v s 7CXu(r(|$|))($)) I

where t] is the concrete truthtable, ¢,(,)). Notice that we have just defined
Q-truthtables, ¢,, for the Boolean functions of Definition 3, as in Example
21, so that t¥ is merely the concrete truthtable generated by ¢, on input z,

and the function v, (x) is merely the function, r(|z|).)

Example problems.

As a practical motivation for studying Boolean hierarchies over arbitrary
complexity classes, we now give natural examples of languages that lie in the
constant levels of the Boolean hierarchy over RP. These languages are of
particular interest because they represent natural problems that are in BPP
but do not seem to lie in RP.

The Boolean hierarchy over RP obviously contains RP but is contained
in BPP. It is of particular interest because so little is known about sets that
might be in BPP — RP. In [SoSt 77], it was shown that primality testing is

in coRP. More recently, it was claimed in [AdHu 87| that primality testing

71

is also in RP, and hence primality testing is now believed to be in ZPP. As
a consequence, problems such as determining whether a number is perfect
and determining whether a number is Carmichael that were previously con-
jectured to be in BPP — RP ([BaMiSh 86]) are now believed to be in RP.
Here, we give examples of problems that are in the Boolean hierarchy over
RP but seem not to be in RP, thus contributing to renew the belief that RP
is properly contained in BPP.

It follows from results in [BaMiSh 86], [RaSh 88] and the claim that
the set of primes is in ZPP that the sets {z : x is perfect and is the sum
of two integer squares} and {z : x 1s perfect and 1s the sum of three integer
squares} are in RP. These results together with Lagrange’s proof of Fermat’s
well-known conjecture that every integer can be represented as the sum of

four (possibly zero) integer squares, show that

1. {z : x is perfect and is the sum of three integer squares but is not a sum
of two integer squares } is in RP[2], and

2. {x : x 18 perfect and is the sum of four integer squares but is not a sum
of three integer squares }

U {x : x s perfect and 1s the sum of two integer squares } is in RP[3].

Currently there are no known techniques that place either of these two sets
in RP. Of course, we should point out that it is not known that there are
infinitely many perfect numbers (although this is believed to be the case),
and even if there are infinitely many perfect numbers, either of the sets

described above could be empty, although this is believed to be unlikely.

A second, and rather different, collection of problems involving polyno-
mials that are represented by straight line programs can also be shown to

be in the Boolean hierarchy over RP. It was shown in [Sch 80] that checking

72

whether a polynomial, p, represented as a straight line program, is identically

zero is a coRP problem. More formally,

Definition 30:
A straight line program, ®, is an ordered sequence of instructions, Iy, - - -,

Ij(3), such that an individual instruction has one of the following forms:

T — xj + xy;
T < Ty — Ty,
T — T4,
zp — 0;

xp — 1;

where zp, xj, x; are indexed variables and the instructions of the form
z; «— ... and x; « ... appear earlier in the program than any of the above
instructions.

For a straight line program, ®, we will let z,, denote the variable with
greatest index contained in ®, let x¢ denote the value assigned to the vari-
able, x,,, at the end of the computation of ®, and let {(®) denote the number
of instructions of ®. If we allow instructions of the form: x « z; where z is

an indeterminate, then ® describes a polynomial, Pg(z), of degree at most

2l(lI>:)‘ °

With this notation we can now formally describe our next set of problems

the first of which was given in [Sch 80] as an example of a problem in coRP.

IDENTICALLY ZERO POLYNOMIAL.
Instance: a straight line program, ®, with an indeterminate, z.

Question: is Py (z) identically null?
Status: in coRP.

73

EQUIVALENT PROGRAM EVALUATIONS.

Instance : two straight line programs, ®; and ®.
Question: is ¢, equal to ze,?

Status: in coRP.

The second problem can clearly be <P -reduced to the first, so it too is

m coRP.

Further problems involving straight line programs for instance finding
the GCD of the polynomials represented by two input straight line programs,
were shown in [Kal 88] to be in RP.

Next we consider a problem involving straight line programs that is in
RP[2], but is probably not in RP or coRP. More precisely, it was shown in
[BBJSY 89] that the following problem is not in RP U coRP unless the above
two problems fall into ZPP. For a polynomial p(z) = > ;_, apz®, we will
denote the coefficient of z* in p(2) by [2*]p(2).

MONOMIAL PROGRAM.

Instance : a straight line program, ®, with an indeterminate, z.

Question: does @ represent a monomial? L.e., does there exist exactly one k
such that [2*]Ps is not equal to 07

Status: in RP[2].

2.4. Generalized Boolean hierarchies:
properties.

We now generalize some of the results of Chapter 1. First we show that

the definition of extended Boolean hierarchies over arbitrary base classes

74

(Definition 29) is robust, and that one need not have complete sets in the
base class in order to give an “indexing free” definition such as Wagner’s
normal form definition for extended Boolean hierarchies. Second, we show
that the relationship between this hierarchy and adaptive and nonadaptive
bounded query hierarchies carries over from polynomial-time reductions and
the base class NP to all minimal @)-reductions and all uniformly closed base

classes, C.

Robustness.

In the following, we give a generalization of Theorem 5 for extended
Boolean hierarchies over general base classes. In other words, we show that
up to a certain level, Definition 29 is a robust definition of extended Boolean
hierarchies over general base classes, that is, extended hierarchies that are
based on the truthtables of Definition 3 are all equivalent. Furthermore, we
characterize Q-truthtables, ¢, for which the class, t[C], is contained in any
given level of the extended Boolean hierarchy over C.

For base classes that are uniformly closed, the following results char-
acterize and demonstrate robustness of extended Boolean hierarchies up to
levels defined by slowly growing functions. However, these results apply to
arbitrary levels in the case of classes like NP that are fully closed under
unions, thus providing a complete generalization of Theorem 12.

Moreover, these results also show that one need not have complete sets
in the base class, C, in order to give an “indexing free” definition of the ex-
tended Boolean hierarchy over C. In particular, for fully closed base classes,
our definition of extended Boolean hierarchies is equivalent to Wagner’s nor-
mal form definition (Definition 11) for all levels; for base classes that are

merely uniformly closed, this equivalence extends only up to levels that are

5

defined by slowly growing functions, (for instance, in the case of RP, up to
logarithmic levels).

The following lemma proves one direction of the above equivalence by
showing that any set, X, in the class, t[C], generated by an arbitrary Q-
truthtable, ¢, is in fact reducible to a single set, Y, by a reduction that is
based on the parity truthtable. However, the membership of Y in C' depends

on the extent to which C is closed under unions.

Lemma 31:
Consider any @)-truthtable ¢, and uniformly closed complexity class C'. Then
for any set X € t[C], there exists a set ¥ such that

1.

ve(z)

ex(@) = Y fev(i,2)] +1°(0,,0)) mod 2,

=1

2. cy(t,x) > ey(t+1,2), and ey(ve(z)+ 1,2) =0,
3. Y is in the closure of C' under unions bounded by a function in (), and
4. Y € C if C is fully closed under unions, or if 2¥¢1°8(*0) is hounded by a

function in B.

Proof:
Let I : S — C be an indexing of C. By definition of t[C], the set, X,
is definable, using a function, u € Q, with range (u) C S*, as cx(z) =

tx(cxu(l)(:c), ch(2.)(x), . ,ch(Vt(x))(J:)). Thus we must prove that

tw(cxu(l)(x), ch(Q)(J:), ... ,ch(Vt(z))(;v))

ve(z)

= Z [ey(i,2)] + t%(0,,)) mod 2
=1

76

for an appropriate set, Y. From this formulation, it is clear that to establish
Part 1, it is adequate to define the set, Y, in such way that for every choice

of x there is some concrete ordering, 7, of {1,2,... ()} such that

vi(z)

Z; ey (i, 0)] = prer r(ex,) (), €,) (@), ex o) ()

We will define Y to be

Y =45 { (¢,2): for some concrete ordering, 7, of {1,2,...,v(z)}

there exist at least © mind changes of t*

—

between 0 and

vi(z)

(€ 0) (@) Xy) ()X oy (8))

The definition of the set, Y, makes both 1 and 2 obvious.

It remains only to locate the set, Y, in the closure of the class C' under
unions bounded by members of (). We do not know, in general, if the class,
C' admits the power of nondeterminism and therefore we cannot just define
Y by a positive nondeterministic reduction to the set, X, as we could do
in Theorem 5 for the case when C' = NP. Therefore, we perform a rigorous
construction of the set, Y, through uniform bounded unions and intersections

of sets in C.

We begin by observing that for the sequence X1y, Xu(2), Xu(3),---
which defines the set X, the related sequence 7, Z5, Z3, ... given by

Z; =aqes {1} U {x+2:2 € Xy}

is easily seen to be a uniform sequence in C.

77

Define a function f in) by

f(,i,2,7)=0 if /,th’,.(g,.) <1 or T ismnot a concrete
partial ordering of {1,2,...,v¢(x)};
=1 if Mtz’T(ET) >4 and Zr,j: 0 and

T 1s a concrete partial ordering;

=2z + 2 otherwise.
Next define the sets, Y., by
Y: =aer {(i,2): the partial ordering, T, satisfies
(dr=1 = ch(].)(;U) = 1], and
there exist at least 1 mind changes of t*

between 0,,(,) and an }.

Note that for each 7 if (¢,2) € Y,, then there are at least ¢ mind changes
in going from 0,,(,) to ar by flipping only bits in the vector ar, doing so
in the order determined by 7. Furthermore, the definition of Y, guarantees

that if (¢,2) € Y; and Zr’j: 1, then z € X,(;). Therefore,

(i,2) €Y, <= /\ fg,0,2,7) € Zj.
i<r(z)
Because the class C is closed under bounded conjunctive reductions, the
sequence A7 Y; is a uniform sequence in C, it follows that Y, € C.
Clearly, for all partial concrete orderings, 7, we have that Y, C Y, and
furthermore, since the partial concrete ordering, 7, witnessing the contain-

ment can be nonconstructively chosen so that @, happens to be

78

(ch(l)(:l:), ch(Z)(x), . ,ch(Vt(I))(aj)), the set, Y, can be defined by

(i,z) €Y <= (i,2) € U Y.

7 is a partial ordering of {1,2,...,v¢(z)}

~
—_
S—r

Since these concrete orderings are all coded as numbers less than, or equal

to 2vt(2)1og(v(2)) we have that

Y =(i,z) € U Y;.

{5+ < 2ve(@)log((z))y

Thus Y is in the closure of C' under unions bounded by a function in). This

establishes Parts 3 and 4. 3

Notice that in Equation (1), the union can in fact be taken over all evalu-
ations (concrete orderings), O%, of the functions, O € @, and furthermore,
cy(2,z) = 0 for all ¢+ > mazoecg{Mazpso(x)}. Therefore the sum in Part 1

can be written more precisely as

maxOEQ{Mazut’o(z)} .
Cx(x) = Z [Cy(‘i,,lf)] —+ tf(out(x:)) mod 2.

1=1
i From our next lemma, it is easily seen that a full converse to Lemma
31 also holds provided that the set, Y, is actually in the class, C, as it always

must be if C' is closed under full unions or if the function, 2¥¢1°8(*¢) is bounded

by a function in B.

Lemma 32:
Consider any @)-truthtable, ¢, and uniformly closed complexity class, C. Let v

be any integer valued function in ¢} and initvel any Boolean valued function

79

in Q; Y is any nontrivial set in C such that VaVi [ey(i,2) > ey (i + 1, 2)];
and X is any set defined by

v(z)
ex(x) = Z [ey(i,2)] 4+ initval(z) mod 2.

=1
Then, for any Q-truthtable, ¢, and any @)-ordering function, O for ¢,

—

[v(z) < prolz, 1y, vi(z)) + t°(0,,()) + initval(z) mod 2]

= X €t[C].

Proof:

We use the function, Ordo(z, 1), that gives the position of the i'* vari-
able of t* in the ordering, O%, and the function, p¢ o(z, Tyt(z), 7), that gives
the number of mind changes that have occurred just after flipping the 7** bit
in the determination of p o(z, Tyt(w)). Because O 1s a ()-ordering of ¢, both

of these functions must be in the class, ().

The idea of the proof is the same as that in Theorem 5: the truthtable,
t, with its variables ordered by the ordering, O, has enough mind changes to
do a mod 2 count of the values (¢,2) for which the value of ¢y (7,z) is “1.”

Hence, if we substitute

cy(Lz),...,ev(l,2),ev(2,2),...,ev(2,2), ..., ey (v(x),x),...,cy(v(x),z)

into the variables for ¢t* in the order dictated by O, beginning the substitution

of the next new variable each time a mind change of ¢t* occurs, then ¢*, with

80

these substitutions, must give a mod 2 count of Efiﬁ) [cy (2, 2)]. Since for

—

any vector b

— —

tI(b) = /“Lt,o(xv b,l/t(,??)) + tw(out(x))) mod 2,

doing the proper substitutions should give us the required result, provided

—

the initial values initval(x) and t*(0 ,,(,)) are identical. If these two variables
are not identical, then we must do enough substitutions to effect one more

mind change.

Formally, we proceed as follows. First, we define the function v'(z) =4

—

v(x) + initval(x) +1%(0,,()). It is easily seen that v’ € Q. Next, recall that
the function Ordo(z,j) produces the “position” of the j* variable of ¢* in

the order determined by O%. With these two definitions, if we can force

cy(Lz),...,ev(l,2),ev(2,2),...,ev(2,2),...,cy(v(x),x),...,cy(v(x), x)

(11)
to be substituted into ¢* in this order and then flip the bits in this order, then
all of the bit flipping will occur, first in all those places where the Boolean
values are assigned the value “1”, followed by (attempted, but blocked) bit
flipping in all those places where the Boolean values are assigned the value

“0.” This will force the mind changes in this order for this substitution to

reflect the values in the summation ngl) [ey (2, 2)]. Of course, if initval(x)+

—

t*(0,,(z)) # 0, then we need to force one more mind change, so we use v'(z)
instead of v(z) in (7).
To accomplish these substitutions, note that yy o(z, 1,,(2), Ordo(x,j)—

1) is the number of mind changes have occurred just before the j* bit is

flipped. We should be substituting the j** variable during those periods

81

when the mind changes that have been witnessed total 7 — 1, and we should

quit when
Mt,O(xv 1 ve(z)s OTdO(.fL’,J)) > ’U,(CL’).

Since the set Y is not trivial, we let m be some fixed member of Y. To

accomplish the substitutions we have just discussed, we define the function
f(taj) = (,LLt,O(:Ea 1 ve(z)> OTdo(TJ,J) - 1) + 171;) if

Mt,O(I7 1Vt(x:)70rd0($7j)) < T’(.f),
= m otherwise.

By our assumptions on @ and O, the function f is easily seen to be in @),

and we then have that
Mtl)(wv(Ci’(f(lv$))7CY'(f(27x))7"'7c§/(f(yt(x)7$)))vyt(x))

—

v(z)
= Z [ey (2, 2)] + initval(z) + tl’(Oyt(z)) mod 2,
1=1

and thus that

ey (f(z, 1), ey (F(2,2)), . ev (f(e, m(2)))) =

v(z)
Z[Cy(i,l‘)] + initval(z) mod 2.

=1
It is easy to see that the sets, Y}, such that
reY; < f(z,7)eY

are in the class, C, since C' is closed under bounded conjunctive reductions
and therefore trivially under <@-reductions. Furthermore, one can find an
indexing, I : § — C, of the class, C, and define a function, u € (), such that
range(u) € S* for some k and Xu(jy(€ C)=Yj. The result then follows.

82

Now we are ready for a generalization of Theorem 5. The following theo-
rem shows that the number of mind changes of Q-truthtables, t and t', (to-
gether with a trivial check of the initial values of ¢ and ¢') determine whether
t[C] C t'[C], for general base classes, C. For uniformly closed base classes,
equivalence and uniqueness of the lower levels of the extended Boolean hier-
archies defined by the sequences from Definition 3 will be directly established
by a simple count of the mind changes together with a trivial check of the
initial values of the truthtables. For fully closed base classes, these equiv-
alence and uniqueness results extend to arbitrary levels. Furthermore, we
obtain a generalization of Theorem 6 to give an indexing free, normal form
characterization of extended Boolean hierarchies that was used by Wagner
to define this hierarchy over NP (Definition 11).

Before proceeding, one more piece of notation will prove useful in order

to avoid dealing with initial values.

Definition 33:
Let ¢t and t' be any two Q-truthtables. Define the function,

adjustt’t/(x) =def tx(Oyt(w)) + t,I(0) mod 2.

()

(Note that adjust, (z) is always in the function class, Q.) o

Theorem 34:
Let @ be any minimal collection of functions, B a bounded subclass of @,
and let C' be any uniformly closed complexity class.

1. Let ¢t and t' be Q-truthtables. Suppose either that C is closed under

full unions or that v, satisfies 2v¢1°8(¥t) ¢ B. Then, if there exists a

83
Q-ordering, O' for t', such that

—

maonQ{Maw/,Lt’o(ac)} < /,Lt/’oz(ac, 1”t’(f)’yt/($)) + adjustt’tz(:l:),

then
t[C] € ¢'[C].

2. Let t and v; be as in Part 1. Then for any function, r € Bexp, and

any @-truthtable, ¢,, built from any of the four Boolean functions of
Definition 3 (as explained in Definition 29), if

(@) +40,,0)) < r(je]),
then
t[C] C t,[C].

. Let r be any function in Bezp and suppose either that C' is closed un-
der full unions or that 271°8(") is bounded by a function in Bezp. Let

(following Wagner’s definition over NP)

Clr] =aey {X Y € C [VaViley(e+1,2) < ey(r,2)] and
r(|z|)

cx(z) = Y ley(i,z)] mod 2.1}

=1
Then for the Q-truthtables that are based on Definition 3,
mlC] = 4lC] = ¢IC] = Diff,[C] = Cl].

By the same argument, the complements of these classes, which we
denote as co-h,[C], co-g,[C], co-¢L[C], co-Diff .[C], and co-C[r] are also

equal.

84

Proof:
1. From Lemma 31(1,2), for any set, X € t[C], there is a set, Y, such
that

mazOEQ{Mawut’O(x:)} .
ex(z) = > cy(i,2) +t2(0,,(z)) mod 2,

=1
and VaVi [ey (1 + 1, 2) < ey (2, 2)].
Furthermore, from Lemma 31(4) and the conditions on v; required in
this theorem, it follows that ¥ € C. We have now established the antecedents

to apply Lemma 32, and the result follows.

2. We simply replace t' of Part 1 by the Q-truthtable, ¢,, based on
Definition 29. From Example 29, we know that in the case of these -
truthtables, ¢, ,the identity ordering is trivially a Q-ordering, that gives r(|z|)

mind changes between Hytr(z) and Tytr(w) . (v¢,() is nothing but r(|z|)).

—

Therefore, we obtain Part 2 by replacing py or(z, 1 vy (2)) vp(x)) +

adjust, y(x), in Part 1 by r(|z|) and by replacing mazocq{Mazii,0(z)} in

—

Part 1 by the simpler v4(z) plus the initial value, (0 ,,(4))
(since tﬁ(aytr(z)) = 0 always, the latter, in effect, replaces adjust, ; (z)).

3. Part 3 follows directly from Parts 1 and 2. |y

The above theorem justifies our use, henceforth, of the standard Clr] (co-
C[r]) to denote the r'* level of the extended Boolean hierarchy over C' up to
levels appropriate for the specific choice of C. For instance, for the base class,
NP, that is fully closed under unions, r can be any polynomial, whereas for

the base class, RP, that is only uniformly closed, r(|z|) must be bounded by

85

O(log(|x|)loglog(|x|)), for the above equivalence (and standard notation) to
go through.

Relationship to other bounded query classes.

We now give a generalization of Theorems 7 and 8 (and also, in a sense,
Theorems 13 and 15), to extended Boolean hierarchies and bounded query
hierarchies over arbitrary base classes. Since we have already discussed how
fi

<o e reductions, (see Page

to treat S?—bfv §?_”, and <% uniformly as <
59, Section 2.1), we will restrict our investigations in this section to the
bounded query classes generated by §9_tt— and §?_T—1‘eductions. The fol-
lowing theorem holds for all bounded query classes, Q% [r], that are generated
by reductions that have lower complexity than minimal Q-truthtable reduc-
tions. (That is, when the classes, @), are stronger than a minimal class). In
particular, when C' = NP, the classes, Q% [r], can be treated uniformly for
all appropriate classes () that are stronger than log-space. Therefore, the
following theorem is not only a generalization of all the results in Chapter 1
that relate the Boolean hierarchy over NP to different bounded query classes,

but is also a generalization of those results in Chapter 1 that relate log-space

and polynomial-time bounded query classes over NP.

Theorem 35: Let () be any minimal class of functions stronger than log-
space, B a bounded subclass of), r a function in Bezp, and let C' be a
uniformly closed class.

1. If either 271°8(") ¢ Bezp or C is fully closed under unions, then
Clr] U co-Clr] C QS[r(Jz])] € C[r+1] N co-C[r+1].

2. Ifeither 22" € Bezp or C is fully closed under unions and 2"—1 € Bezp,

86

then
QIr(l2])] = Qg[271*V —1).

Proof:
The proof is a straightforward generalization of the arguments in the proof
of Theorem 7.

1. The containment, C[r] U co-C[r] C Q%[r(|z])], follows easily from
the normal form definition of C[r]. (See Theorem 34(3)). The containment,
QSIr(lz])] € Clr+ 1 N ¢o-Clr + 1] follows from Theorem 34(2): re-
place the Q-truthtable, ¢, in 34(2) by the @-computation that generates a
§g_tt—1‘eduction; since the initial values of these truthtables may differ, we
need the leeway of the additional query in the right hand side of the above

containment.

2. The stricter bounds on the function, r are required simply because the
statement involves truthtable reductions with 27(#D) queries. The contain-
ment, Q€ [r(|z])] € QF[27(*D—1],is obtained in the straightforward manner
by gathering all possible adaptive sequences of queries that correspond to all
possible answers from the oracle into a set of 271D — 1 nonadaptive queries,
an operation that is viable within any class, @), that is at least as strong as
log-space.

The reverse containment is obtained as follows. Consider any set, X,

that is reducible to a set, Y' € C, by a Q-truthtable reduction:

CX(f) = tl:(CY’(f(x’ 1))7 s 7CY’(f(:E7 2r(|$|))))7

where t and f are in (). We apply Lemma 31 to find another set, Y, to replace
Y' such that VaVi [ey (¢ + 1,2) < ey (2, 2)], and X is reducible to Y by the

87

standard reduction:

gr(|z])
ex(x) = Z cY(i,x)—}—tl’(ar(WD) mod 2.
=0
Since the function, ¢y, is monotone in :, the above sum can be computed
merely by finding that j such that 1 < j < 272D and ¢y (j,2) = 1, but
cy(j + 1,2) = 0. However, this “turning point,” j, can be located by per-
forming a binary search on the interval, [1,27(#D], and making at most r(|z|)

adaptive queries to Y. The result then follows. j

For the case where () is P and C is NP the above theorem is equivalent to
the known result of Wagner (Theorem 13). When C is RP, however, Part 1
of the above theorem holds for r(|z|) being at most O(log(|z|)loglog(|z|)),
and Part 2 holds when r(|z|) is at most O(loglog(|z|)).

Conclusions.

In the process of proving the main result stated in Page 7 of the in-
troduction, we have put forth a general theory of Boolean hierarchies and
bounded query classes. Along the way, we have achieved an intuitive, in-
dexing free definition of extended Boolean hierarchies even for base classes
that do not have complete sets or recursive enumerations. Although these
hierarchies are well-defined and robust only up to lower levels in the case of
base classes that are merely uniformly closed, for instance, up to logarithmic
levels in the case of Few P and RP, they extend to arbitrary levels in the
case of classes that are fully closed under unions, for instance, NP, NEXP,
RE, et cetera.

Notice, however, that the extended Boolean hierarchies as in Definition

29 are unsatisfactory since the levels of these hierarchies are not closed under

88

<@ reductions. For instance, sets in the r'* level of the extended Boolean
hierarchy over NP may be <P _reduced to sets in a lower, r''* level by a
reduction that simply pads the input and increases its size by a polyno-
mial factor. In other words, as long as there is a polynomial p such that
r'(p(|z])) = r(|z]), sets in the r'* level of the extended Boolean hierarchy
over NP can be <” _reduced to sets in the r''" level. Therefore, one could
argue that the extended Boolean hierarchy over NP is well-defined only up to
sublinear levels as sets in arbitrary polynomial levels can always be reduced
to sets in sublinear levels.

More generally, for an arbitrary base class, C, and the corresponding
minimal class of functions, (), define the class, @)size, as consisting of all
functions, ¢, for which ¢(|z|) = |f(z)| for some function, f in . Then,
for any function, r in Qezp, all sets in the r* level of the extended Boolean
hierarchy over C' can be <%-reduced to sets in the lower, /' level, if there is
a function, ¢ € Qsize such that r(|z]) < r'(¢(]z|)). In other words, one could
argue that the highest level up to which the extended Boolean hierarchy
over C is well-defined is determined by the least function, r’, that satisfies

the following.

Vr € Qexp Jq € Qsize [Vz r'(q(|z])) = r(|z|)].

We can show however, that this unsatisfactory gap in the definition
of extended Boolean hierarchies can be rectified easily and intuitively by
defining each level in such a manner that it is closed under <P reductions.

A precise description follows.

Definition.

Let C be a uniformly closed complexity class with indexing, I : S — C,

89

() a minimal class of functions, and B a bounded subclass of). For each

function, r € Qexp, define the Q-closure of r, denoted rQ, as the class

{r' : 3q € Qsize [r(x]) = r"(q(I2]))] }-
Now for each @Q-truthtable, t, define the (adjusted) class, t*[C], as

t[C] =gey { X : Tk, Ju, f € Q with range(u) C Sk
[ex(@) = #5(ex,) (F@D)exyp F@h o sex ey, ooy @) 11

The r* level, t*[C], of the extended Boolean hierarchy over C is now adjusted
to be merely a collection of levels from the original Definition 12. More
formally,

triC1= |J tulC).

r’ErQ

Furthermore, the adjusted bounded query classes, Q*C[r], are merely the

classes, UTIETQ di[rl]- ’

We note that it is not hard to derive all of the results of Chapter 2 for
these adjusted definitions. What, then, prevents us from using these ad-
justed definitions as standard for extended Boolean hierarchies and bounded
query classes? To answer this question, recall Wagner’s extension of Kadin’s
collapse result (Theorem 14), that the equivalence of two levels of the ex-
tended Boolean hierarchy over NP that are determined by two distinct “well-
behaved” functions results in the collapse of PH.

This gives evidence that at least for the extended Boolean hierarchy
over NP two distinct “well-behaved” levels, for instance, NP[(|z|)'/*] and

NP[(|z])"/**1] are distinct. Hence we would like any definition of extended

90

Boolean hierarchies to distinguish between these two levels in the case of NP
. Unfortunately, however, this criterion is not satisfied by the adjusted defini-
tion given above: since the Q-closure (in this case, polynomial-time-closure)
of both the functions |z|'/* and |z|'/*+1 is the class of all polynomials in |z,
sets from these two distinct levels of the original definition of the extended
Boolean hierarchy over NP are contained in the same level in the adjusted
definition. Therefore, while the new definition may seem intuitive on the
surface, it is too coarse at least for the base class, NP.

The results in this thesis are to a large extent the strongest that one
can obtain about generalized Boolean hierarchies. Stronger questions - for
instance the consequences of collapse, and finding the most appropriate def-
inition for nonconstant levels (from the two discussed above) - will have to
be specific to particular base classes. However, such questions generate in-
teresting open problems. For instance, it will be informative to find the
consequences of the collapse of the Boolean hierarchy over RP, since the
only known examples of problems in BPP — RP lie in the constant levels of

that hierarchy.

91

Bibliography.

[Ad 65] J. Addison, “The method of alternating chains,” Symp. Theor.
Models, North-Holland, (1965), 1-16.

[AmBeGa 88] A. Amir, R.J. Beigel, W.I. Gasarch, “Cheatable, P-terse, and
P-superterse sets,” Tech. Report, Dept. of Computer Science, University of
Maryland-College Park, 2090, (1988).

[AmGa 87] A. Amir, W.I. Gasarch, “Polynomially terse sets,” Proc. 2"?
Conf. on Struct. Compl. Theory, (1987), 22-27.

[AdHu 87] L. Adleman, M. A. Huang, “Recognizing primes in random
polynomial time,” 19" Symp. Theor. Computing, (1987), 462-469.

[BaBoSc 85] J.L. Balcazar, R.V. Book, U. Schéning, “On bounded query
machines,” Theor. Comp. Sci., 40 (1985), 237-243.

[BaDiGa] J.L. Balcazar, J. Diaz, J. Gabbarré, “Structural Complexity I,”
EATCS monographs on Theor. Comp. Sci., 11, W. Brauer, G. Rozenberg,

A. Salomaa Ed.s, Springer-Verlag.

[BaMiSh 86] E. Bach, G. Miller, J. Shallit, “Sums of divisors, perfect num-
bers and factoring,” SIAM J. Computing, 15, (1986), 1143-1154.

[BaGiSo 75] T. Baker, J. Gill and R. Solovay, “Relativizations of the P =
NP question,” SIAM J. Computing, 4 (1975), 431-442.
[Be 87a] R.J. Beigel, “Bounded queries to SAT and the Boolean hierarchy,”

Theor. Comp. Sci., to appear.

[Be 87b] R.J. Beigel, “A structural theorem that depends quantitatively on
the complexity of SAT,” Proc. 2% Conf. on Struct. Compl. Theory, (1987),
28-32.

92
[Be 87c] R.J. Beigel, “SAT# is terse with probability one,” Tech. Report,

Dept. of Computer Science, Johns Hopkins University, 87-04 (1987).

[Be 88a] R.J. Beigel, “Why are counting problems hard to approximate,”
Tech. Report, Dept. of Computer Science, Johns Hopkins University, 88-05
(1988).

[Be 88b] R.J. Beigel, “When are k+ 1 queries better than k,” Tech. Report,

Dept. of Computer Science, Johns Hopkins University, 88-06 (1988).

[Be 88c] R.J. Beigel, “NP-hard sets are P-superterse unless R = NP.” Tech.
Report, Dept. of Computer Science, Johns Hopkins University, 84-4 (1988).

[BeGa 87] R.J. Beigel, W.I. Gasarch, “Binary search is optimal for recur-
sive graph theory,” Tech. Report, Dept. of Computer Science, University of
Maryland-College Park, P804, (1987).

[BeGa 88a] R.J. Beigel, W.I. Gasarch, “On the complexity of finding the
chromatic number of a recursive graph I: the bounded case,” Annals of Pure

and Applied Logic, to appear.

[BeGa 88b] R.J. Beigel, W.I. Gasarch, “On the complexity of finding the
chromatic number of a recursive graph II: the unbounded case,” Annals of

Pure and Applied Logic, to appear.

[BeGaHa 87] R.J. Beigel, W.I. Gasarch, L. Hay, “Bounded query classes
and the difference hierarchy,” Archiv. Math. Logic, 29 (1989) 69-84.

[BGGO 87] R.J. Beigel, W.I. Gasarch, J. Gill, J.C. Owings, “Terse,
superterse and verbose sets,” Tech. Report, Dept. of Computer Science, Uni-

versity of Maryland-College Park, 1806, (1987).

[BeGaOw 87] R.J. Beigel, W.I. Gasarch, J.C. Owings, “Nondeterministic

bounded query reducibilities,” Annals of Pure and Applied Logic, to appear.

93

[BeGi 81] C. Bennet and J. Gill, “Relative to a random oracle 4, P4 #£
NP# £ coNP# with probability one,” SIAM J. Computing, 10 (1981), 96-
113.

[BeHeWe 89] R. Beigel, L. Hemachandra and G. Wechsung, “On the power
of probabilistic polynomial time: PNPlogl C PP Proc. 4" Conf. Struct.
Compl. Theory, (1989), to appear.

[BIGu 82] A. Blass, Y. Gurevich, “On the unique satisfiability problem,”
Information and Control, 55, (1982), 80-88.

[BBJSY 89] A. Bertoni, D. Bruschi, D. Joseph, M. Sitharam, P. Young,
“Generalized Boolean hierarchies and Boolean hierarchies over RP.,” Proc.

Conf. on Fund. Comput. Theory, Lect. Notes Comp. Sci. 380 (1989).

[Bo 81] R.V. Book, “Bounded query machines: on NP and
PSPACE,” Theor. Comp. Sci., 15 (1981), 27-39.

[BoKo 87] R.V. Book, K-I. Ko, “On sets truth-table reducible to sparse
sets,” Proc. 2% Conf. on Struct. Compl. Theory, (1987), 147-154; also SIAM
J. Comput., 17 (1988) 903-919.

[BoLoSe 84] R.V. Book, T.J. Long, A.L. Selman, “Quantitative relativiza-
tions of complexity classes,” SIAM J. Comput., 13 (1984), 461-487.

[BoLoSe 85] R.V. Book, T.J. Long, A.L. Selman, “Qualitative relativiza-
tions of complexity classes,” J. Comput. System Sciences, 30 (1985), 395-413.

[BoWr 81] R.V. Book, C. Wrathall, “Bounded query machines: on NP()
and NPQUERY(),” Theor. Comp. Sci., 15 (1981), 41-50.

[BrJoYo 89] D. Bruschi, D. Joseph, P. Young, “Strong separation of the
Boolean hierarchy over RP,” Proc 3"¢ Italian Conf. on Theor. Comp. Sci.,
published by World Scientific Press, London, (Nov. 1989), 13 pages.

94

[BuHa 88] S. Buss, L. Hay, “On truth-table reducibility to SAT and the
difference hierarchy,” Proc. 3"¢ Conf. on Struct. Compl. Theory, (1988), 224-
233.

[CGHHSWW 88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachan-
dra, V. Sewelson, K.W. Wagner, G. Wechsung, “The Boolean hierarchy I:
structural properties,” SIAM J. Comput, 6 (1988), 1232-1252.
[CGHHSWW 89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachan-
dra, V. Sewelson, K.W. Wagner, G. Wechsung, “The Boolean hierarchy II:
applications,” STAM J. Comput, 7 (1989), 95-111.

[CaHe 86] J. Cai, L. Hemachandra, “The Boolean hierarchy: hardware over
NP Proc. 15% Conf. Struct. Compl. Theory, (1986), 105-124.

[CaMe 85] J. Cai, G.E. Meyer, “Graph minimal uncolorability is D¥ com-
plete,” SIAM J. Computing, 16 (1987) No. 2.

[Ch 89] R. Chang, “On the structure of bounded queries to arbitrary NP
sets,” Proc. 4" Conf. Struct. Compl. Theory, (1989), 250-258.

[ChKa 90] R. Chang, J. Kadin, “The Boolean hierarchy and the polynomial
hierarchy: a closer connection,” To appear in Proc. 5'* Conf. Struct. Compl.

Theory, (1990), 250-258.

[EpHaKr 81] R.L. Epstein, R. Haas, R.L. Kramer, “Hierarchies of sets and
degrees below 0')” Logic Year 1979-80, Lect. Notes Math. 859 (1981) 32-48.
[Ep 79] R.L. Epstein, “Degrees of unsolvability: structure and theory,” Lect.
Notes Math. 759 (1979).

[Er 68a] Y. Ersov, “A hierarchy of sets, I.” Algebra and Logic, 7 (1968),
25-43.

[Er 68b] Y. Ersov, “A hierarchy of sets, II,” Algebra and Logic, 7 (1968),
15-47.

95

[Er 69] Y. Ersov, “A hierarchy of sets, III,” Algebra and Logic, 9 (1969),
20-31.

[GeGr 86] J. Geske and J. Grollmann, “Relativizations of unambiguous and
random polynomial time classes,” SIAM J. Computing, 15 (1986), 511-519.
[Ga 86] W.I. Gasarch, “The complexity of optimization functions,” Tech.
Report, Dept. of Computer Science, Univ. of Maryland-College Park, 1652
(1986).

[GaHeHo 90] W.I. Gasarch, L.A. Hemachandra, A. Hoene, “On checking
versus evaluation of multiple queries,” Tech. Report, Dept. of Computer Sci-
ence, Unwv. of Rochester, 223, (1990).

[GaPe 88] W.I. Gasarch, S.R. Pearlman, “The complexity of optimization
problems related to partition,” Tech. Report, Dept. of Computer Science,
Univ. of Maryland-College Park, 2028 (1988).

[GoJoYo 88a] J.A. Goldsmith, D.A. Joseph, P. Young, “Bi-immunity

and P-closeness of P-cheatable sets in P/poly,” Tech. Report, Dept. of Com-
puter Science, Univ. of Wisconsin-Madison, to appear J. Comp. Sys. Scu.
[GoJoYo 88b] J.A. Goldsmith, D.A. Joseph, P. Young, “Using
self-reduciblility to characterize polynomial-time,” Tech. Report, Dept. of
Computer Science, Univ. of Wisconsin-Madison, to appear Inf. and Control.
[GuWe 86] T. Gundermann and G. Wechsung, “Nondeterministic Turing
machines with modified acceptance,” Proc. Conf. on Math. Found. Comp.
Sci.,, Lect. Notes Comp. Sci. 233 (1986), 396-404.

[GuWe 87] T. Gundermann and G. Wechsung, “Counting classes with finite
acceptance types,” Computers and Artificial Intelligence, 6 (1987), No. 5,

395-409.
[Ha 78] F. Hausdorft, Set Theory, Chelsea, 3rd ed., (1978).

96

[HaHe 86] J. Hartmanis, L. Hemachandra, “Complexity classes without
machines: on complete sets for UP,” Proc. 13" Intl. Conf. Automata. Lang.

Prog., Lect. Notes Comp. Sci. (1986), 123-135.

[HalmSe 83] J. Hartmanis, N. Immerman, V. Sewelson, “Sparse sets in
NP — P: EXPTIME versus NEXPTIME,” Proc. 15" Symp. Theor. Comput-
ing, (1983), 382-391.

[He 87] L.A. Hemachandra, “The strong exponential hierarchy collapses,”
Proc. 19" Symp. Theor. Computing, (1987), 110-122.

[Hay 78] L. Hay, “Convex subsets of 2" and bounded truth-table reducibil-
ity,” Discr. Math., 21 (1978), 31-46.

[HiZa 84] P. Hinman and S. Zachos, “Probabilistic machines, oracles and
quantifiers,” Proc. Recursion Theory Week, Lect. Notes Math. 1141 (1984),
159-192.

[Im 88] N. Immerman, “Nondeterministic space is closed under comple-

ment,” Proc. 3" Conf. on Struct. Compl. Theory, (1988).

[Ka 88] J. Kadin, “The polynomial time hierarchy collapses if the Boolean
hierarchy collapses,” Proc. 3" Conf. on Struct. Compl. Theory, (1988), 278-
292.

[Ka 87] J. Kadin, “P"P[log n] and sparse Turing complete sets for NP,”
Proc. 2™% Conf. Struct. Compl. Theory, (1987), 33-40.

[Kal 88] E. Kaltofen, “Greatest common divisors of polynomials given by

straight line programs,” J. Assoc. Comp. Mach., 35, 1 (1988), 231-264.

[KaLi 80] R.M. Karp, R.J. Lipton, “Some connections between nonuniform
and uniform complexity,” Proc. 12" Symp. Theor. Computing, (1980), 302-
3009.

97

[Ko 82] K-I. Ko, “Some observations on probabilistic algorithms and NP
-hard problems,” Inf. Proc. Let., 14 (1982), 39-43.

[Ko 88] K-I. Ko, “Distinguishing bounded reducibilities by sparse sets,”
Proc. 3" Conf. Struct. Compl. Theory, (1988), 181-192.

[K6ScWa 87] J. Kobler, U. Schoning and K.W. Wagner, “The difference
and truth-table hierarchies for NP,” RAIRO, 21 (1987), 419-435.

[Kr 86] M.W. Krentel, “The complexity of optimization problems,” Proc.
18" Symp. Theor. Computing, (1986), 69-76.

[Lac 65] A.H. Lachlan, “Some notions of reducibility and productiveness,”

Zeitsch. Math. Logik. Grundlag. Math., 11 (1965), 17-44.

[La 83] C. Lautemann, “BPP and the polynomial hierarchy,” Inf. Proc. Let.,
17 (1983), 215-217.

[LaJeKi 87] K.J. Lange, B. Jenner, B. Kirsig, “The logarithmic alternating
hierarchy collapses: ete,” Proc. 14" Intl. Conf. Automata. Lang. Prog., Lect.
Notes Comp. Sci. 267 (1987) 531-541.

[LaLySe 75] R.E. Ladner, N.A. Lynch, A.L. Selman, “A comparison of
polynomial time reducibilities,” Theor. Comp. Sci., 1 (1975), 103-123.

[LeMo 81] E.W. Leggett, D.J. Moore, “Optimization problems and the
polynomial hierarchy,” Theor. Comp. Sci., 15 (1981), 279-289.

[Lo 85] T.J. Long, “On restricting the size of oracles when compared to
restricting access to oracles,” STAM J. Comput., 14 (1985), 585-597.

[Ma 82] S. Mahaney, “Sparse complete sets for NP : solution to a conjecture
of Berman and Hartmanis,” J. Comput. Sys. Sci., 25 (1982), 130-143.

[OgWa 90] M. Ogiwara, O. Watanabe, “On polynomial-time bounded
truthtable reducibility of NP sets to sparse sets.,” Proc. 22"¢ Symp. Theor.

98

Computing, (1990), 457-467.

[Ow] J.C. Owings, “A cardinality version of Beigel’s nonspeedup theorem,”
J. Sym. Logic, To appear.

[Pa 82] C.H. Papadimitriou, “On the complexity of unique solutions,” Proc.
237 Found. of Comput. Symp., (1982) 14-20.

[PaWo 85] C.H. Papadimitriou, D. Wolfe, “The complexity of facets re-
solved,” Proc. 26'" Found. of Comput. Symp., (1985) 74-178.

[PaYa 82] C.H. Papadimitriou, M. Yannakakis, “The complexity of facets

and some facets of complexity,” Proc. 23" Found. of Comput. Symp., (1982).

[PaZa 82] C.H. Papadimitriou, S. Zachos, “Two remarks on the power of
counting,” Proc. 6'* GI Conf. on Theor. Comp. Sci., Lect. Notes Comp. Sci.
145 (1983) 269-276.

[Pu 65] H. Putnam, “Trial and error predicates and a solution to a problem

of Mostowski,” J. Sym. Logic, 30 (1965), 49-57.

[Ra 80] M. Rabin, “Probabilistic algorithm for testing primality,” J. Number
Theory, 12 (1980), 128-138.

[RaSh 88] M. Rabin and J. Shallit, “Randomized algorithms in number
theory,” Comm. Pure Appl. Math., 39, (1986), S239-S256.

[Rac 82] C. Rackoff, “Relativized questions involving probabilistic
algorithms,” JACM, 29 (1982), 261-268.
[Ro 67] H. Rogers, “Theory of recursive functions and effective computabil-

ity,” McGraw-Hill, New York.

[Sc 82] U. Schoning, “A uniform approach to obtain diagonal sets in com-

plexity classes,” Theor. Comp. Sci., 18 (1982) 95-103.

99

[Sc] U. Schéning, “Complexity and structure,” LNCS 211, (Goos, Hartmanis
ed.,) Springer-Verlag.
[Sc 83] U. Schoning, “A low and a high hierarchy in NP,” J. Comput. Sys.
Sci., 27 (1983) 14-28.
[ScWa 87] U. Schoning, K.W. Wagner, “Collapsing oracle hierarchies, cen-

sus functions and logarithmically many queries,” Tech. Report, Inst. of

Math., Univ. of Augsburg, 140 (1987).

[Sch 80] J. Schwartz, “Fast probabilistic algorithms for the verification of
polynomial identities,” JACM, 27 (1980), 701-717.

[Si 83] M. Sipser, “A complexity theoretic approach to randomness,” Proc.
15 Symp. Theor. Computing, (1983), 330-335.

[SoSt 77] R. Solovay and V. Strassen, “A fast Monte-Carlo test for primal-
ity,” SIAM J. Comput 6 (1977), 84-85; [Erratum: 7 (1978), 118].

[Sz 87] R. Szelepesényi, “The method for forcing nondeterministic
automata,” Bull. EATCS, 33 (1987), 96-99.

[To 87] S. Toda, “ZA;PACE(H) is closed under complement,” J. Comput. Sys.

Sci., 35 (1987), 145-152.

[Uk 83] E. Ukkonen, “Two results on polynomial time truth-table reductions
to sparse sets,” SIAM J. Comput., 12 (1983), 580-590.

[Wa 86] K.W. Wagner, “More complicated questions about maxima and
minima, and some closure properties of NP.)” Intl. Conf. Automata. Lang.

Prog., Lect. Notes Comp. Sci., 226 (1986), 434-443.

[Wa 87a] K.W. Wagner, “Bounded query classes,” Tech. Report, Institute of
Mathematics, University of Augsburg, 157 (1987), 1-23; also “On restricting
the access to an NP oracle,” Proc 15" Intl. Conf Automata. Lang. Prog.,

100

(1988).
[Wa 87b] K.W. Wagner, “Number-of-query hierarchies,” Tech. Report, In-
stitute of Mathematics, University of Augsburg, 158 (1987), 1-22.

[Wa 87c] K.W. Wagner, “Log-query classes,” Tech. Report, Institute of
Mathematics, University of Augsburg, 145, (1987).

[Wa 88] K.W. Wagner, “Bounded query computations,” Proc. 3" Conf. on
Struct. Compl. Theory, (1988), 260-277.

[Wat 88] O. Watanabe, “On <F , -sparseness and nondeterministic com-

plexity classes,” Proc 15" Intl. Conf. Automata. Lang. Prog., (1988).

[WeWa 85] G. Wechsung and K.W. Wagner, “On the Boolean closure of
NP.” Proc. Conf. Fundament. Comput. Theory, Lect. Notes Comp. Sci. 199
(1985), 485-493.

[Ya 83] C. Yap, “Some consequences on non-uniform conditions on uniform

classes,” Theor. Comp. Sci., 26 (1983) 283-300.

[Ye 83] Y. Yesha, “On certain polynomial time truth-table reducibilities of
complete sets to sparse sets,” SIAM J. Comput., 12 (1983), 411-425.

[ZaHe 84] S. Zachos and H. Heller, “A decisive characterization of BPP,”
Information and Control, 69 (1986), 125-135.

[Za 86] S. Zachos, “Probabilistic quantifiers, adversaries and complexity
classes: an overview,” Proc. 15* Conf. Struct. Compl. Theory, (1986), 383-
400.

