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Abstract.

We study basic properties of a class of noncooperative games whose players are selfish, distributed
users of a network and the game’s broad objective is to optimize Quality of Service (QoS) provision.
This class of games was previously introduced by the authors and is a generalization of well-studied
network congestion games.

The overall goal is to determine a minimal set of static game rules based on pricing that result
in stable and near optimal QoS provision.

We show the following. (i) Standard techniques for exhibiting stability or existence of Nash
equilibria fail for these games - specifically, neither are the utility functions convex, nor does a
generalized potential function exist. (ii) The problem of finding whether a specific game instance in
this class has a Nash equilibrium is NP-complete.

To offset the apparent instability of these games, we show positive results. (iii) For natural
subclasses of these games, although generalized potential functions do not exist, approximate Nash
equilibria do exist and are easy to compute. (iv) These games perform well in terms of “price of
stability” and “price of anarchy.” I.e., all of these approximate Nash equilibria nearly optimize a
communal (or social) welfare function, and there is atleast one Nash equilibrium that is optimal.

Finally, we give computer experiments illustrating the basic dynamics of these games which
indicate that price thresholds could speed up convergence to Nash equilibria.

Key words. Congestion games, Selfish routing, Atomic unsplittable model, Nash Equilbria,
Network pricing
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1. Introduction. Recently much research has been done in applying game-
theoretic concepts and general economics techniques to analysis of computer network
traffic [2, 3, 5, 10, 11, 12, 16, 14, 20, 21, 24]. For a general survey see [1]. Stability in
games refers to whether the game reaches a Nash equilibrium, a state where no player
has incentive to move. Optimality is a measure of how close a Nash equilibrium is to
optimizing a social or communal welfare function, usually the sum of the individual
players’ utility functions.

We consider primarily atomic games, where the number of players (network users)
is finite. The case of non-atomic games where there is an infinite number of infinites-
imally small players is easier to analyze. For similar reasons, spittable games, where
network users can split their volume onto many service classes are easier to analyze
and have more orderly behavior than unsplittable games, where each user is forced to
place all their volume onto the same class.

The atomic splittable network game model has been studied [20, 12], with early
results in the transportation literature. Efficiency (or optimality) of Nash equilibria
in atomic splittable network games was studied in [24] and [28].

Here we consider primarily the unsplittable case that has also been studied for
some time, for example [26].

Most of the research deals with congestion games where payoff to a player depends
only on the player’s strategy and on the number of players choosing the same strategy.
Thanks to [26] it is known that such games always have Nash equilibrium. Two
common techniques that are used to demonstrate existence of Nash Equilbria are
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the following. When the player utility functions are convex, Kakutani’s fixed point
theorem [25] directly shows existence. Also when such convexity properties are not
present, potential functions, [18], certain functions that increase after every move, are
used to show existence. These have a long history, for example, as Lyapunov stability
functions classically used to describe equilibria in dynamical systems.

The [23] network games have realistic features that make them somewhat different
from congestion games: in particular, players have non-convex utility functions caused
by a threshold of total traffic volume in service classes that they are willing to tolerate.
In addition in the [15] games, the players are allowed to refrain from participation, or
to dropout, if their traffic quality demands are not satisfied. Hence existence of Nash
equilibria or potential functions is not guaranteed for these classes of games. However,
we were able to show existence of Nash equilibria for some of these classes of games by
constructing generalized potential functions. (Generalized) potential functions have
also been used by others to study versions of congestion and other games e.g., [7, 21,
22].

For the classes of games in [15, 16] we additionally showed that the Nash equi-
libria established via generalized potential functions are easy to compute. In general,
however, while potential functions guarantee existence of Nash equilibrium, the prob-
lem of actually finding such an equilibrium remains computationally challenging. It
has been shown [7] that the problem of finding Nash Equilbrium in congestion games
is PLS-Complete, which intuitively means ”as hard to compute as any object whose
existence is guaranteed by a potential function”.

Considerable research has gone into the price of anarchy and price of stability of
Nash equilibria [27]. These notions describe how far or how close Nash equilbria can
be to the System Optimum of a game, where system optimum is a configuration (not
necessarily a Nash equilibrium) that has greatest communal welfare.

We showed that for the classes of games with Nash equilibria in [15, 16], the
communal welfare at these equilibria was poor, i.e., they are far from the system
optimum. To rectify this, we further generalized our classes of games by introducing
pricing incentives (not to be confused with the word “price” in the previous para-
graph). The effect of pricing on congestion games has also been studied in [9, 6, 8].
Our original goal was to modify our original class of games so that the Nash equilibria
would be close to system optima. However, the priced games were shown to not have
Nash equilibria, in general. We instead showed that there is trade-off between game
stability (existence of Nash Equilbria) and communal welfare achieved by such games.
I.e., while the priced games did not always have Nash equilibria, the Nash equilibria,
when they existed, were close to the system optima.

This trade-off has since been formalized by examining approxzimate Nash equilibria
i.e. states where no player can improve their individual welfare by more than a
certain factor, and the value of communal welfare at such approximate equilibria [4].
For example, [2] demonstrated a tradeoff between welfare and stability when costs
functions are semiconvex.

In this paper, our overall goal is to analyze our classes of realistic network conges-
tion games with respect to these stability and communal welfare measures; investigate
mechanisms for games to optimize these measures; and to pose formal questions about
the structure of game classes imposed by such measures.

More specifically, the original classes of games introduced in [15] were: the class Q
where players were solely motivated by their traffic quality demands and classes PQ
where players were also influnced by prices imposed on traffic. Stability of games in
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Q was demonstrated by means of general potential functions, and concrete examples
of instability of PQ were then given.

In this paper, we establish the NP-completeness of determining existence of Nash
equilibria and for computing Nash Equilbria in PQ. We further study stability and
communal welfare of (a modified version of) approximate Nash equilibria in PQ, as
compared to class Q (i.e. effect of pricing on stability and social welfare in our games).

We also briefly look at game dynamics, i.e. number of steps that it actually
takes to converge to Nash Equilbria for some of our games and conduct computer
experiments to study trade-off between willingness to pay and speed of convergence.

Section 2 presents preliminary definitions, Section 3 presents previous results on
the class Q of games, Section 4 presents the main results of this paper concerning
the class PQ, and Section 5 concludes by tabulating and comparing the results of
Sections 3 and 4, followed by open problems.

2. Definitions. A game (instance) G in the base class of QoS provision network
games is specified by the game parameters G = (n,m € N, {\; € RT : 1 < i <
nt{bi; € R":1<i<n1<j<m},{pj: R" — R,1<j<m}). The best way to
define G is by identifying it with its finite game configuration graph (formally defined
below) which consists of a set of feasible game configurations (vertices) and the valid
or selfish game moves (oriented edges). The game G is played by n users or players
each wanting to send a traffic of A; units through one of m network service classes and
(for convenience of analysis) an overflow or Dummy Class with index 0, referred to as
DC. Each player i additionally has a volume threshold b; ; (to be described below) for
each class j. A price function p;() for each service class is a nonincreasing function
that maps the total (traffic) volume in the class to a unit price. (Unit price typically
decreases with increasing congestion or total volume in any service class). The price
for using DC is 0. A feasible configuration A of G is fully specified by an allocation
Ja :{1,...,n} — {1,...,m} which describes which service class Ju () that the user
or player i has decided to place their chunk \; of traffic. This allocation Jp results in
a total traffic volume qp ; = Zi:lgz‘gn/\,l,\(i):j A; in each class 1 < j <'m at the game
configuration A. The set of feasible game configurations F' form the vertex set of the
game configuration graph €.

Individual utility function U;(A) is a type of step function based on #’s volume thresh-
old being met at the configuration A, and on the unit price incurred by the player i
in its class j = Ja(2). Ui(A) is:

e 0if j =0 (user ¢ is in DC)

e —¢, for small € > 0 if b; ; < ga,; (volume threshold exceeded)

e cqual to A;(1 — pjqa,;) otherwise.

It is assumed that the price functions are always appropriately normalized so that
this quantity is always strictly positive for all players ¢ and their classes Ja (i) at any
configuration A. A typical utility function is shown on Figure 2.1. We say that user
i is satisfied at configuration A if U;(A) # 0, and not satisfied otherwise. We define a
function Satp (i) = 1 if Up (i) # 0, otherwise Saty (i) = 0.

A selfish move by user i at a configuration A; is a reallocation of i’s volume \;
from a departure class j; (i.e Ja,(¢) = j1), to a a destination class jo resulting in a
configuration Ay (i.e, Ja, (i) = j2) that increases utility of this user, i.e, U;(A1) <
Ui:(A2). Moves to DC by a user whose volume threshold is exceeded are called user
dropouts. Note that user dropouts qualify as selfish moves according to our definition.

Each selfish move is an ordered pair of feasible game configurations (for example
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Price Utility

Volume b' Volume

Fic. 2.1. Utility as a function of volume, volume threshold and price

(A1,A2) € Fx F), and represents an oriented edge of the game configuration graph €.
A generalized potential function is a function defined on configurations that increases
after every player move. A game play for G is a sequence of valid selfish moves in G,
ie (A1, A2), (A2, As),..., (Ag—1,A%), or a path in the game configuration graph €.

A Nash Equilibrium or NE of a game G is a configuration A such that there is no
selfish move possible for any user ¢. Nash equilibria are exactly sink vertices of a
game configuration graph ) that have no outgoing edges toward other vertices. For
our classes of games, the communal welfare function for configuration A is defined
as C(A) = 3;Satp(i)\;. The feasible game configuration that has highest value of
communal welfare function is called the System Optimum or SO. Let Ay be a Nash
Equilibrium that has the smallest value of communal welfare function taken over all
Nash Equilibriums, while Ap; be a Nash Equilibrium that has the largest value. As
defined in say [27] a price of anarchy of a game is equal to C(Ay)/C(A.), where A,
is SO. A price of stability is equal to C(Aprr)/C(Ax).

Class of games that do not have pricing, i.e. p;(z) = 0 for all classes j and their
volumes z is denoted by Q. In such games players are motivated only by their desire
to satisfy their volume thresholds. Subclass Q¢ C Q is a class of games with no
pricing where all players have equal volume.

Class of games that have only one pricing function p(z) for all classes j and this
function is strictly decreasing (p(xz) < p(y) < = > y) is denoted by PQ. Subclass
PQgs C PQ is a class of games with single strictly decreasing price function where all
players have equal volume.

Here we will give a pictorial example, Figure 2.2, of some notions introduced in this
section. A game configuration graph €2 and configurations A of a particular game
G are shown. Columns represent classes, rectangles represent users, the size of a
rectangle corresponds to volume of a user, volume thresholds of users are indicated
on the right. In this example the game G in class PQ has 2 classes, 2 users A and
B that have equal volumes and the volume threshold of A is greater than that of B.
Game configuration graph 2 has 4 vertices. This game G has no Nash equilibrium.

Throughout this paper we assume wlog that every player ¢ has the same volume
threshold b; = b;1 = bj2 = ...b;, in every class j = 1...m. We also assume that
players are sorted in the increasing order of their thresholds, i.e b < by < ... < by,.
(The former assumption could be easily generalized for all results in this paper, the
latter assumption is realistic and commonly made [23]).
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Fic. 2.2. Game configuration graph and individual configurations

In proofs when describing a game configuration A, we will specify values of game
parameters n and m, provide a list of users in the form User(Volume, Volume Thresh-
old) (for example A(5,12) means that User A has volume 5 and volume threshold 12),
as well as specify where these users are, i.e {Jx(i)}.

3. Previously known properties of Q. We list relevant properties of the
class Q of games established in [15] concerning existence, optimality and complexity
of computing Nash equilibria.

THEOREM 3.1. FEvery game in Q has a generalized potential function and there-
fore every such game has a Nash Equilbrium.

THEOREM 3.2. For any € > 0 there is a game in Q that has price of anarchy and
price of stability equal to e.

THEOREM 3.3. A Nash Equilibrium that is also a System Optimum of a game in
Q¢ can be found in time linear in the game parameters.

THEOREM 3.4. Any Nash Equilibrium of any game G € Qg has communal welfare
of at least a half of that of G’s System Optimum.

THEOREM 3.5. For any initial configuration of every game in Qg there is a
sequence of selfish moves by players that will terminate at Nash Equilibrium after
O(n?) steps. This sequence can be determined by considering players in decreasing
order of their volume thresholds and letting them make their selfish choices.

4. New results. In this section we consider stability of games in class PQ and
various properties of their Nash equilibria. Results will be compared to those of Q in
Table 5.

We begin by establishing the following simple result about the prices of anarchy
and stability of general games in the class PQ, showing that they are not particularly
well behaved.

THEOREM 4.1. For any € > 0 there is a game in PQ that has a unique Nash
equilibrium, whose communal welfare is €, while the system optimum of this game has
communal welfare equal to 1. This implies that prices of anarchy and stability of such
a game are equal to €.

Proof. Consider a game with one non-DC class, and two players, A(e,1 + €) and
B(1,1). The only equilibrium this game has is when player A is in class 1 and player
B is in DC, as opposed to the system optimum when their positions are reversed. O
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4.1. Approximate Nash equilibria. As we have noted in the Introduction and
Figure 2.2, Nash equilibria do not necessarily exist in games PQ that involve pricing.
One approach to examining such games involves a—approzimate Nash equilibria, de-
fined in for example [4]. A configuration is said to be a—approzimate Nash equilibrium
if no player can move and decrease her cost by more than an o multiplicative factor.

Note that since pricing functions of PQ are arbitrary decreasing linear functions,
we will instead use a more appropriate notion of d—approximate Nash equilibrium
instead, where § is an additive factor.

Let PQg be the subset of PQ where all players have volume ¢ = §. In such a
game a configuration where all players are satisfied and all classes have equal total
volume would be a e—approximate Nash equilibrium, since no player would have an
incentive to move.

When e goes to zero and number of players goes to infinity, the class PQg will
be denoted as PQ.,. This class of games has similar behavior to the class of games
where players are allowed to split their volume between several classes.

THEOREM 4.2. A Nash equilibrium (5—approzimate Nash equilibrium) that is
also system optimum can be constructed for any game in PQs (PQg) in time of
O(n).

Proof. A greedy algorithm solves this problem. Here is the algorithm for PQg¢.
Let by < ... < b,; place player n in class 1, place player n — 1 in class 1 if b,_1 > 2e,
otherwise place player n — 1 in class 2; place player n — 2 in class 1 if b,_o > 3¢
etc. The resulting configuration is a system optimum and a J—approximate Nash
equilibrium.

d

Note that while the preceeding theorem guarantees existence of an approximate
Nash equilibrium for games PQg, it does not promise that every sequence of selfish
moves will arrive at an approximate Nash equilibrium. Consider the following obser-
vation, which also disproves existence of general potential functions for all games in
PQe¢. This is also true for games in PQ.

THEOREM 4.3. There is a game in PQg where there is a cycle of selfish moves.

Proof. Let 6 = 1. Consider a game with 2 non-DC classes and 12 players:
Al(l, 9), Ag(l, 9), Ag(l, 9), Bl(l, 6), Bg(l, 6), Bg(l, 6), Cl(l, 3), ey Cﬁ(l, 3) Initial con-
figuration A : players Cy4,C5 and Cg are in class 2, all other players are in class 1.
First players By, Bo and B3 move to class 2, after that players C;,Cy, Cs move to
DC, then players A;, As and A3 move to class 2 and finally players C1, Ca, C3 move
from DC to class 1. The resulting configuration is essentially isomorphic to A, hence
a cycle has occurred. O

Now we will examine properties of corresponding Nash equilibria.

THEOREM 4.4.

Price of anarchy of games in PQq is equal to 1/2. Price of stability of such
games is equal 1.

If price of anarchy and price of stability were redefined over e—approximate Nash
equilibria instead of reqular Nash equilibria, then it would hold that price of anarchy
of games in PQg¢ is equal to 1/2 and price of stability of such games is equal 1.

Proof. Price of stability follows from the fact that Nash equilibria constructed in
Theorem 4.2 are system optima.

Price of anarchy can be demonstrated by following argument for games in P Qg,
and the proof for PQ is similar. Let A be a Nash equilibrium when all players



SIAM MACRO EXAMPLES 7

have the same volume €. Consider the unsatisfied player ¢ that has the largest volume
threshold b;. (If there are no unsatisfied players then such a Nash equilibrium is
a system optimum). Total traffic volume ¢; in every class j is strictly greater than
b; — €, hence communal welfare of A is greater than or equal to m(b; —€) but communal
welfare of system optimum cannot be more than 2(m(b; —€)). O

4.2. Finding a Nash equilibrium. It was shown in [16] that the problem of
finding system optimum of a game in class Q is NP-Complete. It was also shown that
the problem of finding a Nash equilibrium in Q can be solved in O(n?) time. Similarly
the problem of finding a system optimum of a game in class PQ is NP-Complete. Now
we will examine the problem of finding a Nash equilibrium (or determining that it
does not exists) for games in PQ.

THEOREM 4.5. Problem of finding Nash equilibrium for games in PQ is NP-
Complete.

Proof. Consider the following version of MAXIMUM SUBSET SUM problem -
given set S = {s1,...,s,} and targets t;,to, find A C S such that t; <>, 4 s; < to.
This problem can be reduced to problem of finding a Nash equilibrium as follows.
There are n + 1 players and two non-DC classes. Players 1,...,n all have same
threshold b; = by = ... b, = tg, individual volumes \; = s;. Player n + 1 has volume
An+1 = to and threshold b,11 = t; +t2. Then this game will have a Nash equilibrium
if and only if the original MAXIMUM SUBSET SUM problem had a feasible solution.
d

4.3. Price thresholds. In [16] it was shown that games in class Q will terminate
in O(n?) steps, given certain assumptions on order of player moves. Here we will
describe a computer experiment that examined speed of convergence of games where
there was no such ordering of player moves.

This experiment involved a following natural assumption about players behavior.
In practice, there could be a limit on how much a user is willing to pay, and this concept
can be easily added to our games, resulting in the new classes of games. This concept
has a desirable effect on the dynamics of the game, as explained below. Formally, for
players ¢ we define price thresholds (in addition to the old volume thresholds) ¢; that
have the following property. If the price in a class exceeds player ¢’s price threshold,
then player ¢ is not satisfied. We assume that b; < b; if and only if ¢; > t;, i.e users
who demand better quality of service (smaller traffic volume in their class) are willing
to pay more.

We conjecture that in addition to being realistic, such price thresholds also tend
to improve the speed of convergence to Nash equilibria. This is because of players
spending less time looping in non-terminal cycles.

To test this conjecture we ran a computer program simulating a game in class
P Q. Later we added pricing thresholds to the game which has considerably improved
time lapsed before convergence to Nash equilibria. Game parameters were chosen
such that Nash equilibrium would always exist.

Parameters of the game were M = number of classes, M/T = number of types of
users that have the same volume and volume threshold, K = number of users of the
same type that can fit in one class without exceeding their volume threshold. Volumes
were in increments of one, i.e there are T x K users that have volume 1 and volume
threshold K, T x K users that have volume 2 and threshold 2K, ..., T % K users that
have volume M /T and threshold M * K/T. Thus there are a total of M * K users.
For example let K = 10, M = 20,T = 5. This means that there are 20 classes, 4 types
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K M T Movesl A Moves2
5 20 1 161,000 5 7,000
10 20 1 17,077,000 10 9,000
20 20 2 1,354,000 20 25,000
50 20 1 56,000 50 35,000
100 20 1 49,000 100 46,000
100 20 10 3,000 100 5,000
1000 20 10 35,000 1000 49000

5 40 1 2,360,000 5 190,000
5 50 1 8,391,000 5 940000

of users and at most 10 users of any one type can fit into one class. Users are
Al(l, 10), ceey A50(1, 10), B1(2, 20), ceey B50(2, 20), 01(3, 30), ey 050(3, 30),
D1(4,40), ..., Dso(4,40).

Initially all users are in the dummy class (DC). A game proceeds by picking one
of the M * K users at random and this user moves either to the largest class where
his threshold would not be exceeded or to the DC. Even if this move exceeds the
volume threshold of some other users in the destination class of the moving user, these
unsatisfied users cannot move until it is their turn to move and turns are determined
at random. Eventually a Nash equilibrium was always reached, where all users of the
first type were in T classes, all users of the second type were in the second set of T’
classes etc. Results are shown in Table 4.3. "Movesl” denotes the total number of
user moves until Nash equilibrium was reached.

Later a simulation of pricing thresholds was added to the experiment. Effectively
it would prohibit a user 4 that has volume threshold b; to move into any class j such
that ¢; + A < b; — A where A is some constant. The reason for this is that class j is
too expensive for the i*" user.

When A = oo this is equivalent to the old experiment without pricing thresholds.
In general introduction of small A significantly improved number of moves that was
needed to reach the Nash equilibrium. See "Moves2” in the table.

5. Conclusions, Directions. Here we summarize known results about Nash
Equilibria for various subclasses of Q and PQ.

NE/GenPotential always exists | Price of anarchy | Price of stability | Complexity of finding NE
Q Yes/Yes € € O(n?)
(o) Yes/Yes 1/2 1 O(n)
PQ No/No € € NP-Complete
PQ¢ Yes/No 1/2 1 O(n)
PO Yes/No 1/2 1 O(n)

Existence of Nash Equilbria for Q (and Qg, since Qg C Q) is shown in Theorem 3.1.
Example of nonexistence of Nash Equilbria in PQ is demonstrated in Figure 2.2.
For PQgs entry ”Yes” refers to d—approximate Nash Equilibria, not regular Nash
Equilibria. This (and PQs case) is shown in Theorem 4.2. The nonexistence of
generalized potential functions for these classes is shown in Theorem 4.3.

Prices of anarchy and stability of @ are shown in Theorem 3.2, of Q¢ in Theorem 3.4,
of PQ in Theorem 4.1 (assuming that Nash Equilibrium exists), of PQg¢ and PQo
in Theorem 4.4.
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Complexity of finding a Nash Equilibrium in games of class Q is shown in Theo-
rem 3.5, case of Q¢ is Theorem 3.3, for games in PQ this problem is NP-Complete
(Theorem 4.5), for games in PQg and PQ result follows from Theorem 4.2.

5.1. Open questions. The class PQ contains both games that have Nash equib-
ria and those who do not.

What is the structure of games in class PQ where Nash equilibria or approx-
imate Nash equilibria (additive or multiplicative) are guaranteed to exist but they
are hard to compute? For example, are there PLS-complete games in the class PQ?
For the subclasses such as PQ¢ Nash equilibria existence is easy to determine, and
(approximate) Nash equilibria are easy to compute.

Formally state and prove the conjecture of Section 4.3 concerning the usage of price
thresholds and speed of convergence to Nash equilibria.
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