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tThe ri
hness and expressive power of geometri
 
onstraints 
auses unintended ambiguities and in
onsis-ten
ies during their solution or realization. For example, geometri
 
onstraint problems may be turn out tobe over
onstrained requiring the user to delete one or more of the de�ned 
onstraints, and the solutions mustthen be dynami
ally updated. Without proper guidan
e by the 
onstraint solver, the user must have pro-found insight into the mathemati
al nature of 
onstraint systems and understand the internals of the solveralgorithm. But a general user is most likely unfamiliar with those problems, so that the required intera
tionwith the 
onstraint solver may well be beyond the user's ability. In this paper, we present strategies andte
hniques to empower the user to deal e�e
tively with the over
onstraint problem while not requiring himor her to be
ome an expert in the mathemati
s of 
onstraint solving.We formulate this problem as a series of formal requirements that gel with other essentials of 
onstraintsolvers. We then give algorithmi
 solutions that are both general and eÆ
ient (running time typi
ally linearin the number of relevant 
onstraints).Keywords: Geometri
 
onstraint solving, over
onstrained problem, redundant 
onstraints, 
on
i
ting 
on-straints, in
onsistent spe
i�
ations.1 Introdu
tionProdu
t design for manufa
ture is a a
tivity driven by des
riptive information. In
reasingly, design in
ludesthe expli
it in
lusion of design 
onstraints into the spe
i�
ations, espe
ially geometri
 or geometry-related
onstraints that impose 
onditions on the shape of the produ
t. That is, the designer states spe
i�
 
onstraintswithout telling the system in detail how to satisfy them. One goal is to make it 
onvenient for spe
ifying designintent rather than pro
edure. A se
ond goal is to provide the designer with a su

in
t, minimal representationof the produ
t whi
h they 
an spe
ify and edit intuitively. It is then the task of the underlying 
onstraint solverto derive a plan by whi
h to realize and update the 
onstraint represenation. i.e, to solve the 
onstraint systemand update the solution in response to 
hanges made to the system.Geometri
 
onstraint systems arise in many appli
ations besides CAD, in
luding te
hni
al drawing andtea
hing geometry [35, 20, 34, 26, 18, 32, 1, 3, 15, 16, 9, 10, 11, 12, 13, 17, 8, 14, 6, 7, 23, 24, 2, 25℄. Severalsu

essful methods have been presented for planning and exe
uting a strategy for solving 
onstraint systems.This is parti
ularly true for solving geometri
 
onstraint systems in the plane, although some of the newerapproa
hes in
luding [10, 11, 12, 13, 2, 25℄, in
luding generalize at varying degrees to 3d 
onstraint systems aswell.Informally, a geometri
 
onstraint system 
onsists of a �nite set of geometri
 obje
ts and a �nite set of
onstraints between them. The geometri
 obje
ts are drawn from a �xed set of types su
h as points, lines,
ir
les and 
oni
s in the plane, or points, lines, planes, 
ylinders and spheres in 3 dimensions. The 
onstraintsin
lude logi
al 
onstraints su
h as in
iden
e, tangen
y, perpendi
ularity, et
., and metri
 
onstraints su
h asdistan
e, angle, radius et
. The 
onstraints 
an usually be written as algebrai
 equations whose variables arethe 
oordinates of the parti
ipating geometri
 obje
ts.�Purdue University, Work supported in part by ARO Contra
t 39136-MA, NSF Grant CCR 99-02025, and by the PurdueVisualization CenteryUniversity of Florida, Work supported in part by NSF Grant CCR 99-02025, NSF Grant EIA 00-96104; 
orresponding author:sitharam�
ise.u
.edu



The solution of a geometri
 
onstraint system is a real zero of the 
orresponding algebrai
 system. In otherwords, the solution is a 
lass of valid instantiations of the geometri
 elements su
h that all 
onstraints aresatis�ed. Here, it is understood that su
h a solution is in a parti
ular geometry, for example the Eu
lideanplane, the sphere, or Eu
lidean 3 dimensional spa
e. For re
ent reviews of the extensive literature on geometri

onstraint solving see, e.g, [12, 19℄.Geometri
 
onstraint solvers are 
onstru
ted to meet 3 
ompeting 
hallenges.1. Generality of expression;2. EÆ
ien
y of realization; and3. Resolution of ambiguities or in
onsisten
ies, and updating (dynami
 maintanen
e).For instan
e, the latter problem stands in a tradeo� relationship with the �rst. It worsens with the in
reasein expressive power or generality of 
onstraint systems whi
h may 
ause them to have multiple solutions orrealizations, 
on
i
ting requirements, redundan
ies, et
. while the 
onstraint solver is not able to re
on
ile
on
i
ts and eliminate in a 
lever way. Thus, the designer is asked to intervene manually, altering some 
on-straints and dropping others altogether. A given 
onstraint problem may be over
onstrained, well-
onstrained, orunder
onstrained (formally de�ned later). Only well-
onstrained problems are a
tually solved: under and over-
onstrained problems have to somehow be dete
ted and turned into well
onstrained problems, with interventionby the designer.When su
h intervention is required, the 
onstraint solver should o�er guidan
e by presenting viable 
hoi
es.These 
hoi
enitemize- should not require mathemati
al pro�
ien
y on the user's part;- they should neither be limited arbitrarily, nor should they in
lude 
hoi
es that are irrelevant to the 
oreproblem;- and they should be unique in a well-de�ned sense so that the user 
an expe
t repeatability of the set of
hoi
es.EÆ
ient Realization needs DR PlansA good de
omposition of the geometri
 
onstraint system is indispensable in dealing with all three of the 
hal-lenges listed above. Consider the �rst: i.e, guaranteeing eÆ
ien
y of realizing the 
onstraint system, whilemaintaining full generality of expression. The 
ost of solving a geometri
 
onstraint system is dire
tly pro-portional to the size of the largest subsystem that is solved using a dire
t algebrai
/numeri
 solver. This sizedi
tates the pra
ti
al utility of the overall 
onstraint solver, sin
e the time 
omplexity of the 
onstraint solveris at least exponential in the size of the largest su
h subsystem. Hen
e the optimal or most eÆ
ient de
ompo-sition would minimize the size of the largest su
h subsystem. In other words, any geometri
 
onstraint solvershould �rst solve the problem of eÆ
iently �nding a 
lose-to-optimal de
omposition-re
ombination (DR) plan,be
ause that di
tates the viability of the 
onstraint solver. Finding a DR-plan 
an be done as a pre-pro
essingstep by the 
onstraint solver: a robust DR-plan would remain un
hanged even as minor 
hanges to numeri
alparameters or other su
h on-line perturbations to the 
onstraint system are made during the design pro
ess.While DR-plans were informally used by many 
onstraint solvers, the formal de�nition of a DR-plan (givenin Se
tion 2.1) as well as the various performan
e measures - based on the above two 
hallenges as well as others- were �rst given in [12℄. A new DR-planner 
alled the Frontier vertex algorithm (FA) was designed in [13℄ tooptimize these performan
e measures. The FA DR-planner underlies FRONTIER [27, 28, 29, 22℄ (available asGNU software) [30℄, whi
h is to our knowledge the only 
onstraint solver that systemati
ally deals with fullygeneral, 3d 
onstraint systems.Informally, a geometri
 
onstraint solver whi
h solves a large 
onstraint system E uses a a DR-planner toguide a dire
t algebrai
/numeri
 solver - whi
h is restri
ted to solving small subsystems - as follows. It pro
eedsby repeatedly applying the following three steps at ea
h iteration i.1. Find a small solvable subsystem Si of the (
urrent) entire system Ei (at the �rst iteration, this is simplythe given 
onstraint system E, i.e, E1 = E). This step is indi
ated by a re
tangle in Figure 1. SubsystemSi 
ould be also 
hosen by the designer. 2
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Figure 1: Solving a well-
onstrained system by de
omposition and re
ombination2. Solve Si using the dire
t algebrai
/numeri
 solver.3. Using the output of the solver, and perhaps using the designer's help to eliminate some solutions, repla
eSi by an abstra
tion or simpli�
ation Ti(Si) thereby repla
ing the entire system Ei by a simpli�
ationTi(Ei) = Ei+1. This step is indi
ated by an oval in Figure 1. Some informal requirements on the simpli�ersTi are the following: we would like Ei to be (real algebrai
ally) inferable from Ei+1; i.e, we would like anyreal solution of Ei+1 to be a solution of Ei as well.This solver terminates when the small, solvable subsystem Si found in Step 1 is (a representation of) theentire algebrai
 system Ei. An optimal DR-plan will minimize the size of the largest Si. A DR-plan 
an beviewed as a dire
ted a
y
li
 graph where ea
h node represents a solvable subsystem Si (or Ti(Si), also 
alleda 
luster) and its 
hildren represent the di�erent subsystems (found earlier) that were 
ombined to form Si. Ifthe whole system is under
onstrained, the solver should still isolate and solve its maximal solvable subsystems.In
onsisten
y, Ambiguity and Dynami
 Maintanen
e using DR-plansA good DR-plan is not only 
ru
ial for eÆ
iently realizing 
onstraint systems, in addition, a DR-plan helps thedesigner 
on
eptually sin
e it 
an be viewed as a feature hierar
hy that de
omposes the produ
t being designed.In fa
t, DR-planners su
h as FA mentioned earlier [13℄, will take a 
on
eptual feature hierar
hy (input by thedesigner) and ensure that the output DR-plan in
orporates it (is a proper re�nement of it).Therefore, sin
e a DR-plan is generally available, it 
an and should be eÆ
iently put to use for the se
ond
hallenge listed above, i.e, dealing with ambiguities and in
onsisten
ies through user intervention. The followingspe
i�
 problems arise in this 
ontext:\how to deal with multiple solutions;" \how to isolate the generi
ally under and over
onstrained parts; and howto o�er the user an in
remental list of 
onstraints to add and remove; the user should be permitted to spe
ifywhi
h portions of the system these 
onstraints should 
ome from, and they should 
ause the least amount ofadditional work in updating the solution and the DR-plan"These problems have been approa
hed in the literature with various degrees of su

ess. Many of these methodsmake e�e
tive use of an existing DR-plan [3, 4, 25, 1, 27, 30, 28, 29, 22℄, [1, 25℄, [27, 28, 29℄, [30℄.Systemati
 methods also exist [30, 22, 28, 29℄ for dynami
ally maintaining or updating the DR-plan minimally(and hen
e for redu
ing the amount of repeat solving), when a 
hange is made to the 
onstraint system.Some kinds of updates are well understood for general, 3d 
onstraint systems [30, 22, 28, 29℄, for examplewhen the 
hange involves a parameter value, added 
onstraint, added obje
t, 
hanged feature hierar
hy et
.However, it has so far not been well understood for the 
ase of 
onstraint removal, or deletion, whi
h ariseswhen over
onstrained problems are to be 
orre
ted.Main ContributionCurrent solvers en
ourage users to delete redundant or 
ontradi
tory 
onstraints, sin
e there are no attra
tiveheuristi
s to do so automati
ally. Current solvers 
ag 
onstraints found to be redundant or 
ontradi
tory whenthey are �rst dete
ted within a 
luster being solved. However, whi
h these 
onstraints are, i.e, the 
luster atwhi
h the over
onstraint is �rst dete
ted, depends on the parti
ular DR-plan, and some of the best DR-planners3



are e�e
tively nondeterministi
. Hen
e su
h adho
 identi�
ation of 
onstraints to delete is essentially random,non-repeatable and is una

eptable in pra
ti
e.In this paper, we investigate generi
ally over
onstrained problems. We �rst de�ne pre
isely what is meant bya generi
ally over
onstrained problem, and how to de�ne 
on
eptually the entire minimal subset of 
onstraintsthat are in 
on
i
t. We show that this subset is unique and well-de�ned, and o�er a simple solution tothe problem of isolating this subset, whi
h works for fully general geometri
 
onstraint systems in arbitrarydimensions. We then point out the drawba
ks of this solution: its relative ineÆ
ien
y, sin
e it ignores theDR-plan whose availablility 
an be assumed, and its in
exibility. We then give an algorithmi
 solution thatis eÆ
ient - generally linear time in the number of relevant, output 
onstraints; retains full generality andmoreover:� traverses the given DR-plan top down to in
rementally output this unique set of 
onstraints in reversesolving order { this would also minimize the need to resolve of already solved parts of the DR-plan;� sele
ts 
onstraints from desired parts of the 
onstraint system (representing produ
t features) demandedby the user;� isolates information that 
an be stored and maintained as part of the DR-plan, making the above pro
esseven more eÆ
ient; and� automati
ally updates the DR plan with minimal reorganization, on
e one of the output 
onstraints is
hosen by the user to be removed.ImplementationThe algorithms developed here will be implemented and in
orporated into two fairly established geometri

onstraint solvers that have di�erent emphases: the Sket
hWorks and Erep solvers developed at Purdue, theFRONTIER 
onstraint solver [27, 28, 29, 22, 21℄, developed at Florida (the latter is available as GNU software[30℄).OrganizationThe paper falls naturally into two well-de�ned parts.The �rst part (through Se
tion 2) is devoted to the ne
essary ba
kground dis
ussion for 
onverging to anadequate formalization of the the problem. In parti
ular, in Se
tion 2, we develop a signi�
ant amount ofba
kground on geometri
 
onstraint graphs and DR-planners as well as 
ru
ial spe
i�
s of the Frontier VertexDR-planner whi
h relies on a network 
ow based, generalized degree of freedom analysis. We then give an aninitial formalization of the problem, show that it is wellposed, give an initial, network 
ow-based algorithmi
solution, dis
uss its drawba
ks, and reformulate the problem a

ording to the informal requirements listed inthe introdu
tion.The se
ond part of the paper gives an an eÆ
ient algorithmi
 solution to the �nal problem formulated inSe
tion 2. Se
tion 3 gives an algorithm for a 
ommonly o

uring 
lass of 2d systems. Se
tion 4 gives an algorithmand its 
orre
tness and 
omplexity analysis, for fully general 
onstraint systems in arbitrary dimensions. Thisgeneral algorithm hides an intri
ate proof of 
orre
tness, whi
h has been relegated to the Appendix. Con
lusionsare drawn in Se
tion 5.2 Ba
kground, Problem Statement, and Initial SolutionGiven a 
onstraint system, one usually 
onstru
ts the DR-plan �rst, i.e, exe
ute Steps 1 and 3 des
ribed in theIntrodu
tion, without a

ess to an algebrai
 solver, i.e, one generates the entire DR-plan �rst before solving thesubsystems.To generate a DR-plan apriori, one would have to lo
ate a solvable subsystem Si, and without a
tually solvingit, �nd a suitable abstra
tion or simpli�
ation of it that is substituted into the larger system Ei to obtain anoverall simpler system Ei+1 in Step 3. On the other hand, su
h a DR-plan would possess the advantage ofbeing robust, or generi
ally independent of parti
ular numeri
al values atta
hed to the 
onstraints, and of the4



Figure 2: 3d assembly example with 1 extra degree of freedom, and 
orresponding 
onstraint graphsolution to the Si, and usually only depends on the degrees of freedom of the relevant geometri
 obje
ts andgeometri
 
onstraints.In order to formally de�ne su
h a DR-plan, we follow a 
ommon pra
ti
e and view the 
onstraint system as the
onstraint hypergraph: this abstra
tion permits us to build the DR-planner on the foundation of generalizeddegree of freedom analysis whi
h is known to work well in estimating generi
 solvability of 
onstraint systemswithout a
tually solving them. (This is explained more pre
isely after the formal graph-theoreti
 de�nitions arein pla
e).2.1 Constraint Graphs and SolvabilityRe
all that geometri
 
onstraint problem 
onsists of a set of geometri
 elements and a set of 
onstraints betweenthem. A geometri
 
onstraint graph G = (V;E;w) 
orresponding to geometri
 
onstraint problem is a weightedgraph with n verti
es (representing geometri
 obje
ts) V and m edges (representing 
onstraints) E; w(v) is theweight of vertex v and w(e) is the integer weight of edge e, 
orresponding to the number of degrees of freedomavailable to an obje
t represented by v and number of degrees of freedom (dofs) removed by a 
onstraintrepresented by e respe
tively. For example, Figure 2 shows a 3d example with its 
onstraint graph.Note that in general, the 
onstraint graph 
ould be a hypergraph, ea
h hyperedge involving any number ofverti
es. A subgraph A � G that satis�esXe2Aw(e) +D �Xv2Aw(v) (1)is 
alled dense, whereD is a dimension-dependent 
onstant, to be des
ribed below. Fun
tion d(A) =Pe2A w(e)�Pv2A w(v) is 
alled density of a graph A.The 
onstant D is typi
ally �d+12 � where d is the dimension. The 
onstant D (whose negation is the density)
aptures the dof or degrees of freedom asso
iated with the dense graph. For planar 
ontexts and Eu
lideangeometry, we expe
t D = 3 and for spatial 
ontexts D = 6, in general. If we expe
t the 
luster to be �xed withrespe
t to a global 
oordinate system, then D = 0.Next we give some purely 
ombinatorial properties of 
onstraint graphs based on density. These will be latershown to be related to properties of the 
orresponding 
onstraint systems.A dense graph with density stri
tly greater than �D is 
alled over
onstrained. It should be noted that
ertain trivial over
onstrained graphs are 
ommon and require spe
ial treatment. These are: a single pointin 2d or 3d (graphs with a singleton vertex of weight 2 or 3); and a pair of points and a distan
e 
onstraintbetween them in 3d (graphs with 2 verti
es of weight 3 and an edge of weight 1 between them). The spe
ialtreatment is required be
ause while these graphs are te
hni
ally over
onstrained (they have a smaller numberof degrees of freedom than a rigid obje
t), infa
t, this is be
ause of their rotational symmetry. In other words,their \over
onstraint" is an external over
onstraint, a�e
ting the obje
ts that intera
t with them, rather thanwhat is usually understood to be an over
onstraint, i.e, between the obje
ts internal to the subgraph.5



Here we assume that the only rotationally symmetri
 systems we en
ounter 
orrespond to the 2 trivial sub-graphs listed above. See [28, 29℄ for the impli
ations of rotationally symmetri
 systems and their 
orrespondingsubgraphs, and how they should be treated.A graph that is dense and all of whose subgraphs (in
luding itself) have density at most �D is 
alled well-
onstrained. A graph G is 
alled well-over
onstrained if it satis�es the following: G is dense, G has atleast oneover
onstrained subgraph, and has the property that on repla
ing all over
onstrained subgraphs by well
on-strained subgraphs, G remains dense. A dense graph is minimal if it has no dense proper subgraph. Note thatall minimal dense subgraphs are well-
onstrained or well-over
onstrained, but the 
onverse is not the 
ase. Agraph that is not well-
onstrained or well-over
onstrained is said to be under
onstrained. Another equivalentde�nition of an under
onstrained graph is one that 
ontains a minimal 
utset of (hyper)edges (a minimal setof edges whose removal dis
onne
ts the graph), of total weight less than D. However in the 
ase where 1 (ork, k > 2 relevant only for hypergraphs) of the dis
onne
ted subgraphs resulting from the minimal 
ut have onerotational symmetry (or an external over
onstraint, e.g, if it is a trivial dense graph), then the minimal 
utneeds to be of weight less than D � 1(k) to 
ause the graph to be under
onstrained.Fa
t 2.1 If a dense graph is not minimal, it 
ould in fa
t be an under
onstrained graph: the density of thegraph 
ould be the result of embedding a subgraph of density greater than �D. In fa
t, a dense, nontrivial,under
onstrained graph must 
ontain an over
onstrained, nontrivial proper subgraph. Vi
eversa, if a graph G ofdensity �D 
ontained a nontrivial subgraph of density �D + 1, then G must be under
onstrained.In general, minimal dense subgraphs are allowed to in
lude trivial dense graphs as proper subgraphs. Some-times, a single dense edge of any kind is 
onsidered trivial and also treated as a spe
ial 
ase, but this is morefor reasons of eÆ
ien
y. Generally, these do not require su
h spe
ial treatment.While a generi
ally solvable system always gives a well-
onstrained graph, the 
onverse is not always the
ase. In fa
t, there are even minimal dense graphs whose 
orresponding systems are not generi
ally solvable,and are in fa
t generi
ally unsolvable (note that the position of the `not' 
hanges the meaning, the latter beingstronger than the former). For a detailed dis
ussion of generi
ity and the limits of purely 
ombinatorial degreeof freedom analysis, see [13℄.However, due to the reasons dis
ussed in the above paragraph, we restri
t ourselves to a 
lass of 
onstraintsystems where well or well-over
onstrainedness of the 
onstraint graph in fa
t implies the generi
 solvabilityof the 
onstraint system. As pointed out, the 
onverse is always true, with no assumptions on the 
onstraintsystem.Stated in terms of 
onstraint graphs, the DR-planning problem involves �nding a sequen
e of graphs Gi - aDR-plan traversed in a 
onsistent linear order. The original 
onstraint graph G = G1 and every Gi 
ontainsa minimal well or well-over
onstrained subgraph Si, whi
h is simpli�ed or abstra
ted into a simpler subgraphTi(Si) and substituted into Gi to give an overall simpler graph Gi+1 = Ti(Gi). While Ti(Si) should be simplerthan Si, it should also preserve essential information from Si that is related to its intera
tion with the rest ofGi. If the original graph G1 is well
onstrained, then the pro
ess terminates when Gm = Sm. (If not, the pro
essterminates with the de
omposition of Gm into a maximal set of well or well-over
onstrained subgraphs).NOTE: The linear ordering of simpli�
ation steps Gi; Gi+1; : : : et
. is not ne
essary in the de�nition of DR-plan, although they are often 
onvenient for de�ning DR-planners. The DR-plan of a 
onstraint graph G isinherently just a partial order, and 
an be represented as a dire
ted a
y
li
 graph, (whi
h is typi
ally for mostpart a tree or forest). DR-plans are not unique: see Figure 3.An optimal DR-plan will minimize the size of the largest subgraph Si found during the simpli�
ation pro
ess.I.e, it will minimize the maximum fan-in of the verti
es in the DR-plan. By fan-in of a vertex we mean thenumber of 
hildren of the vertex. With this des
ription, it should be 
lear, that DR-plans obtained usingthe weighted, 
onstraint graph model are generi
ally robust with respe
t to the 
hanges made to the geometri

onstraints, as long as the number of degrees of freedom atta
hed to the obje
ts and destroyed by the 
onstraintsremains the same, the same DR-plan will work for the 
hanged 
onstraint system as well.2.2 The Frontier Vertex Algorithm (FA-DR planner )Prior to [12, 13℄, the DR-planning problem and the relevant performan
e measures for good DR-planners werenot formally de�ned, and most DR planners were based on de
omposing the graph (if possible) into �xed rigid6
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onstraint graph showing well
onstrained subgraphs and 2 DR-plans: all verti
es haveweight 2 and edges weight 1

,Figure 4: FRONTIER s
reenshots. Left: non triangle-de
omposable 
onstraint graph and DR-plan: all verti
eshave weight 2 and edges weight 1. Right: input sket
h representing 3d 
onstraint system, two 
andidate solutionsand 
hosen onepatterns (i.e, re
ognizing shapes 
orresponding to 
ertain spe
i�
 minimal dense subgraphs, su
h as triangles of3 points and 3 distan
e 
onstraints). This works well in many 
ases, espe
ially in 2d [5℄,[23, 24, 25℄. This 
lass of2d 
onstraint systems is 
ommonly o

uring and is generally refered to as triangle de
omposable. However, manynatural 
onstraint systems are more 
omplex (espe
ially in 3d) and do not lend themselves to this approa
h.See, e.g, Figures 4 and 5.In su
h 
ases, the graph needs to be de
omposed into minimal dense subgraphs of arbitrary topology, theironly de�ning property being their density and minimality. Prior to [13℄ approa
hes to su
h generalized degree offreedom analysis had several drawba
ks with respe
t to the performan
e measures of good DR-planners de�nedin [12℄. The DR-planner that was designed spe
i�
ally in [13℄ to optimize these measures was the Frontier vertexAlgorithm (FA) whi
h works for general 
onstraint hypergraphs representing geometri
 
onstraint systems inarbitrary dimensions. Note that while our des
ription here is general, our illustrations, however, do not involvehypergraphs, and generally involve only 2d points and distan
e 
onstraints.FA is a re
ursive algorithm that is used to build the DR-plan. Ea
h node or 
luster C of the DR-plan is builtusing 2 steps that are perfomed alternately and repeatedly: (1) �nding or isolating the minimal dense subgraphs(the de
omposition step) and (2) simplifying or transforming it into the 
luster C (the re
ombination step).Both steps are applied to a graph whi
h 
onsists of 
lusters already simpli�ed in the previous iteration.For Step 1, small, well-
onstrained subgraphs are isolated by �nding minimal dense subgraphs. The algorithmin [10℄ whi
h FRONTIER [27, 30℄ employs a simple but 
ru
ial modi�
ation of Network Flow, in parti
ular, the7
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onstraint graph G1 and DR-plan all verti
es have weight 2 and edges weight 1in
remental max 
ow algorithm to �rst isolate a dense subgraph G0 (with 
hosen lower bound on density) ofthe given 
onstraint graph G. Then a minimal dense subgraph inside it 
an be found by su

essively droppingverti
es v and redoing the 
ow inside G0. If a new dense subgraph G00 is found, then v is dropped and thesame pro
edure is 
arried out for G00: On the other hand, if no su
h dense subgraph is found, then v mustde�nitely belong to every minimal dense subgraph inside G0, hen
e add it to a set M of su
h verti
es, andreturn M whenever it indu
es a dense subgraph of G. This entire pro
edure takes O(jV j2(jV j + jEj)) (inpra
ti
e O(jV jjEj)) steps, where V and E respe
tively are the sets of verti
es and edges of G0, whi
h in theworst 
ase 
ould be the original 
onstraint graph G.2.2.1 Simplifying found 
lustersOn
e a minimal dense subgraph Si is lo
ated in Gi, Step 2 of the re
ursive DR-planning pro
ess is to simplifyit, thereby transforming the 
onstraint graph Gi at the previous stage, into a simpler graph Gi+1, su
h thatthe densities of subgraphs of Gi are preserved in Gi+1 as mu
h as possible, so that an optimal DR-plan 
an befound. Intuitively, there are problems with a simplisti
 approa
h su
h as 
ondensing the 
luster found in Giinto a single vertex in Gi+1 with the appropriate degree of freedom: The goal is to minimize the informationlost during the simpli�
ation. The 
luster 
orresponding to the minimal dense subgraph intera
ts with the restof the 
onstraint graph, using its frontier verti
es,. i.e, those verti
es that are 
onne
ted to the outside of the
luster. The goal of the Frontier vertex algorithm (FA) is to preserve the frontier vertex information, so thatan optimal DR-plan 
an be found.After a nontrivial, minimal or extended dense subgraph Si of Gi is dis
overed, the subgraph indu
ed by itsinternal verti
es (those verti
es that are not 
onne
ted by an edge to the verti
es outside Si) is 
ontra
ted into one vertex (the 
ore vertex) 
i. However, this 
ore vertex is 
onne
ted to ea
h frontier vertex v of Si bya 
ombined edge whose weight is the the sum of the weights of the original edges 
onne
ting internal verti
esto v. The frontier verti
es, edges 
onne
ting them, and their weights remain un
hanged. The weight of the
ore vertex is 
hosen so that the density of the entire simpli�ed 
luster is exa
tly equal �D where D is thegeometry-dependent 
onstant. This pro
ess of �nding solvable Si and simplifying them is repeated, until thesolvable Sm found it the entire remaining graph Gm.See Figure 6 for an illustration of how FA 
onstru
ts various 
lusters in the �nal DR-plan of Figure 5. Asnoted before, although it is most 
onvenient to des
ribe FA as a linear sequen
e of simpli�
ation steps, in fa
t,FA 
onstru
ts a partially ordered DR-plan.The formal graph transformation performed by FA is des
ribed in [13, 14℄, using so-
alled simpli�er mapswhi
h permit the proof of various formal properties of FA, whi
h in turn, illustrate FA's superior performan
ewith respe
t to formal measures developed for DR-planners in [12℄; a sket
h of the FA implementation is alsopresented there. Many of the a
tual algorithms, datastru
tures and various 
ru
ial issues su
h as dealing withtrivial, rotationallly symmetri
, externally over
onstrained 
lusters are worked out in [28, 29℄, whi
h des
ribe8
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Figure 7: From left. Cluster C7 of Figure 6. C7 before transformation: T�1C7 (C7) { bold edges are relevantedges used for resolving C7 and both bold and marked edges are un
hanged edges. Underlying subgraph GC7
orresponding to C7 (from graph in Figure 5). Third key property of FA - W must be a 
hild of Cthe entire FRONTIER system [30℄. In the next subse
tion, we list some of the key properties of FA that werepeatedly use in this paper.2.2.2 Key properties of FAThe 
orre
tness of FA follows from the �rst property of FA that ea
h internal node in the FA DR-plan repre-sents a well-
onstrained 
luster C (i.e, a simpli�ed representation of the underlying nontrivial well
onstrainedsubgraph GC of G), obtained (in the se
ond step above) by applying a simplifying transformation TC to awell-
onstrained subgraph 
onsisting of 
hild 
lusters of C. This subgraph is and is often also denoted T�1C (C).This subgraph is isolated as Si in the de
omposition step of some ith iteration of FA (re
all that FA's iterationsimpose a linear order 
onsistent with the partial order of the DR-plan). See Figure 7.If the original graph G is well or well-over
onstrained and nontrivial, then the DR-plan is a dag with a singleroot or sink. If G is under
onstrained, then FA �nds all of its maximal well or well-over
onstrained subgraphs:ea
h sink of the DR-plan represents su
h a subgraph. The FA DR-plan (as do most DR-plans) have the propertythat if the only 
hanges made to G are within a 
luster C and and these preserve the well-
onstrainedness of Cthen they will preserve the well-
onstrainedness of the an
estor 
lusters of C as well.A se
ond key property of FA is that the Frontier verti
es and edges of the 
lusters C are un
hanged, i.e,they are in 1-1 
orresponden
e with verti
es and edges of the original graph G. Furthermore the edges inthe subgraph T�1C (C), between the 
hild 
lusters Ci are also un
hanged edges (see Figure 7) that are in 1-1
orresponden
e with edges from the original graph G. These represent 
onstraints that are used in resolving or9



Figure 8: S
reenshots from FRONTIER: (Left) 2d sket
h, DR-plan and 1 solution possibility for a lower level
luster subsystem; (Right)Root 
luster of DR-plan being resolved after 
hoosing solution for a 
hild 
luster onleft �gurere
ombining C from the the resolved 
lusters Ci. They are 
alled the relevant edges for C. Conversely, ea
hedge e in G is relevant for a unique 
luster C in the DR-plan. The 
luster C is 
alled the relevant 
luster forthe edge e. Figure 8 is a FRONTIER s
reen
apture showing 
andidate solution of the root 
luster of the FADR-plan being re
ombined or resolved from a 
hosen solution of 
hild 
lusters.Sometimes, as in the graph of Figure 3 and Figure 8, the 
onstraints between 
lusters are impli
it. i.e, theyare 
onstraints implied by shared obje
ts or 
ommon frontier verti
es between 
lusters. These are not expli
itlylisted among the relevant 
onstraints for resolving C. In this 
ase, the only relevant 
onstraints at top level
luster are not expli
it 
onstraints but rather impli
it shared obje
t 
onstraints.A third property (
ru
ial for FA's 
orre
tness) 
on
erns the stru
ture of a 
luster C before it is simpli�ed,i.e, the stru
ture of T�1C (C). First, C satis�es a 
luster minimality in the following sense: no proper subset ofC's or 2 or more 
hild 
lusters Ci indu
e a dense proper subgraph of G. Se
ond, if GC (the original subgraphunderlying C) is nontrivial and 
ontains a nontrivial well or well-over
onstrained subgraphW whose interse
tionwith any one of the 
hild 
lusters Ci of C in T�1C (C), is a trivial, over
onstrained subgraph (e.g, a single pointas shared obje
t{ see Figure 7), then W must itself have been represented as a 
hild 
luster Ci in T�1C (Ci).FA's design obje
tive that led to preserving frontier vertex information was the generation optimal DR-plans,i.e, those for whi
h the maximal fan-in (number of 
hild 
lusters Ci that 
ombine into any parent 
luster C)is minimized. This trades o�, however, with the number of 
lusters in the DR-plan. Similarly, maintainingthe property of the previous paragraph additionally has the e�e
t of in
reasing the number of 
lusters in theDR-plan. A fourth property of FA that is 
ru
ial to prevent an exponential mushrooming of 
lusters and formaintaining polynomial 
omplexity of FA is that two 
lusters Ci of the DR-plan do not overlap on non-trivialwell-(over)
onstrained graphs, unless one a
tually 
ontains the other. By FA's simpli�
ation pro
edure, thisproperty holds for their 
orresponding subgraphs GCi as well. Due to this property, the total number of 
lustersin an FA DR-plan is bounded by O(jV jd), where jV j is the number of verti
es of the original graph and d islinear in the dimension of the original geometri
 spa
e. The depth of the DR-plan is bounded by jV j, althoughin pra
ti
e, the number of 
lusters is also O(jV j). The minimal dense subgraph dete
tion needed to isolateea
h of these 
lusters 
ould take as many as O(jV j2(jV j + jEj)) steps where jEj is the number of edges of theoriginal graph, although, this typi
ally takes only O(jV jjEj) steps. In any 
ase, the total 
omplexity of the FADR-planner in the 2d 
ase is bounded by O(jV j4(jV j+ jEj)) steps; in pra
ti
e it typi
ally takes O(jV j2jEj) steps.A �fth property of the FA DR-plan is used 
ru
ially here. If G is over
onstrained, then for any nontrivialwell-over
onstrained subgraph W , we 
an read o� from the DR-plan D(G) the unique minimal nontrivial10




luster C, whose 
orresponding subgraph GC 
ontains W . However, GC 
ould be signi�
antly larger thanW . The uniqueness follows from the 4th property in the previous paragraph. If there is a unique, minimal,nontrivial, well-over
onstrained graph W , then there is a unique, minimal, nontrivial over
onstrained 
lusterC, in the DR-plan D(G), whose 
orresponding subgraph GC 
ontains W . Here, minimality of C means thatno des
endant 
luster's subgraph 
ontains W . This 
luster C is denoted S(D(G)) and 
an be read o� fromD(G) as the unique minimal 
luster C where T�1C (C) is over
onstrained. Sin
e the 
hild 
lusters Ci of C are(by the FA simpli�
ation) always represented as well
onstrained subgraphs in T�1C (C), the over
onstrainednessof T�1C (C) results entirely from the shared obje
t 
onstraints and the relevant 
onstraints used for resolving Cby re
ombining the Ci.A sixth key property is that the FA DR-plan in
orporates (is a proper re�nement of) an input hierar
hy of(well or well-over
onstrained) features or parts. I.e, the set features appear as 
lusters in the output DR-plan).2.3 An Initial Problem Statement and SolutionWe are now ready to formally de�ne the problem being 
onsidered in this paper. The redu
ible edges in ageometri
 
onstraint graph G are de�ned as edges that 
ould have their weight redu
ed by 1 without makingG under
onstrained, if G was well-over
onstrained before. If G was under
onstrained before, then these areexa
tly the edges that belong to atleast one of the maximal well-over
onstrained subgraphs of G. and 
ould beweight-redu
ed by 1 without under
onstraining any of them. By the 
ut-based de�nition of under
onstrainedgraphs given earlier, the redu
ible edges do not belong to any minimal 
ut of weight D in G (assuming theminimal 
ut separates the graph into nontrivial parts). An over
onstrained graph is 1-over
onstrained, if it (orea
h of its maximal well-over
onstrained subgraphs) be
omes well-
onstrained as soon as exa
tly one of theedges in its redu
ible set has its weight redu
ed by 1. We restri
t 1-over
onstrained graphs to be nontrivial.Any 1-over
onstrained graph should 
ontain a 1-well-over
onstrained graph as a subgraph. We 
an now makean initial statement of the over
onstraint problem dis
ussed in the Introdu
tion.Problem: Give an eÆ
ient algorithm that takes as input a 1-over
onstrained graph G, and outputs its redu
ibleset of edges, L(G).A solution to this problem immediately presents itself due to the following fa
t and sin
e we already know agood algorithm for isolating minimal dense subgraphs(satisfying any 
hosen density lowerbound), from Se
tion2.2.Fa
t 2.2 (i) Any nontrivial 1-over
onstrained graph G may have many (1-)over
onstrained subgraphs, buthas a unique minimal, nontrivial, 1-over
onstrained subgraph U (i.e, no proper subgraph of U is 1-over
onstrained).(ii) By the minimality and uniqueness of U , it follows that an edge is in U if and only if every (1-)over
onstrainedsubgraph of G 
ontains it.(iii) Furthermore it follows from Fa
t 2.1 that U is in fa
t 1-well-over
onstrained.(iv) Most importantly, U 
onsists of exa
tly the redu
ible edges of G.Proof: The uniqueness of U is proved as follows. Suppose to the 
ontrary there were 2 minimal, nontriv-ial 1-over
onstrained subgraphs U . Then by the in
lusion-ex
lusion prin
iple, unless their interse
tion is 1-over
onstrained, their union has density atleast D + 2, i.e, atleast 1 more than that of any 1-over
onstrainedgraph, whi
h 
ontradi
tsG's 1-over
onstrainedness. On the other hand, if their interse
tion is 1-over
onstrained,that 
ontradi
ts the minimality of U1 and U2.To show that the minimal 1-over
onstrained graph U is exa
tly L(G), assume not. First assume one ofthe edges outside U is redu
ible. Consider redu
ing the weight of one of the edges outside U by 1. After thisredu
tion, G is still (barely) dense, i.e, has density �D, but it has a subgraph U of density �D+ 1, and hen
eby Fa
t 2.1, the new G must be under
onstrained. Next assume that one of the edges in U is not redu
ible. I.e,its weight redu
tion 
auses the redu
ed G to be
ome under
onstrained. However, its weight redu
tion 
ausesU and all other 1-over
onstrained subgraphs of G to be no longer 1-over
onstrained, sin
e they all 
ontain U .But the redu
ed G's density is still �D. This 
ontradi
ts Fa
t 2.1, whi
h states that there should still be anontrivial, 1-over
onstrained subgraph W remaining in the now under
onstrained G. 211



Initial Algorithmi
 SolutionDue to Fa
t 2.2, we 
an immediately obtain an eÆ
ient O(jV j2(jV j+ jEj)) (in pra
ti
e O(jV jjEj)) network 
owbased algorithm for this problem, by adapting the minimal dense subgraph lo
ation algorithm given in Se
tion2.2 (i.e, by simply in
reasing the density lower bound). This works for 
ompletely general geometri
 
onstraithypergraphs in arbitrary dimensions. On
e this graph is found, simply lo
ate a minimal 1-over
onstrainedsubgraph U in it by throwing out verti
es one by one and trying to �nd a subgraph of density �D + 1 withinthe resulting subgraph, exa
tly as in the minimal dense algorithm des
ribed in Se
tion 2.2. The subgraph Uthus found gives exa
tly L(G) by Fa
t 2.2.2.4 Drawba
ks and Modi�ed Problem StatementThe problem statement and solution given above are unsatisfa
tory sin
e they do not satisfy the followingrequirements dis
ussed informally in the Introdu
tion. These dire
tly de�ne the modi�ed problem.Requirement 1: given an existing DR-plan D(G), and given D(G) as input, the algorithm should be sig-ni�
antly more eÆ
ient than the one given above: in parti
ular, the list L(G) of redu
ible edges of G shouldbe automati
ally read o� from the DR-plan, provided a small amount of additional information is stored andmaintained along with the 
lusters (nodes) of the DR-plan.Requirement 2: We would like the list of redu
ible edges to be output in
rementally as sublists, in timetypi
ally linear in the number of output edges. This is a
heivable by walking down the DR-plan, 
luster by
luster, starting from the over
onstrained 
luster S(D(G)) that is read o� from D(G) as explained in Se
tion2.2.2. The �rst sublist is the set of redu
ible edges in G (if any) that are present as un
hanged edges of G, inthe 
luster S(D(G)), i.e, these are the 
onstraints that are resolved in the pro
ess of re
ombining the alreadysolved 
hild 
lusters of S(D(G)). See Se
tion 2.2.2. The next sublists output are the sets of redu
ible edges inG (if any) that are relevant to the 
hild 
lusters of S(D(G)) and so on. In general if a 
luster A in D(G) is anan
estor of a 
luster B then the sublist 
orresponding to A will be output earlier than the sublist 
orrespondingto B. In other words, assuming all 
lusters in D(G) have been solved, the edges or 
onstraints in L(G) areoutput in the reverse order in whi
h they would be solved: \latest-solved-�rst." For a spe
i�ed des
endant
luster C, the sublist of redu
ible edges are among the relevant edges of C and these sublists would be outputin a latest-solved-�rst order as we walk down the DR-plan.Requirement 3: We would like the sublist of redu
ible edges for a parti
ular (
luster or feature) C to be outputon demand, preferably in a manner that inspe
ts only the 
lusters on the path in the DR-plan from S(D(G))to C (the 
lusters that 
ontain C). This is meaningful for instan
e in the 
ase of FA DR-plans, be
ause theyin
orporate a designer's 
on
eptual feature hierar
hy { the features appear as 
lusters in the DR-plan.Requirement 4: This 
on
erns dynami
 maintanen
e of the DR-plan. We would like the DR-plan to be easilyand eÆ
iently updated when one of redu
ible edges is a
tually redu
ed. In parti
ular, we would like the optimalreorganization of the DR plan without reorganizing any of the original 
lusters that were preserved after theredu
tion.In the next se
tion, We 
on
entrate mostly on Requirements 1, 2 and 3. Requirement 4 follows from ouralgorithmi
 solution with some routine work, and we only dis
uss it informally.3 Triangle De
omposable 2d Constraint SystemsFor the bulk of 2d 
onstraint systems, it is suÆ
ient to use the triangle de
omposition algorithm of [5℄ whose
lusters are formed by 
ombining three 
hild 
lusters pairwise sharing one geometri
 element. When points andlines are the geometri
 vo
abulary, all verti
es have weight 2 and edges have weight 1; hen
e 1-over
onstrainedgraphs have a number of edges jEj that is linear in the number of verti
es jV j. Elementary 
lusters 
onsist oftwo verti
es and an edge between them. As shown in [5℄, over
onstrained problems are dete
ted by two 
lusterssharing more than one geometri
 element, so that the 1-over
onstrained 
ase implies two 
lusters that share twogeometri
 elements. This in
ludes adding an extra weight-1 
onstraint into the 
luster, sin
e su
h a 
onstraint,along with two in
ident weight-2 verti
es, 
an be 
onsidered a 
luster. We explain how to obtain the the set ofredu
ible (removable) edges. 12
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riti
al subproblem. Right: Clusters H1 and H2
an be dropped from 
onsideration.Let K1 and K2 be the overlapping 
lusters, u1 and u2 the shared verti
es between them. Our algorithm�rst examines the de
omposition tree to �nd 
luster merges in K1 and K2 in whi
h both u1 and u2 are inthe same 
luster, as illustrated in Figure 9 (left). It is 
lear that if the 
lusters H1 and H2 
an be removed,and that the resulting, smaller 
luster K remains 1-over
onstrained. Moreover, sin
e both H1 and H2 mustbe over
onstrained, deleting any 
onstraint within those 
lusters 
annot 
hange the original problem into awell-
onstrained one. Thus, iteration of the pruning step obtains a 
luster K 0 that must 
ontain the unique,minimal 1-over
onstrained subgraph and hen
e all of the redu
ible edges by Fa
t 2.2.As noted in [12, 13℄, 
onstraint-graph de
omposition is not deterministi
, although it satis�es the Chur
h-Rosserproperty. Therefore, 
luster pruning, in general, does not ne
essarily preserve the set of redu
ible edges, and anexample is shown in Figure 9 (right).What is needed is a tree re-ordering that exhibits the remaining redundan
ies. The de
omposition methodof 
utting [36℄ a
hieves this, as we explain.Let G = (V;E) be a 
onstraint graph. The 
utting step �nds a vertex v 2 V su
h that the weight w(v) isequal to the sum of the weights of the in
ident edges. Su
h a vertex 
an be 
onstru
ted as the last step of thesolution plan, and 
an therefore be removed from G without 
hanging whether G is stru
turally over-, well-,or under
onstrained. Clearly, 
luster pruning 
an be 
onsidered a general form of the 
utting step. We thusobtain the following algorithm for identifying the 
riti
al subproblem:1. Repeat 
luster pruning until no further 
lusters 
an be removed.2. Repeat the 
utting step until no further verti
es or sub
lusters 
an be removed.The algorithm, as stated, has quadrati
 
omplexity. This 
an be lowered to O(jEj log(jEj)) = O(jV j log(jV j))using a priority queue. However, a di�erent approa
h a
hieves a linear-time algorithm.Consider the 
luster and mark the two shared points. All other verti
es are unmarked. Then, 
onsider theverti
es in the reverse order in whi
h they were added to the 
luster. We will a

umulate a set S of 
onstraintedges that are relevant to the 1-over
onstrained situation. S is initially empty. Perform the following for ea
hvertex v en
ountered:1. If the vertex v is not marked, delete it and delete the 
onstraints by whi
h it was added.2. If v is marked, then3. If there are other verti
es in the remaining 
luster that are marked, then in
lude into S the edges of the
onstraints by whi
h v was added and mark the verti
es in
ident to the 
onstraint edges.4. Otherwise, if v is the only marked vertex, terminate the pro
ess.It is intuitively 
lear that the marked edges are pre
isely the redu
ible or removable 
onstraints that 
ontributeto the over
onstrained situation. Using referen
e 
ount, we 
an implement the test of remaining marked verti
esin 
onstant time, so that the algorithm overall is linear-time.13
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Figure 10: Left: A 
onstraint graph Middle: its de
omposition stru
ture; Right: The result of edge redu
tionExample. Consider the 
luster shown in Figure 9(Left). Verti
es 1 and 10 reveal the 1-over
onstrained situationwhen merging the lower and the upper 
luster. Assume that the lower 
luster has been 
onstru
ted by 
hoosingthe edge (1; 2) as 
luster 
ore and sequentially extending the 
luster in the order of vertex enumeration.Initially, verti
es 1 and 10 are marked, and in the lower 
luster the verti
es are examined in reverse numeri
alorder. Vertex 11 is examined �rst. Sin
e it is not marked, it is deleted along with the edges (7,11) and (9,11).When examining vertex 10, we add the 
onstraint edges (8,10) and (9,10) to L and mark verti
es 8 and 9.Examining 9 next, we add edges (8,9) and (6,9) to L and mark 6. On examining 8, we add (3,8) and (6,8) andmark 3. Vertex 7 is unmarked and is deleted along with edges (4,7) and (6,7). Eventually, the pro
ess endswith a set L = f(8; 10); (9; 10); (8; 9); (6; 9); (3; 8); (6; 8); (3; 6); (2; 6); (1; 2); (1; 3)gNote that the verti
es 11; 7; 4; 5 are unmarked. 2The algorithm is straightforwardly extended to 
luster pruning. Here, we have to maintain a mark referen
e
ounter for the 
lusters themselves, in addition to the intra-
luster redu
tion explained before. Therefore, the
riti
al 
onstraint set 
an be found in linear time.Note: An additional diÆ
ulty arises from the fa
t that triangle de
omposition 
annot de
ompose all 2d well-
onstrained problems. In the 
ase of solvers based on triangle de
omposition, therefore, we identify additionallythe subset of 
onstraints whose removal retains triangle de
omposability. This 
an be done by deleting ea
h
onstraint in turn and testing de
omposability. Sin
e 1-over
onstrained problems are identi�able early, and inview of our experien
e that the 
riti
al subproblems of su
h over
onstrained problems are usually not very large,this approa
h is eÆ
ient.Updating triangle-based DR-plans: 
onstraint removalRemoving a 
onstraint 
orresponds to removing an edge from the 
onstraint graph. To minimize the 
hangesof the de
omposition, we only modify or destroy 
lusters that are based on this edge; that is, 
lusters whoseindu
ed subgraph in
ludes the edge. Figure 10 (left) is a 
onstraint graph G and Figure 10 (middle) illustratesthe de
omposition stru
ture of the G. For example, if the edge (2; 4) is removed, the 
luster C is destroyedand the 
luster C1 is modi�ed, but other 
lusters remain un
hanged. Figure 10 (right) shows the result of theremoving operation.4 The Algorithm for general DR plansWe now des
ribe the algorithm Overlist, whi
h takes as input a general geometri
 
onstraint hypergraph Gthat represents a geometri
 
onstraint system in 3d or arbitrary dimension, and is known to be 1-over
onstrained.Therefore as in the previous se
tion, jEj = O(jV j). The algorithm uses FA to generate a DR plan D(G) and andoutputs the 
omplete list L(G) of redu
ible edges in G in
rementally with and 
exibly with respe
t to D(G),in su
h a way as to satisfy all of the requirements of the modi�ed problem of Se
tion 2.4. First we presentthe 
ore algorithms. Adaptations of the algorithm are brie
y sket
hed in Se
tion 4.1, followed by illustrativeexamples in Se
tion 4.2. The algorithms are relatively simple, but their simpli
ity hides an intri
ate stru
ture14



Theorem 4.2 whi
h establishes the algorithms 
orre
tness. Its proof is however relegated to the Appendix. The
omplexity analysis follows after a dis
ussion of the importan
e of FA's key properties.Algorithm Overlist uses a DR-plan D(G) and the unique smallest (but nontrivial) 1-well-over
onstrainedsubgraph 
orresponding to a 
luster S(D(G)) { i.e, that is a
tually present in D(G): both of these are output bythe FA DR-planner des
ribed in Se
tion 2.2 and Se
tion 2.2.2 . As pointed out in Se
tion 2.2.2, this subgraph
orresponding to S(D(G)) may be quite a bit larger than the unique minimal 1-well-over
onstrained subgraphof G whi
h, in general, may not appear as a 
luster in D(G). The tuple (G;D(G); S(D(G))) form the inputto the algorithm Planover whi
h is the main te
hni
al 
ontribution here. Algorithm Planover further 
alls 2re
ursive subroutines Unravel and Unravel� that in
rementally output the list L(G), while traversing thesub-DR-plan of D(G) rooted at the 
luster-node S(D(G). See Figure 11 for the overall 
ontrol 
ow of thesealgorithms.Algorithm Overlist(G)Step 1: Run the FA DR-planner to get the DR-plan D(G) and the 
luster S(D(G) representing the uniquesmallest 1-well-over
onstrained subgraph of G that appears as a 
luster in D(G). Sin
e G is known to be1-over
onstrained, we know that this subgraph is nontrivial.Step 2: Planover(G;D(G); S(D(G))Algorithm Planover(G;D(G); S(D(G))L(G) := ;; C := S(D(G))Unravel�(C; ;); Output L(G)Algorithm Unravel�(C;P )LC := set of un
hanged edges (from G) in T�1C (C) between the 
hild 
lusters Ci of C;L(G) = L(G) [ LC ; Output LCPC := set of 
onta
t points, i.e, those verti
es of the 
hild 
lusters Ci in T�1C (C) that are (a) either presentin more than one Ci (these represent \shared-obje
t" or \in
iden
e" 
onstraints); or (b) parti
ipants in someedge(
onstraint) in LC .P �C = PC [ PFor ea
h 
hild 
luster Ci of C in D(G),Unravel(Ci; P �C \ Ci)Algorithm Unravel(C;P )If C represents a singleton vertex of G, then return NULLElse,If all the points in P lie inside a single 
hild 
luster Ci of C in T�1C (C) thenUnravel(Ci; P ) (if there is more than 1 su
h 
hild 
luster Ci, pi
k any one)Else Unravel�(C;P )Notes on the pseudo
ode:{ Algorithm Overlist is never 
alled on 
lusters C 
orresponding to trivial well-over
onstrained subgraphs ofG, sin
e S(D(G)) 
orresponds to a nontrivial subgraph, by results in Se
tions 2.2, 2.3, and 2.4{ In Algorithm Planover, the 
omplete list of edges L(G) is output at the end, however, the list is alsoin
rementally output when sublists are en
ountered at 
lusters of D(G) during Unravel� { see below{ Unravel�, is never 
alled on 
lusters C 
orresponding to singleton verti
es of G; Moreover, the 
onta
t pointsin PC are ne
essarily Frontier verti
es of the Ci's and are hen
e un
hanged verti
es from G. Hen
e both LCand PC are well-de�ned.{ In the des
ription of Unravel�, the Ci are obtained from D(G) { see Se
tion 2.2; Also, LC 
ould be emptyif C resulted from only impli
it or \shared-obje
t" 
onstraints between its 
hild 
lusters.{ In the des
ription of Unravel�, LC is output at this stage as the in
remental sublist of L(G) obtained fromC. By Se
tion 2.2.2 the edges in L(C) represent the relevant expli
it 
onstraints used to re
ombine or solve Cfrom the already solved 
hild 
lusters Ci. Thus it immediately follows that the Requirement 2 of the problemstatement in Se
tion 2.4 is met by this algorithm 15



FA

PLANOVER

UNRAVEL(*)

L(G)

(G = Overconstrained graph)

S(D(G))
D(G) = DRPLAN

OVERLIST

(G, D(G), S(D(G)))

Case of G2 & G3:
    * D(G2) & D(G3) are identical to D(G1) 
    * S(D(G2)) & S(D(G3)) are also identical to S(D(G1))
    * L(G2) & L(G3) .i.e. output of PLANOVER changes since G2 & G3 are different from G1

Case of G4 & G5:

    * S(D(G4)) & S(D(G5)) are unchanged
    * D(G4) & D(G5) both change from D(G1)

    * Change in L(G4) & L(G5) .i.e. output of PLANOVER crucially depends on change in D(G4) & D(G5)

Case of G6:
    * S(D(G6)) changes from S(D(G1))
    * Change in L(G6) .i.e. output of PLANOVER crucially depends on this change

Cases G4,G5,G6 when compared to case G1 illustrate that correctness of OVERLIST depends not only on 
PLANOVER but also on the properties of FA’s output (.i.e. entire input to OVERLIST).Figure 11: Overall 
ontrol 
ow of algorithms; Text: di�eren
es in the example variants G1, G2, G3, G4 ofFigure 12, and Figures 13, 14, 15, 16.
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{ In the des
ription of Unravel�, P �C \ Ci represents those 
onta
t points in Ci that are inherited from C:{ In the des
ription of Unravel, the 
all Unravel(Ci; P ) is well de�ned for the following reason: the pointsin P are always verti
es from G that are un
hanged in C, they are not only Frontier verti
es in C but alsowell-de�ned as Frontier verti
es of C's 
hildren Ci in T�1C (C)4.1 Immediate Adaptations of the AlgorithmA key property of the above algorithm is that it adapts easily and eÆ
iently to answering the following types ofuser queries (Requirement 3 of the problem statement in 2.4): \Is this edge e redu
ible?" or \Given a parti
ular
luster C of the given DR-plan D(G) { give me the list LC of redu
ible edges relevant to C (if it exists)"Observation 4.1 The Algorithm Unravel is 
alled only on a subtree of of D(G), in fa
t, it is a subtree ofthe subplan of D(G) that is rooted at S(D(G)). The sublist LC is formed only on those verti
es of this subtreewhere Unravel� is 
alled.This observation is illustrated in Se
tion 4.2 and 
an be used as follows. For the �rst type of query above,�rst lo
ate the unique relevant 
luster C for e. Now, for both types of queries, the algorithm immediately adaptsto give an eÆ
ient solution that requires only looking at the path of 
lusters from S(D(G)) to C in the DR-planD(G) (
alled the unravelling path): 
he
k whether Unravel gets 
alled on all of these 
lusters starting from thetop of the path and by following the 
onta
t points. The rest of the graph 
an be 
ompletely ignored. Finally
he
k whether Unravel� gets 
alled at C. If yes, then the relevant edges are C are redu
ible edges that wouldbe output as LC by Algorithm Planover above.More signi�
antly, these algorithms are easily implemented on top of the DR-planners of existing 
onstraintsolvers. This is be
ause the entire information 
ow in the above algorithms involves simple pie
es of informationthat 
an be stored and and updated routinely as part of the DR-plan: relevant 
luster in the DR-plan for agiven edge, relevant edges for a given 
luster, the 
onta
t points that they de�ne, and the inheritan
e of these
onta
t points.4.2 Illustrative ExamplesWe use the realisti
 2d 
onstraint system of Figure 5 to illustrate the working of Algorithm Overlist in Figure12. Figures 13, 14, 15 and 16 all further illustrate the key points of the algorithm using variants of the �rstexample. These examples exhibit the 
omplexity of geometri
 
onstraint systems that o

ur in pra
ti
e andwhi
h require the general de
omposition 
apabilities of our FA DR-planner, and of the algorithms given in thisse
tion. As mentioned before, the algorithms given in this se
tion are 
ompletely general and work for 
onstrainthypergraphs obtained from 3d 
onstraint systems.In the 
ase of the graph G2 Figure 13(left) (formed from G1 by 
hanging the edge h), the DR-plan D(G2) =D(G1) and also the 
luster S(D(G2)) = S(D(G1)). However, due to the 
hange of h, Unravel(C21) dire
tly
alls Unravel(C20); unlike in the 
ase of G1 Unravel is not 
alled for C14 and C17. The new L(G2) turnsout to be all edges in subgraphs 
orrsponding to C4 and C20.In the 
ase of the graph G3 Figure 13(right) (formed from G1 by 
hanging the edge e), the DR-planD(G3) = D(G1) and also the 
luster S(D(G3)) = S(D(G1)). However, due to the 
hange of e, Unravel(C6)gets 
alled unlike in the 
ase of G1 and G2. The new L(G3) turns out to be all edges in original graph G3.In the 
ase of the graph G4 Figure 14 (formed from G1 by 
hanging the edges i and e), the DR-planD(G4) output by FA must be di�erent from D(G1) due to the properties in Se
tion 2.2.2. However, the 
lusterS(D(G4)) = S(D(G1)). In this 
ase, Unravel(C7) dire
tly 
alls Unravel(C40); Unravel is not 
alled forsingleton 
lusters (verti
es) 21 and 22. Thus edges (17; 21); (18; 22); (21; 22); (22; 23) are ex
luded and the edgei 
hanged in L(G3) to give L(G4).In the 
ase of the graph G5 Figure 15 (formed from G1 by di�erently 
hanging the edges i and e), theDR-plan D(G5) output by FA must be di�erent from D(G1) and D(G4), due to the properties in Se
tion2.2.2. However, the 
luster S(D(G5)) = S(D(G1)). In this 
ase, Unravel(C7) 
alls both Unravel(C400) andUnravel(C5). L(G5) is again L(G3), with i 
hanged.In the 
ase of the graph G6 Figure 16 (formed from G1 by di�erently 
hanging the edges g and e), the DR-plan D(G6) output by FA must be di�erent from D(G1), due to the properties in Se
tion 2.2.2 and moreover,17



S(D(G6)) = C70 is not the same as S(D(G1)). In this 
ase, Unravel(C70) 
alls both Unravel(12) andUnravel(C7), whi
h in turn dire
tly 
alls Unravel(C4). PC70 is the set f19; 20; 15; 12g. L(G6) is exa
tly theset of edges in the subgraph of G6 
orresponding to the 
luster C4, along with the 
hanged edges e; f; g.A Note on ImplementationThe FA DR-plans for the examples given here and many other realisti
 2d and 2d geometri
 
onstraint systemswere obtained by running our FRONTIER geometri
 
onstraint solver. See for example Figure 4. Theseand other examples { both 2d and 3d, and involving other types of obje
ts and 
onstraints besides pointsand distan
es { are available at the FRONTIER publi
 domain site [30℄, where the sour
e 
ode 
an also bedownloaded. The algorithms des
ribed here will be in
orporated into FRONTIER's \update" mode.Importan
e of the FA DR-plan's propertiesThe 
orre
tness of Algorithms Overlist and Planover rely 
ru
ially on the properties of the FA DR-plangiven in Se
tion 2.2.2. This is elu
idated by the 
ontrol 
ow and the text in Figure 11, whi
h distinguishesbetween the variants in Figures 13, 14, 15 and 16.4.3 Corre
tness and 
omplexityThe relatively simple des
ription of the algorithm hides an intri
ate proof of 
orre
tness. The following theoremshows that Requirements 1 and 2 of the problem statement in Se
tion 2.4 are met by algorithm Overlist.Requirement 3 was dis
ussed in Se
tion 4.1. The proof is given in the Appendix.Theorem 4.2 Let LC be any sublist of edges output during a 
all to Unravel� (no sublist LC is output withoutsu
h a 
all) and L(G) be the union of all of these sublists as output by Planover, when the algorithm Overlistis run on an input 
onstraint graph G. Then the following hold.1. Every edge in LC represents a relevant expli
it 
onstraint for resolving C from its 
hild 
lusters in the FADR-plan D(G) (output in Step 1 of Overlist). If a 
luster C is an an
estor of a 
luster D, then theedges in LC (if any) are output before the edges in LD (if any).2. Every edge in LC belongs to the (unique) minimal, nontrivial 1-(well)-over
onstrained subgraph of G (andis hen
e redu
ible in G by Fa
t 2.2).3. Any edge that is not in the 
omplete output list L(G) (i.e, if it not in any of the sublists LC's output) isnot redu
ible in G.4.3.1 ComplexityThe 
omplexity of 
onstru
ting the FA DR-plan D(G) for G is given in Se
tion 2.2.2 and by Figure 11, it getsin
luded into the 
omplexity of Algorithm Overlist: it represents the dominant 
omplexity term.However, the key point was to in
rementally and 
exibly output redu
ible 
onstraints, given an alreadyexisting DR-plan D(G). I.e, the 
ru
ial fa
ility of Algorithm Planover (besides its generality) is the abilityto eÆ
iently output sublists of redu
ible 
onstraints in \latest-solved-�rst" order and to output on demandthe relevant redu
ible 
onstraint sublist for a parti
ular 
luster (see Se
tion 4.1). It is the 
omplexity of thesepro
edures that are of interest. In other words, given a 
luster C, what is the 
omplexity of Unravel foroutputting the list LC , if one exists, as a fun
tion of the standard graph and DR-plan parameters, the depth ofC in the DR-tree, and the number of output edges or 
onstraints?.The answer depends on whether and how standard information su
h as: relevant edges of a 
luster, 
onta
tpoints of a 
luster and so on are maintained as part of the DR-plan. To isolate this aspe
t, let us assume the
omplexity of pro
essing at any given 
luster C, i.e, 
omputing LC , PC , P �C\Ci et
. (not in
luding the re
ursive
all) during Unravel(C) is t(kC ; rC). Here The quantity kC is the number of 
hild 
lusters in T�1C (C) thatparti
ipate in C, the fan-in of the DR-plan at C, and is bounded by jV j; rC is the number of relevant edges inC. Note: Our 
omplexity analysis assumes that t is a linear fun
tion { simple graph datastru
tures ensure this,even if 
onta
t points and relevant edges have to be 
omputed from s
rat
h without being maintained as part of18



Figure 12: Working of Overlist showing 
alls to Unravel for the graph G1 and DR-plan of Figure 5;19
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hanged DR-plan as well as input 
luster S(D(G))for Planoverthe DR-plan. If these data are maintained systemati
ally using high-eÆ
ien
y datastru
tures, then t 
ould bea polylogarithmi
 fun
tion, de
reasing the following bound signi�
antly. We also assume that ea
h edge in thehypergraph G has a bounded arity (usually 2), otherwise, the arity enters the 
omplexity in a straightforwardmanner as a linear fa
tor.Let lC represent the length of (number of 
lusters B on) the unravelling path pC (in D(G)) from S(D(G))to C, whi
h is bounded by jV j (due to properties in Se
tion 2.2.2). Hen
e the 
omplexity of outputting the listLC (if one exists) { given a graph G, DR-plan information D(G) and S(D(G)) and a 
luster C { is bounded by: PB2pC t(kB ; rB). This 
learly grows with lC , a

ording to Requirement 2 of Se
tion 2.4. One rough 
omplexityupper bound exhibiting this dependen
e is O(lC(jV j+jEj)). Here jEj 
an be assumed to be the number of outputedges sin
e none others are inspe
ted. However, this is a loose upper bound sin
e no edge of the graph and no
luster in the DR-plan is ever inspe
ted more than on
e, i.e, sin
e for any C, PB2pC rB does not ex
eed the numberof output edges jEj, and sin
e PB2pC kB does not ex
eed jV j2 (the number of 
lusters generated by FA DR-plannerdoes not ex
eed O(jV j2), by Se
tion 2.2.2). Thus the 
omplexity of interest does not ex
eed O(maxfjV j2; jEjg):Combining the two bounds, the 
omplexity of interest is bounded by: O(minflC(jV j+ jEj);maxfjV j2; jEjg)g),even without prior DR-plan maintanen
e of 
onta
t point and relevant 
luster information. In pra
ti
e (seeexamples in Se
tion 4.2) { this bound does not ex
eed O(jEj), i.e, it is linear in the number of output edges.5 Updating the DR-plan after edge redu
tionWe now brie
y 
onsider Requirement 4 of Se
tion 2.4. If the weight of one of the redu
ible edges in LC fora 
luster C is redu
ed by one, the DR plan D(G) may no longer be 
orre
t. How 
an the DR-plan D(G) bemodi�ed eÆ
iently to give an 
orre
t DR-plan that is near-optimal, but preferably without reorganizing anyof the (maximal) des
endant 
lusters F of S(D(G)) whose subgraphs GF remained well
onstrained after theredu
tion (re
all the de�nition of optimal in Se
tion 2.1). This 
an be done by a simple use of the relevant
onstraint lists LF and 
onta
t points along with inheritan
e information PF and P �F , that are used duringUnravel { as dis
ussed in Se
tion 4.3.1, these 
an easily be maintained as standard information along with the
lusters in the DR-plan. We leave out the formal des
ription and provide an intuitive des
ription using pi
turesin Figure 17.When one of the edges in LC is weight-redu
ed by 1, the 
lusters that are destroyed i.e that are no longerwell
onstrained are exa
tly the 
lusters E along the unravelling path p in D(G) from S(D(G)) to C, ex
ludingS(D(G), whose 
orresponding subgraph GS was previously 1-well-over
onstrained and now be
omes well
on-strained. All other 
lusters are preserved. The maximal preserved subDR-plans are rooted at the 
lusters Fwhi
h are exa
tly the 
hildren of the 
lusters E, ex
epting the 
hildren that are dire
tly on p. See Figure 17.21
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hes all of these 
lusters F dire
tly as the 
hildren of S(D(G)), however if thereare many su
h 
lusters, su
h a plan 
ould 
ause S(D(G)) to have a large fan in, i.e, the system to be solvedinorder to resolve or re
ombine S(D(G)) 
ould be large, making the new DR-plan far from optimal.However, the 
onta
t points inherited by the 
lusters F 
an be used in a straightforward manner to optimizethis initial DR-plan. These 
onta
t points 
an be read o� from the P �E for the an
estors E (of the 
lustersF ) on the unravelling path p, in
luding the 
luster S(D(G)). These 
onta
t points should be 
onsidered inthe oldest �rst order, i.e, the 
onta
t points inherited from S(D(G)) are �rst to be 
onsidered in re
ombiningthe 
lusters F . This is be
ause intuitively, S(D(G) was the only 
luster whose subgraph GS was previouslyover
onstrained, and hen
e any \
ompensation" for the redu
tion of the edge from LC should start with therelevant edges and 
onta
t points at S(D(G)), and propagate downwards along p. Su

essive steps in obtainingan optimized DR-plan are des
ribed in the sequen
e of pi
tures below.6 Con
lusions and an Open ProblemA geometri
 
onstraint solver algorithm employs highly spe
ialized mathemati
s and o

upies a 
entral positionin many appli
ations, for instan
e in 
omputer-aided me
hani
al design. In most 
ases, the solver is embeddedin other software and is not dire
tly exposed to the user.When formulating a 
onstraint problem in an appli
ation 
ontext, it is possible that situations arise that re-quire the user to intera
t with the solver. The required intera
tion may be a problem reformulation or assistan
eto the solver to sele
t a di�erent solution variant. In those situations, intuitive methodologies must be developedfor users who are unfamiliar with the underlying mathemati
s and with the parti
ular strategies employed bythe 
onstraint solver algorithms. Su
h users must be able to e�e
tively 
ommuni
ate their requirements withouthaving to understand the workings of the solver or the deeper prin
iples on whi
h it is based.We have 
onsidered the issues requiring user intera
tion for over
onstrained problems, where users may notunderstand why their problem spe
i�
ation has redundant 
onstraints. Here, we must present the user with allrelevant 
hoi
es for deleting redundan
ies. Currently, solvers either give no information, simply labelling theproblem as over
onstrained, or else 
ag only an e�e
tively random subset of the redu
ible 
onstraints at theimmediate 
luster in whi
h the problem was dete
ted. But those 
onstraints may be essential for the appli
ationthat should not be deleted. Thus, all relevant 
onstraints must be identi�ed. These must moreover be outputeÆ
iently and 
exibly and on the user's demand, from desired subsystems of the 
onstraint system whi
h 
ouldrepresent spe
i�
 parts or features. Furthermore, the algorithm should eÆ
iently use information and data thatare 
entral to the 
onstraint solver, and hen
e already exist, su
h as the DR-plan; these data must also beeÆ
iently updated or dynami
ally maintained when one of the redu
ible 
onstraints is removed by the user.We have formally identi�ed these requirements, and given eÆ
ient algorithms that apply to fully general, 3dgeometri
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, simpler algorithms to deal with
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ases. These algorithms will be in
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AppendixProof of Theorem 4.2: Item 1 holds immediately from the de�nition of the LC in Unravel� and from there
ursive nature of Unravel.Proof of Item 2 We will show that every 1-over
onstrained subgraph W of G 
ontains every edge in LC . Thisimplies Item 2.By the properties of FA in Se
tion 2.2.2, the subgraph GS of G 
orresponding to the 
luster S(D(G) is 1-well-over
onstrained and 
ontains the minimal 1-well-over
onstrained graph.Hen
e it is suÆ
ient to show that that every 1-(well)-over
onstrained subgraph W of GS 
ontains every edge inLC . This follows from Item (iv) in Claim 1 below.Claim 1: Let C be any 
luster on whi
h Unravel is 
alled, let GC be the 
orresponding subgraph of G. Any1-well-over
onstrained subgraph W of GS:(i) Must interse
t GC on a well
onstrained or well-over
onstrained subgraph WC(ii) Let GCi be the subgraphs of G 
orresponding to the 
hildren Ci of C, found in T�1C (C). The interse
tionWCi = WC \ GCi = W \GCi , if nonempty, is well
onstrained and nontrivial provided GCi is nontrivial.(the trivial 
ases of GCi are handled straightforwardly).(iii) (a) Either WC � GCi ; i.e, WC =WCi , for some i, or(b) WCi is nonempty for every 
hild 
luster Ci of C.(iv) If Unravel� is 
alled at C, then (iii)(b) holds, i.e, WCi is nonempty for every 
hild 
luster Ci of C; moreimportantly, WC in
ludes all edges in LC and every 
onta
t point in PC .Proof. We prove Claim 1 by indu
tion on the number lC of 
lusters (along a path p in the DR-plan D(G)from S(D(G)) to C) on whi
h Unravel is 
alled. This path 
onsists of 
lusters that are both des
endants ofS(D(G)) and an
estors of C. It is 
lear from the algorithm that if Unravel(�) is eventually 
alled on C, thensu
h a unique unravelling path p must exist, and Unravel is 
alled on all of the 
lusters on this path.Basis: lC = 0, i.e, C = S(D(G)). In this 
ase, WC = W; so (i) holds immediately, and in fa
t, WC iswell-over
onstrained. To prove (ii), (iii), (iv), we �rst prove the following 
laims.Claim 2:(a) WC 
annot be a subgraph (proper or not) of any of GCi 's.(b) If some WCi is nonempty, then it 
annot be over
onstrained unless it is also trivial.Proof. If W were a subgraph of one of the GCi 's or if WCi was over
onstrained, then GCi would be well-over
onstrained, and by de�nition of S(D(G), we would 
ontradi
t our Case 1 assumption that Ci's parentC = S(D(G)). 2(Claim 2)Claim 3: None of the WCi 's is trivial over
onstrained unless the 
orresponding GCi is trivial over
onstrained.Proof. Assume not. This implies that GS 
ontains a well-over
onstrained subgraph WC that interse
ts atleastone of GCi on a trivial over
onstrained subgraph. However, by a key property of FA DR-plans in Se
tion 2.2.2,su
h a subgraph would have to dire
tly yield or be represented as one of the 
hild 
lusters of C, 
ontradi
tingClaim 2a. 2(Claim 3)Claim 2 and Claim 3 imply that: there are atleast 2 nonempty WCi 's and if nonempty, then the WCi 's are wellor under
onstrained and nontrivial provided GCi is nontrivial.Next we show that theWCi 's are nonempty for every 
hild 
luster Ci. Suppose to the 
ontrary thatWC overlapsonly the GCi for i 2 Q, where Q is a proper (index) subset of the 
hildren of C and jQj > 1. Let LQC be therestri
tion of LC indu
ed by Q, i.e, those edges in LC that are in
ident on only verti
es in the GCi for i 2 Q.Let GQS be the subgraph of GS indu
ed just by the verti
es in GCi : i 2 Q. Now: density(GQS ) is atleast Pi2Qdensity(GCi)+ (total edge weight of LQC) whi
h is atleastPi density(WCi)+ (total edge weight of LQC) whi
h isatleast density(WC). But sin
e WC was 
hosen to be over
onstrained, this implies that GQS is over
onstrained.Sin
e we know that none of the GCi is over
onstrained (re
all that C = S(D(G))), by the properties of the25



FA DR-planner in Se
tion 2.2, it follows that the Ci's have the same (well
onstrained) density as the GCi 'sand it would further follow that the subgraph of T�1C (C) indu
ed by the Ci : i 2 Q is also over
onstrained).But this 
ontradi
ts the minimality property in Se
tion 2.2.2 of the 
luster C as having been found by an FADR-planner.Next we show that none of the WCi is under
onstrained, and all the 
onta
t points in PC are 
ontained inWC . Assume to the 
ontrary that one of these does not hold. It is 
lear that one of the inequalities (*) and(**) below must be proper: density(WC) is � (*) Pi density(WCi)+ (total edge weight of LC) whi
h is �(**) Pi density(GCi)+ (total edge weight of LC) (sin
e the GCi are well or well-over
onstrained by de�nitionof DR-plan and properties of FA in Se
tion 2.2.2, and sin
e the WCi are not over
onstrained). This latterquantity is is equal to density(GS): But sin
e GS is just 1-over
onstrained, it follows that WC =W would notbe over
onstrained whi
h 
ontradi
ts our 
hoi
e of W as an over
onstrained subgraph of GS .2(Basis)Indu
tive step: Assume Claim 1 is true for 
lusters C with lC � m. For a 
luster C with lC = m + 1, theremust be some other 
losest an
estor 
luster E0 on the path p with lE0 � m on whi
h Unravel� is 
alled. LetE0; E1; E2; : : : ; Ek = C, 1 � k � (lC � lE0) be the 
lusters along the path p between E and C.By Indu
tion hypothesis on E, WE1 is nonempty, well
onstrained, nontrivial (unless GE1 is trivial) andin
ludes all the 
onta
t points P �E0 \ GE1 . In fa
t, all of these 
onta
t points must lie in (be inherited by)GE1 ; : : : ; GC : this is 
learly true if k = 1 and E1 = C. If not, i.e, if k > 1, then this is true again be
auseotherwise Unravel� would have been 
alled on one of the 
lusters E1; : : : ; Ek�1, 
ontradi
ting the 
hoi
e ofE = E0 as 
losest an
estor to C where Unravel� is 
alled.This means that WE1 \GC is nonempty and hen
e: This means that WC de�ned as W \GC =WE1 \GC(sin
e GC � GE1), is also nonempty. Therefore by Indu
tion hypothesis (ii) applied to its parent Ek�1, itfollows that (i) holds for WC .To prove (ii), (iii), (iv) of the indu
tion step, we 
onsider two 
ases. Whether Unravel� is 
alled at C or not.In the former 
ase, 
onsider again the 
onta
t points P �E0 inherited from C's 
losest an
estor E0 on p whereUnravel� is 
alled. As before in the indu
tive step for (i), WC must 
ontain all of the 
onta
t points P �E0\GE1 ,where E1 is a 
hild of E0. Sin
e Unravel� is 
alled at C, WC must therefore have a nonempty interse
tionwith atleast 2 of C's 
hildren Ci. This is a di�erent proof of Claim 2a of the base 
ase. The remainder of theindu
tive step for this 
ase goes through exa
tly as in the indu
tion basis.In the latter 
ase, i.e, when Unravel� is not 
alled at C, Claim 2a is now false, and so is Claim 3. Howeverwe do not need to show (iv). To show (ii) and (iii), we modify Claim 2a and Claim 3 as follows. The proofs ofthese modi�
ations are straightforward from the fa
t that Unravel� is not 
alled at C.Claim 2a': WC is a subgraph of GCi for atleast one of its 
hildren Ci, only if all the 
onta
t points P �E of C'sparent E fall into Ci.Claim 3': If WC is not a subgraph of some GCi , then none of the WCi 's is trivial over
onstrained unless the
orresponding GCi is trivial over
onstrained.The remainder of the proof for this 
ase pro
eeds exa
tly as in the indu
tion basis. 2(Item 2)Proof of Item 3 There are only 2 
ases of these edges that are left out of L(G): those that are in GS , i.e, thesubgraph 
orresponding to S(D(G)) and those that are not. Edges outside GS are not redu
ible by Se
tion2.2.2, so that takes 
are of the latter 
ase.The former 
ase of edges inside GS must appear as un
hanged edges in T�1C (C), i.e, relevant edges forresolving a unique des
endant 
luster C of S(D(G)) for whi
h Unravel� is not 
alled. These are the 
lustersC in whi
h all 
onta
t points P �E - inherited through Unravel on its parent E - fall into GCi for one of the
hild 
lusters Ci of C.For ea
h su
h 
luster C, we exhibit a subgraph WC of GS that is 1-over
onstrained and does not in
ludeany of the un
hanged edges of G that are in
ident on more than 1 
luster in T�1C (C). This implies that none ofthese edges belong to the minimal 1-over
onstrained subgraph of G and by Fa
t 2.2 are not redu
ible.This WC is 
onstru
ted as follows. See Figure 18. Take the unique unravelling path p (de�ned duringthe proof of Item 2) between S(D(G)) = E0; E1; : : : Ek = C (k � 1) in the DR-plan D(G). Walking down pin
rement WC in stages, one stage for every 
luster El on p where Unravel� is 
alled, in
lude into WC all thesubgraphs of all the 
hildren 
lusters of El ex
ept for the an
estor of C, namely El+1. In
lude into WC all theun
hanged edges of G that are in
ident on more than 1 
luster in T�1Ei (Ei) as well as the 
onta
t points in P �El26



Construction of WC
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Figure 18: Constru
tion of WC for 
luster C(un
hanged verti
es of G) that are in El+1 { we 
all this the set L of dangling 
onta
t points. Finally, in
ludeall the edges in GCi into WC . By 
onstru
tion, WC 
ontains none of the un
hanged edges that are in
ident onmore than 1 
luster in T�1C (C).The argument for WC being 1-over
onstrained runs as follows. By the fa
t that GS is 1-over
onstrained, itfollows that at any given stage l of in
rementation, WC 
an be made 1-over
onstrained by embedding the set Lof dangling 
onta
t points (i.e, adding enough edge weight to make them) into a well-
onstrained subgraph. Atthe �nal stage, we perform exa
tly this embedding by in
luding all the edges in the well-
onstrained GCi intoWC . 2(Item 3, and Theorem 4.2)
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