
A Tractable, Approximate, Combinatorial 3D rigidity characterization

Meera Sitharam ∗† Yong Zhou∗

June 20, 2004

Abstract

There is no known, tractable, characterization of 3D rigidity of sets of points constrained by pairwise
distances or 3D distance constraint graphs. We give a combinatorial approximate characterization of such
graphs which we call module-rigidity, which can be determined by a polynomial time algorithm. We show
that this property is natural and robust in a formal sense. Rigidity implies module-rigidity, and module-
rigidity significantly improves upon the generalized Laman degree-of-freedom or density count. Specifically,
graphs containing ”bananas” or ”hinges” [8] are not module-rigid, while the generalized Laman count would
claim rigidity. The algorithm that follows from our characterization of module-rigidity gives a complete
decomposition of non module-rigid graphs into its maximal module-rigid subgraphs.

To put the result in perspective, it should be noted that, prior to the recent algorithm of [21] there was
no known polynomial time algorithm for obtaining all maximal subgraphs of an input constraint graph that
satisfy the generalized Laman count, specifically when overconstraints or redundant constraints are present.

The new method has been implemented in the FRONTIER [23], [35], [28], [29] opensource 3D geo-
metric constraint solver and has many useful properties and practical applications [30], [31], [32], [34],
[33]. Specifically, the method is used for constructing a so-called decomposition-recombination (DR) plan
for 3D geometric constraint systems, which is crucial to defeat the exponential complexity of solving the
(sparse) polynomial system obtained from the entire geometric constraint system. The DR-plan guides the
algebraic-numeric solver by ensuring that only small subsystems are ever solved. The new, approximate
characterization of 3D rigidity permits FRONTIER to deal with a far larger class of 3D constraint systems
(a class adequate for most applications) than any other current geometric constraint solver.

Keywords: Combinatorial Rigidity, Variational geometric constraint solving, Cyclical and 3D geometric con-
straint systems, Decomposition of geometric constraint systems, Underconstrained and Overconstrained systems,
Degree of Freedom analysis, Constraint graphs.

1 Introduction

A 3D distance constraint graph is a weighted graph with vertices representing point objects in 3D and edges
representing distance constraints between the points. The weight of each vertex is 3, representing its 3 positional
degrees of freedom (dof), and the weight of each edge is 1, representing the number of degrees of freedom the
constraint removes.

The constraints can be written as quadratic equations in variables representing the coordinates of the points
For example, a distance constraint of d between two points (x1, y1, z1) and (x2, y2, z2) in 3D is written as
(x2 − x1)

2 + (y2 − y1)
2 + (z1 − z2)

2 = d2. The resulting 3D distance constraint system is said to be generically
rigid, if it has at most finitely many incongruent solutions (i.e., its solution set, the corresponding algebraic
variety, is finite modulo rotations and translations) in the generic case (i.e., when a generic, algebraically
independent set of values is chosen for the distance constraints).

Thus the property of generic rigidity of a distance constraint system - being independent of the actual distance
values - is in fact a property of the underlying distance constraint graph alone. (We call the corresponding con-
straint graph rigid). One would expect a purely combinatorial characterization (and corresponding algorithm)
for determining rigidity of distance constraint graphs. While Laman’s theorem [19] gives such a characterization
for 2D distance constraint graphs, no such characterization has been proven for 3D, although several conjectures

∗University of Florida; Work supported in part by NSF Grant CCR 99-02025, NSF Grant EIA 00-96104
†corresponding author: sitharam@cise.ufl.edu

exist [8]. A (real) solution or embedding or realization of a distance constraint system is sometimes called a
framework. There is a characterization of rigidity of a distance constraint graph using so called infinitesimal
rigidity of frameworks and the associated rigidity matroids [8]. This characterization asserts full generic rank of
a so-called rigidity matrix (its entries are vectors determined by the coordinate positions of the constrained pairs
of points, expressed as indeterminates). However, this characterization does not yield a polynomial time algo-
rithm for determining rigidity of a distance constraint graph. In fact, none of the combinatorial characterization
conjectures appears to translate to a polynomial time algorithm.

Here, we adopt a different tack. We give a combinatorial approximate characterization of 3D rigidity, which we
call module-rigidity, which can be determined by a polynomial time algorithm. We show that this property is
natural and robust in a formal sense. Rigidity implies module-rigidity, and module-rigidity significantly improves
upon the generalized Laman degree-of-freedom or density count. Specifically, graphs containing ”bananas” or
”hinges” [8] are not module-rigid, while the generalized Laman count would claim rigidity. More precisely:

rigid ⊆ module-rigid ⊂ generalized Laman or dof rigid (contains bananas and hinges)

The algorithm that follows from our characterization of module-rigidity has a number of useful properties.
Many of these are based on the fact that the algorithm gives a complete decomposition of non module-rigid
graphs into its maximal module-rigid subgraphs. The new method has been implemented in the FRONTIER
[23], [35], [28], [29] opensource 3D geometric constraint solver (2003 and 2004 versions) and has many practical
applications: geometric constraint systems are used as succinct, minimal, editable representations of geometric
composites in many contexts including mechanical computer aided design, robotics, molecular modeling and
teaching geometry For recent reviews of the extensive literature on geometric constraint solving see, e.g, [14,
18, 6]. Most of the geometric constraint solvers so far deal with 2D constraint systems, although some of the
newer approaches including [11, 12, 16, 17] [15, 2, 24] [10, 21, 23, 35], extend to 3D constraint systems. These
constraint solvers have been compared with respect to various formal performance measures in [16]. The new,
approximate characterization of 3D rigidity permits FRONTIER to deal with a far larger class of 3D constraint
systems (a class adequate for most applications) than any other current constraint solver.

Most geometric constraint solvers rely on recursively decomposing the input constraint system into small,
generically rigid subsystems prior to solving. These subsystems are fed to an off-the-shelf algebraic-numeric
solver, and the solutions are recombined to generate a solution to the entire constraint system. This decomposition-
recombination (DR) plan (defined in Section 1.1) is crucial to defeat the exponential complexity of solving the
(sparse) polynomial system obtained from the entire geometric constraint system, by guiding the algebraic-
numeric solver effectively: only small subsystems are ever solved. It is also crucial that the DR-plan be gen-
erated efficiently, certainly in polynomial time. As a result, DR-planners are usually graph algorithms that
combinatorially determine rigidity of the subsystems in the DR-plan.

For the DR-plan to effectively guide the solver, the subsystems in the DR-plan need to be rigid so that their
solutions can be recombined. However, if the DR-planner should err occassionally by falsely claiming rigidity,
this error will be detected during the actual solving process.

In Section 1.1 we give the basic background on geometric constraint graphs, generic rigidity, generalized Laman
or dof analysis, DR-plans and their basic properties. The characterization of module-rigidity (and the corre-
sponding algorithm) presented in Section 3 build upon an alternate characterization (and corresponding Frontier
vertex algorithm) of [21] of generalized Laman or dof rigidity for 3D geometric constraint graphs that is based
on DR-plans. This characterization has many useful properties [21], [31], [32], [30], [34], [33] which are inher-
ited by the new module-rigidity characterization, specifically because it gives a polynomial time algorithm for
determining a complete decomposition into maximal dof rigid subgraphs, if the graph is not dof rigid. Most
importantly, the algorithm works in the presence of redundant or overconstraints. Earlier graph algorithms
such as [9] for determining dof rigidity rely on the removal of overconstraints. While [10] provide a method
for removing overconstraints without making the whole graph dof underconstrained, this could make dof rigid
subgraphs underconstrained. Hence methods such as [9] do not provide complete decompositions.

1.1 Constraint Graphs, Degrees of Freedom, DR-Plans

Geometric constraint graphs are a generalization of the distance constraint graphs to which the new results of
this paper are restricted. However, the concepts in this and the next sections apply to general constraint graphs

2

as well. A geometric constraint graph G = (V, E, w) is a weighted graph with n vertices (representing geometric
objects) V and m edges (representing constraints) E; w(v) is the weight of vertex v and w(e) is the weight of
edge e, corresponding to the number of degrees of freedom available to an object represented by v and number
of degrees of freedom (dofs) removed by a constraint represented by e respectively.

Several 3D distance constraint graphs whose vertices of weight 3 (representing points) and edges of weight
1 (representing distance) can be found in Figures 1, 2, 3, 11, 10.

A subgraph A ⊆ G that satisfies

∑

e∈A

w(e) + D ≥
∑

v∈A

w(v) (1)

is called dense, where D is a dimension-dependent constant, to be described below. Function d(A) =
∑

e∈A w(e)−
∑

v∈A w(v) is called density of a graph A. Its magnitude is also called the generalized Laman or dof count, since
it is a natural generalization of Laman’s theorem [19] that gives a combinatorial characterization of rigidity for
2D distance constraint graphs.

The constant D is typically
(

d+1

2

)

where d is the dimension. The constant D captures the degrees of freedom of
a rigid body in d dimensions. For 2D contexts and Euclidean geometry, we expect D = 3 and for 3D contexts
D = 6, in general. If we expect the rigid body to be fixed with respect to a global coordinate system, then
D = 0.

Next, we give some purely combinatorial properties of constraint graphs based on density. These will be later
shown to be related to properties of the corresponding constraint systems.

A dense graph with density strictly greater than −D is called overconstrained. A graph that is dense and all
of whose subgraphs (including itself) have density at most −D is called dof wellconstrained. A graph G is called
dof well-overconstrained if it satisfies the following: G is dense, G has atleast one dof overconstrained subgraph,
and has the property that on replacing all dof overconstrained subgraphs by dof wellconstrained subgraphs (in
any manner), G remains dense. A graph that is dof wellconstrained or dof well-overconstrained is said to be
dof rigid or a dof cluster. A dense graph is minimal if it has no dense proper subgraph. Note that all minimal
dense subgraphs are dof clusters but the converse is not the case. A graph that is not a dof cluster is said to be
dof underconstrained. If a dense graph is not minimal, it could in fact be an dof underconstrained graph: the
density of the graph could be the result of embedding a subgraph of density greater than −D. A trivial graph
is any graph that reduces (by resolving incidences) to a single point in 2D or to a fixed or variable length line
segment in 3D. All these trivial graphs have rotational symmetries and are dof rigid; the former two cases are
truly rigid and are dof overconstrained.

To discuss how the graph theoretic properties based on degree of freedom (dof) analysis described above relate to
corresponding properties of the corresponding constraint system, we need to introduce the notion of genericity.
Formally we use the notion of genericity of e.g, [3]. A property is said to hold generically for polynomials
f1, . . . , fn if there is a nonzero polynomial P in the coefficients of the fi such that this property holds for all
f1, . . . , fn for which P does not vanish.

Thus the constraint system E is generically rigid if there is a nonzero polynomial P in the coefficients of
the equations of E - or the parameters of the constraint system - such that E has at most finitely many zeroes
modulo rotations and translations, when P does not vanish. For example, if E consists of distance constraints,
the parameters are the distances. Even if E has no overt parameters, i.e, if E is made up of constraints such as
incidences or tangencies or perpendicularity or parallelism, E in fact has hidden parameters capturing the extent
of incidence, tangency, etc., which we consider to be the parameters of E. (Generically overconstrained systems
have no zeroes when P does not vanish and generically underconstrained systems have infinitely many zeroes,
i.e., a non-zero-dimensional algebraic variety; both generically wellconstrained and generically overconstrained
systems are said to be generically rigid; the latter are sometimes refered to as redundantly rigid).

1.2 Inadequacy of a generalized Laman or dof analysis

A generically rigid system always gives a dof cluster, but the converse is not always the case. In fact, there are
dof well-constrained clusters whose corresponding systems are not generically rigid and are in fact generically
not rigid. The root cause of these misclassifications is the presence of “hidden” dependent constraints that
cannot be found by a dof count.

3

Figure 1: 3D constraint system drawn on a 2D canvas ilustrating the bananas problem; corresponding constraint
graphs have vertices of weight 3 and edges of weight 1; see text for explanation

Consider for example the Figures 2, 1, 3, related to the so-called “bananas” problem in 3D, which is a type
of constraint dependence occurring in a large class of 3D distance constraint graphs, although this detection is
nontrivial.

A dof analysis of the 3D constraint system in Figure 2(top) would report the left and right subsystems
(P1, P2, P3, P4, P5 and P1, P6, P7, P8, P5 respectively) and the whole system to be dof wellconstrained clusters.
Figure 3 (bottom) has the same number of constraints, but a dof analysis would report both that the left
subgraph as dof overconstrained and the whole as dof underconstrained. Figure 1 (left) also has the same
number of constraints and is a dof rigid cluster. However, while the left and right subsystems are (in fact)
generically rigid, the whole system is generically overconstrained. In a well-defined sense, this caused by a
constraint dependence. On the other hand, when restricted to consistently overconstrained situations (those
choices of distances - such as in this example - that are guaranteed to admit a solution), the system in Figure
1 (left) is generically underconstrained, although the system on Figure 1(right) is generically wellconstrained.

In fact, a constraint system is generically overconstained if the common overlap of any subset of its dof
wellconstrained clusters is dof underconstrained. The above “bananas” is a special case of this. However, the
dof analysis is inaccurate only in the “bananas” situation. Another standard example, in 4 dimensions the
graph K7,6 representing distances is minimal dense, and hence a dof rigid cluster, but it does not represent a
generically rigid system.

However, as mentioned earlier, in 2 dimensions, according to Laman’s theorem [19] if all geometric objects
are points and all constraints are distance constraints between these points then any minimal dense dof rigid
cluster represents a generically rigid system.

In fact, there is no known, tractable characterization of generic rigidity of distance systems for 3 or higher
dimensions, based purely properties of the constraint graph. In fact even in 2D, while Laman’s theorem [19]
combinatorially characterizes generic rigidity of point and distance systems, there are no known combinatorial
characterizations of rigidity, when other constraints besides distances are involved.

For example, in the case of angle constraints in 2D: 3 line segments with 3 incidence constraints form a triangle
with 3*4-3*2 = 6 (resp. 3*6-3*3 = 9) degrees of freedom. It would appear that to make it wellconstrained, we
can introduce 3 angle constraints (each of which removes 1 dof). But in fact, this would make it generically
overconstrained.

1.3 The need for decomposition: dof DR-plans and their properties

The overwhelming cost of solving a geometric constraint system is the size of the largest subsystem that is
solved using a direct algebraic/numeric solver. This size dictates the practical utility of the overall constraint
solver, since the time complexity of the constraint solver is at least exponential in the size of the largest such

4

Figure 2: Modifications to 3D system in Figure 1: dof wellconstrained (DR-plan has single source, top) and
underconstrained (DR-plan has many sources, bottom); see text for explanation

subsystem.
The DR-planner is a graph algorithm that outputs a decomposition-recombination plan (DR-plan) of the

constraint graph. In the process of combinatorially constructing the DR-plan in a bottom up manner, at stage
i, it locates a dof rigid subgraph Si in the current constraint graph Gi, and uses an abstract simplification of Si

to to create a transformed constraint graph Gi+1.
Decomposition algorithms based on constraint graphs have been proposed since the early 90’s based on

recognition of subgraph patterns such as triangles [7, 25, 26, 24] [20, 22]; and based on Maximum Matching
[27, 1]. However, prior to [16], the DR-planning problem and appropriate performance measures for the planners
were not formally defined. That paper also gives a table comparing 3 main types of DR-planners, with respect
to these performance measures. A subsequent paper [17] presents the framework of a DR-planner based on
generalized dof analysis (beyond detecting specific patterns) that would optimize these performance measures.
The complete dof-based DR-planner, called the Frontier vertex DR-planner, based on this framework, along with
properties, proofs and applications is presented in [21]. These are sketched in Section 2 and form the starting
point of the new characterization of module-rigidity and the corresponding algorithm presented in Section 3.

Formally, a DR-plan of a constraint graph G is a directed acyclic graph (DAG) whose nodes represent rigid
subgraphs in G, and edges represent containment. The leaves or sinks of the DAG are all the vertices (primitive
clusters) of G. The roots or sources are all the maximal rigid clusters of G. In a partial DR-plan, the last
condition may not hold. There could be many DR-plans for G. See Figure 4. Note that the definition of
DR-plans is robust (has a type of Church-Rosser property) in that any partial DR-plan can be extended to
obtain a DR-plan for G. I.e., if the DR-plan is being built bottom up, any construction path will lead to a valid
DR-plan. A dof DR-plan is one where each of the clusters is only required to be dof rigid, and the roots are
required to be all the maximal dof rigid clusters of G. One can define a partial dof DR-plan analogously: the
dof DR-plan definition is also robust in that any partial dof DR-plan extends to a dof DR-plan. An optimal
(dof) DR-plan is one that minimizes the maximum fan-in. The size of a (dof) rigid cluster in a (dof) DR-plan
is its fan-in (it represents the size of the corresponding subsystem, once its child clusters are solved).

All properties defined for DR-plans transfer as performance measures of the DR-planners or DR-planning

5

Figure 3: dof overconstrained clusters in well (single source in DR-plan) and underconstrained (multiple sources
in DR-plan) graphs; see text for explanation

6

22

i

5

10

8

C0

3

11 9

6

4

2

12

1

20

15

13

17

1918
21

e
f

g

C7C6

C4

C21

16

14

7

23

h

C15

C19

C14

C20 C13 C10 C17

C12

C21

C8C11C18

C16C9

4212 986531011 71

C4

C3

14

C1

C2

2016 15 17 18 19

C6

C5

22 2321

C0=S(D(G1))

C7

13

Figure 4: 2D distance constraint graph G1 and DR-plan; all vertices represent points and have weight 2 and
edges represent distances and have weight 1

algorithms. It is shown in [21], that the problem of finding the optimal DR-plan of a constraint graph is NP-
hard, and approximability results are shown only in special cases. Nonapproximability results are not known.
This is the case even when one is only interested in a dof DR-plan. However, most DR-planners make adhoc
choices during computation (say the order in which vertices are considered) and we can ask how well (close to
optimal) the best computation path of such a DR-planner would perform (on the worst case input). We call
this the best-choice approximation factor of the DR-planner.

As we shall see in the next section, a good (dof) DR-plan is crucial not only for solving efficiency, but for
determining (dof) rigidity of the input constraint graph, as well as for underconstraint detection and completion
[21], [32], is indispensable for navigation of the solution space, [31], [34], for dealing with overconstraints, [10]
and for efficiently updating the constraint system [32]. All of these properties can be found in [29], [28]. A few
other properties of DR-plans are of interest. We would like the width i.e, number of clusters in the DR-plan to
be small, preferably at most cubic in the size of G: this reflects the complexity of the DR-planner.

2 Determining dof rigidity via complete, maximal decompositions:

The Frontier Vertex Algorithm (FA) DR-Planner

In this section, we first give an alternative characterization of dof rigidity which translates to a useful property of
dof DR-plans called dof completeness. (We omit proofs). Then we sketch relevant properties of Frontier vertex
DR-plans and the corresponding DR-planner (FA DR-planner) [17, 21] which follows this characterization.

Let C be a geometric constraint graph. Then Q = {C1, . . . , Cm}, a set of dof rigid proper subgraphs of C,
is a complete, maximal, dof rigid decomposition of C if the following hold.

• If there is a maximal, dof rigid proper subgraph of C then it must contain one of the Ci in Q.

• Furthermore, Q should satisfy one of the following.
Case 1: m = 2 and C1 and C2 intersect on a nontrivial subgraph and their union induces all of C

Case 2: Each of the Ci’s is nearly maximal with respect to the set Q in the following sense: the only
dof rigid proper subgraphs of C that strictly contain Ci intersect all the other subgraphs Cj , j 6= i on
nontrivial subgraphs;

The next theorem gives an alternate characterization of dof rigidity.

Theorem 2.1 Let C be a geometric constraint graph and Q = {C1, . . . , Cm}, be a complete, maximal, dof rigid
decomposition of C. Then C is dof rigid if and only if

∑

S⊆Q

(−1)|S|−1Adj − dof (
⋂

Ci∈S

(Ci)) ≤ D,

where (recall) D is the number of dofs of a rigid body, and Adj-dof(Ci) is either the number of dofs (negation of
density) of Ci if Ci is trivial; or simply D if Ci is nontrivial. Note that if Case 1 holds, then C is automatically
dof rigid - in fact, the first property of Q is redundant.

7

e

gf

a c

b

3

4

3

33

2
3

2 1

3

f

e

c

b

a

g

t

3

3

3

2

3

4

2
1

3

3

0

0

s

2

s t

2

3

4

3

3

3

1
2

1
2

1

3

s t

*

3
3

3

2

3

40

Figure 5: From Left. Constraint graph G with edge weight distribution. D is assumed to be 0 (system fixed in
coordinate system); A corresponding flow in bipartite G∗. Another possible flow. Initial flow assignment that
requires redistribution

The next lemma explains the tractability of this method of determining dof rigidity.

Lemma 2.2 If C is not dof rigid, then only Case 2 in the Definition 2 applies. Furthermore, Case 2 implies that
no pair of Ci intersect on more than a trivial subgraph. Thus (using a simple Ramsey theoretic argument), m

is at most O(n3), where n is the number of vertices C. Furthermore, the computation of the inclusion-exclusion
formula in Lemma 2.1 takes O(n3) time.

This leads to a robust property of DR-plans using which the characterization can be translated to an
algorithm.

A dof DR-plan P for a geometric constraint graph G is dof complete if the set Q of child clusters of every
dof cluster C in P is a complete, maximal, dof rigid decomposition of C. Partial dof complete DR-plans are
defined analogously as in Section 1.1, and just as before, any partial dof-complete) DR-plan for a constraint
graph G can be extended to a dof-complete) DR-plan for G

2.1 The Frontier Vertex DR-plan (FA DR-plan)

Note. Throughout this section, unless otherwise mentioned, “cluster” means “dof cluster,’” “rigid” means “dof
rigid,” and “DR-plan” means “dof DR-plan.”

Intuitively, an FA DR-plan is built by following two steps repeatedly:

1. Isolate a cluster C in the current graph Gi (which is also called the cluster graph or flow graph for reasons
that will be clear below). Check and ensure a complete, maximal, dof rigid decomposition of C.

2. Simplify C into T (C), transforming Gi into the next cluster graph Gi+1 = T (Gi) (the recombination
step).

2.1.1 Isolating Clusters

The isolation algorithm, first given in [13, 14] is a modified incremental network maximum flow algorithm. The
key routine is the distribution of an edge (see the DR-planner pseudocode in the Appendix of Part II) in the
constraint graph G. For each edge, we try to distribute the weight w(e) + D + 1 to one or both of its endpoints
as flow without exceeding their weights, referred to as “distributing the edge e.” See DistributeEdge in the
pseudocode in Part II, Appendix. This is best illustrated on a corresponding bipartite graph G∗: vertices in one
of its parts represent edges in G and vertices in the second part represent vertices in G; edges in G∗ represent
incidence in G. As illustrated by Figure 5, we may need to redistribute (find an augmenting path).

If we are able to distribute all edges, then the graph is not dense. If no dense subgraph exists, then the
flow based algorithm will terminate in O(n(m + n)) steps and announce this fact. If there is a dense subgraph,
then there is an edge whose weight plus D + 1 cannot be distributed (edges are distributed in some order, for
example by considering vertices in some order and distributing all edges connecting a new vertex to all the
vertices considered so far). It can be shown that the search for the augmenting path while distributing this edge
marks the required dense graph. It can also be shown that if the found subgraph is not overconstrained, then it is
in fact minimal. If it is overconstrained, [13, 14] give an efficient algorithm to find a minimal (non-trivial, if one
exists) dof cluster inside it. Then [21] gives a method to ensure a complete, maximal, dof rigid decomposition
of C.

8

� � �
� � �
� � �
� � �

i

2

2
5

10

8

3

11 9

6

4

2

12

1

20

15

13

17

1918
21

22

C4

3 7

23

h

g

f
e

15

19

� � � �
� � � �
� � � �
� � � �

3

3

13

h 5

10

8

3

11 9

6

4

2

12

1

20
26

7g

f
e

�������
�������
�����
����� �������

�������
�����
�����

g

13

3
1

10

15

19

20

e
f

2
43

4

C7

4

h

1
3

C21

6 9

12

3

	 	 	 	
	 	 	 	

� � � �
� � � �
� � �
� � �

4

7

19

6

2

2

h

C7

2

3

3

13

g

f
e

20
1

2

3

8

911

10

12

15

Figure 6: From left: FA’s simplification of graph givin DR-plan in Figure 4; clusters are simplified in their
numbered order: C4 is simplified before C7 etc.

2.1.2 Cluster Simplification

This simplification was given in [17, 15]. The found cluster C interacts with the rest of the constraint graph
through its frontier vertices; i.e., the vertices of the cluster that are adjacent to vertices not in the cluster. The
vertices of C that are not frontier, called the internal vertices, are contracted into a single core vertex. This core
is connected to each frontier vertex v of the simplified cluster T (C) by an edge whose weight is the the sum of
the weights of the original edges connecting internal vertices to v. Here, the weights of the frontier vertices and
of the edges connecting them remain unchanged. The weight of the core vertex is chosen so that the density of
the simplified cluster is −D, where D is the geometry-dependent constant. This is important for proving many
properties of the FA DR-plan: even if C is overconstrained, T (C)’s overall weight is that of a wellconstrained
graph, (unless C is rotationally symmetric and trivial, in which case, it retains its dof or weight). Technically,
T (C) may not be wellconstrained in the precise sense: it may contain an overconstrained subgraph consisting
only of frontier vertices and edges, but its overall dof count is that of a wellconstrained graph.

Figure 6 illustrates this iterative simplification process ending in the final DR-plan of Figure 4.

2.2 The Frontier Vertex Algorithm (FA DR-planner)

The challenge met by FA is that it provably meets several competing requirements. Specifically, it gives a dof
complete DR-plan. The graph transformation performed by the FA cluster simplification is described formally
in [17, 15] that provide the vocabulary for proving certain properties of FA that follow directly from this
simplification. However, other properties of FA require details of the actual DR-planner that ensures them, and
are briefly sketched here.

Note: a detailed pseudocode of the FA DR-planner (the existing version, as well as incorporating the
module-rigidty algorithm of this paper) can be found in [35], [28]. The pseudocode has been implemented as
part of the downloadable, opensource FRONTIER geometric constraint solver [23], [35], [28], [29] .

The basic FA algorithm is based on an extension of the distribute routine for edges (explained above) to vertices
and clusters in order for the isolation algorithm to work at an arbitrary stage of the planning process, i.e, in
the cluster or flow graph Gi.

First, we briefly describe this basic algorithm. Next, we sketch the parts of the algorithm that ensure 3
crucial, inter-related properties of the output DR-plan:
(a) ensuring dof completeness;
(b) for underconstrained graphs: outputing a complete set of maximal clusters as sources of the DR-plan;
(c) controlling width of the DR-plan to ensure a polynomial time algorithm.

Three datastructures are maintained. The current flow or cluster graph, Gi the current DR-plan (this
information is stored entirely in the hierarchical structure of clusters at the top level of the DR-plan), and a

9

cluster queue, which is the top-level clusters of the DR-plan that have not been distributed so far, in the order
that they were found (see below for an explanation of how clusters are distributed). We start with the original
graph (which serves as the cluster or flow graph initially, where the clusters are singleton vertices). The DR-plan
consists of the leaf or sink nodes which are all the vertices. The cluster queue consists of all the vertices in an
arbitrary order.

The method DistributeVertex (see pseudocode of Part II, Appendix) distributes all edges (calls Distribu-
teEdge) connecting the current vertex to all the vertices considered so far. When one of the edges cannot be
distributed and a minimal dense cluster C is discovered, its simplification T (C) (described above) transforms
the flow graph. The flows on the internal edges and the core vertex are inherited from the old flows on the
internal edges and internal vertices. Notice that undistributed weights on the internal edges simply disappear.
The undistributed weights on the frontier edges are distributed (within the cluster) as well as possible. How-
ever, undistributed weights on the frontier edges (edges between frontier vertices) may still remain if the frontier
portion of the cluster is severely overconstrained. These have to be dealt with carefully. (See discussion on
dealing with the problems caused by overconstraints below.) The new cluster is introduced into the DR-plan
and the cluster queue.

Now we describe the method DistributeCluster Assume all the vertices in the cluster queue have been
distributed (either they were included in a higher level cluster in the DR-plan, or they failed to cause the
formation of a cluster and continue to be a top level node of the DR-plan, but have disappeared from the
cluster queue). Assume further that the DR-plan is not complete, i.e., its top level clusters are not maximal.
The next level of clusters are found by distributing the clusters curently in the cluster queue. This is done by
filling up the “holes” or the available degrees of freedom of a cluster C being distributed by D units of flow.
The PushOutSide method successively considers each edge incident on the cluster with 1 endpoint outside the
cluster. It distributes any undistributed weight on these edges + 1 extra weight unit on each of these edges.
It can be shown that if C is contained inside a larger cluster, then atleast one such cluster will be found by
this method once all the clusters currently in the cluster queue have been distributed. The new cluster found is
simplified to give a new flow graph, and gets added in the cluster queue, and the DR-plan as described above.

Eventually, when the cluster queue is empty, i.e, all found clusters have been distributed, the DR-plan’s
top level clusters are guaranteed to be the complete set of maximal dof rigid subgraphs of the input constraint
graph. See [21] for formal proofs.

Note: Throughout, in the interest of formal clarity, we leave out ad hoc, but highly effective heuristics that
find simple clusters by avoiding full-fledged flow. One such example is called “sequential extensions” which
automatically creates a larger cluster containing a cluster C and a vertex v provided there are atleast D edges
between C and v. These can easily be incorporated into the flow based algorithm, provided certain basic
invariants about distributed edges is maintained (see below).

This completes the description of the backbone of the basic FA DR-planner. Next we consider some details
ensuring the properties (a) – (c) above.

2.2.1 Ensuring dof completeness

First we intuitively explain why dof completeness is a crucial property. In Figure 7, after C1 and C2 are found,
when C1 is distributed, C1 and C2 would be picked up as a cluster, although they do not form a cluster. The
problem is that the overconstrained subgraph W intersects C1 on a trivial cluster, and W itself has not been
found. Had W been found before C1 was distributed, W would have been simplified into a wellconstrained
subgraph and this misclassification would not have occurred.

It has been shown in [21] that this type of misclassification can be avoided (W can be forced to be found
after C2 is found), by maintaining three invariants. The first two are described here. The third is highly related
to property (b) and is described in the next subsection.

The first is the following invariant: always distribute all undistributed edges connecting a new found cluster
C (or the last distributed vertex that caused C to be found), to all the vertices distributed so far that are
outside the cluster C. Undistributed weight on edges inside C are less crucial: if they become internal edges
of the cluster, then this undistributed weight “disappears” when C is simplified into a wellconstrained cluster;
there is also a simple method of treating undistributed weight on frontier edges so that they also do not cause
problems - the method and proof can be found in [21]).

The second invariant that is useful for ensuring dof completeness is that for any cluster in the DR-plan, no

10

W

f

e

d

c

b

a

C2C1

C1

C2

W

a

b c

d

e f

g h

i j

Figure 7: Finding W first will prevent dof misclassification: Left 2D example, Right 3D example.

d

c

b

a e

C’

C

C

edcba

C3C2C1

edcba

C3C2C1

, d

c

b

a e

C’

C

C

edcba

C3C2C1

edcba

C3C2C1

Figure 8: Ensuring Cluster Minimality: E is a set of essential clusters that must be present in any subset of
the children of C that form a cluster. In this case, E itself forms a cluster. C ′ is a cluster made up of a proper
subset of at least 2 of C’s children

proper subset of atleast 2 of its child clusters forms a cluster. We call this property cluster minimality. FA
ensures this using a generalization of the method Minimal of [13, 14] which finds a minimal dense subgraph
inside a dense subgraph located by DistributeVertex and DistributeEdge.

See Figure 8. Once a cluster C is located and has children C1, . . . , Ck, for k ≥ 2, a recursive method clusMin
removes one cluster Ci at a time (replacing earlier removals) from C and redoes the flow inside the flow graph
restricted to C, before C’s simplification. If a proper subset of atleast 2 Cj ’s forms a cluster C ′, then the
clusMin algorithm is repeated inside C ′ and thereafter in C again, replacing the set of child clusters of C that
are inside C ′ by a single child cluster C ′. If instead no such cluster is found, then the removed cluster Ci the
essential. I.e., it belongs to every subset of C’s children that forms a cluster. When the set of clusters itself
forms a cluster E (using a dof count), then clusMin is called on C again with a new child cluster E replacing
all of C’s children inside E.

2.2.2 (b) Finding a complete set of maximal clusters in underconstrained graphs

While the DR-planner described so far guarantees that at termination, top level clusters of the DR-plan are
maximal. It also guarantees that the original graph is dof underconstrained only if there is more than one top
level cluster in the DR-plan. However, in order to guarantee that all the maximal clusters of an underconstrained
graph appear as top level clusters of the DR-plan, we use the observation that any pair of such clusters intersect
on a subgraph that reduces (once incidence constraints are resolved) into a trivial subgraph (a single point in
2D or a single edge in 3D). This bounds the total number of such clusters and gives a simple method for finding
all of them. Once the DR-planner terminates with a set of maximal clusters, other maximal clusters are found
by simply performing a Pushoutside of 2 units on every vertex (in 2D) or every vertex and edge (in 3D), and
continuing with the original DR-planning process until it terminates with a larger set of maximal clusters. This
is performed for each vertex in 2D and each edge in 3D which guarantees that all maximal clusters will be
found. See [21] for proofs.

2.2.3 (c) Controlling width of the DR-plan

FA achieves a linear bound on DR-plan width by maintaining the following invariant of the cluster or flow graph:
every pair of clusters in the flow graph (top level of the DR-plan) at any stage intersect on at most a trivial

11

d
c

 b

a

e

C5

C3

C4

C2C1

b d g hec ifa

i

h

gf

Figure 9: Prevent accumulation of clusters

subgraph. FA does this by repeatedly performing 2 operations each time a new potential cluster is isolated.
The first is an enlargement of the found cluster. In general, a new found cluster N is enlarged by any cluster

D1 currently in the flow graph, if their nonempty intersection is not a rotationally symmetric or trivial subgraph.
In this case, N neither enters the cluster graph nor the DR-Plan. Only N ∪D1 enters the DR-plan, as a parent
of both D1 and the other children of N . It is easy to see that the sizes of the subsystems corresponding to both
N ∪ D1 and N are the same, since D1 would already be solved.

For the example in Figure 9, when the DR-plan finds the cluster C2 after C1, the DR-planner will find that
C1 can be enlarged by C2 The DR-planner forms a new cluster C4 based on C1 and C2 and puts C4 into the
cluster queue, instead of putting C2 to cluster queue.

The second operation is to iteratively combine N ∪ D1 with any clusters D2, D3, . . . based on a nonempty
overlap that is not rotationally symmetric or trivial. In this case, N ∪D1 ∪D2, N ∪D1 ∪D2 ∪D3 etc. enter the
DR-plan as a staircase, or chain, but only the single cluster N ∪ D1 ∪ D2 ∪ D3 ∪ enters the cluster graph
after removing D1, D2, D3

Ofcourse, both of these processes are distinct from the original flow distribution process that locates clusters.

3 Module-Rigidity: Characterization and Algorithm

We give a recursive definition of 3D module-rigidity (along with a definition of module-complete DR-plans) and
show that it is a natural and robust characterization. Then we sketch an extension of the FA algorithm in order
to determine module-rigidity by constructing module-complete DR-plans. We follow with a number of examples
of graphs that are dof rigid but not module-rigid.

Let C be a 3D distance constraint graph. Let E, C1, . . . , Ck be proper subgraphs of C. We say that
C1, . . . , Ck ⇒r,C E (read: implies rigidity of) if by making C1, . . . , Cm complete graphs (by adding additional
edges), E becomes rigid. Analogously, we define ⇒d and ⇒m by asserting dof rigidity and module-rigidity (to
be defined below) as the right hand side of the implication, respectively.

Let C be a 3D distance constraint graph. C is module-rigid if:
Base case: it is trivial and dof rigid.
Or the following holds. Let Q = {C1, . . . , Cm} be any complete, maximal, module decomposition of C. This is
defined as follows. Let φm,C,∗ be the transitive closure of the empty set under ⇒m,C , i.e., if there is a proper
subgraph E of C s.t. either it is module-rigid, or there is some set of module-rigid proper subgraphs C1, . . . , Ck

of C s.t. C1, . . . , Ck ⇒m,C,∗ E, then E belongs to φm,C,∗. Let Q be any subset {C1, . . . , Cm} of φm,C,∗ s.t.
Case 1: m = 2; C1 and C2 intersect on a nontrivial subgraph and their union induces all of C. Or, the following
holds.
Case 2:

• Any maximal subgraph in φm,C,∗ must contain one of the Ci in Q.

• Each of the Ci’s is nearly maximal with respect to the set Q in the following sense: the only elements of
φm,C,∗ that strictly contain Ci intersect all the other subgraphs Cj , j 6= i on nontrivial subgraphs.

12

Then C is module-rigid if
∑

S⊆Q

(−1)|S|−1Adj − dof (
⋂

Ci∈S

(Ci)) ≤ D,

where (recall) D is the number of dofs of a rigid body, and Adj-dof(Ci) is either the number of dofs (negation
of density) of Ci if Ci is trivial; or simply D if Ci is nontrivial.

Observation 3.1 Every module-rigid graph is dof rigid; and every rigid graph is module-rigid.

The next lemma shows the tractability of the above characterization.

Lemma 3.2 Let Q = {C1, . . . , Cm} be any set of proper subgraphs of C that form a complete, maximal, module
decomposition of C. This implies that if m > 2, then no pair of Ci intersect on more than a trivial subgraph.
Thus m is at most O(n3), where n is the number of vertices C. Thus, the computation of the inclusion-exclusion
formula in Definition 3 takes O(n3) time.

Using the above lemma, the following definition shows the use of so-called module-complete DR-plans to
efficiently determine module rigidity.

A module DR-plan P for a 3D distance constraint graph G is a partial order where each node represents a
subgraph in φm,G,∗ or G itself, if G is module rigid. The ordering is by containment. These nodes are called
module clusters (to be crucially differentiated from module-rigid subgraphs of G, which we call inherent module
clusters). The leaves are the original vertices of G. Each node in the subDR-plan rooted at a node C represents
a subgraph in φm,C,∗ or C itself, if C is module-rigid, or an inherent module cluster. If G is module-rigid, there
is a single source cluster; if G is not module-rigid, the roots or sources form is a complete, maximal, module
decomposition of G. A partial module DR-plan does not have to satisfy the conditions on the roots or sources.
A module DR-Plan is module-complete if the set Q of child clusters of every module cluster C in P is a complete,
maximal, module decomposition of C.

A module DR-plan is typically defined to contain additional information by incorporating another partial
order called the solving priority order, which is consistent with the module DR-plan’s DAG order, but could
be more refined. The intent is that module-rigidity of module clusters that appear later in the order depend
on clusters that appear earlier. I.e., the ordering reflects the number of applications of ⇒m required to find a
module cluster.

The next theorem shows that module-rigidity is robust. I.e., the order of bottom-up construction of module(-
complete) DR-plans is immaterial, a type of Church-Rosser property.

Theorem 3.3 If a graph G is module-rigid, then every partial, module(-complete) DR-plan for G can be ex-
tended to a module(-complete) DR-plan.

Modification of FA to determine module rigidity

The above discussion effectively lays out a tractable method for determining module-rigidity by computing
module-complete DR-plans bottom up. This is done by extending the dof-complete DR-planner FA given in
the previous section as follows. First note that by using FA we guarantee no false negatives, since module-rigid
implies dof-rigid. We now sketch how to eliminating dof-rigid graphs that are not module-rigid. The FA DR-
planner running on an input graph G uses DistributeCluster (flow) on the current set S of dof rigid clusters to
isolate a dof cluster candidate C, and thereafter constructs a a complete, maximal, dof rigid decomposition of
it, after which it decides whether a new dof-rigid cluster C has been found, using the dof-rigid characterization
of Section 2. This is the key point of extension. We use the analogy between this dof-rigid characterization and
the module-rigid characterization at the beginning of this Section. Inductively, we can assume that the current
set S consists of module-rigid subgraphs of G or inherent module clusters. The method of construction of a
complete, maximal, module decomposition Q of the candidate (inherent module) cluster C can be done without
constructing φm,C,∗, by constructing a sequence of Qi’s each of which satisfies the above conditions on Q, but
with respect to φm,C,i (i.e, closure with respect to i applications of the ⇒m operation). This sequence reaches
a fixed point at Q.

We give examples that illustrate the use of module-rigidity.

13

j

i

h

g
f

e

d

c

b

a

C5

C4

C3

C2

C1

C1

C2

C3

a

b

f

e

dc

b
a

C4C3

C2C1

C4 C3

C5

C6

C2C1

Figure 10: Examples where module-rigidity beats dof rigidity. See text for explanation.

In Figure 10 Top Left: the graph is dof rigid, but not module-rigid, as seen by the complete maximal module
decomposition shown. Top Right: module-rigid, but no pair of inherent module clusters shown forms a module-
rigid subgraph, they do form dof-rigid subgraphs. Bottom: not module-rigid but dof rigid; complete maximal
module decomposition and solving priority orders as follows: the pair C1, C2 is an inherent module cluster C5

but that C5 can be solved only after C3 is solved; I.e., before the virtual edge (c, d) is added, C1 and C2 would
not be picked up together as a cluster candidate. Similarly, it will also determine that C5, C3 form a cluster
C6, but solving priority order shown. Bottom Right: module-complete DR-plan for left constraint system with
2 sources or roots: C6 and C4.

Figure 11 shows a classic graph from [4, 5], with “hinges,” which is not module-rigid but is dof rigid. A
complete maximal, module decomposition is shown. The middle cluster C2 is not an inherent module cluster,
although C1 and C2 are.

Open Problem

A question that immediately arises is to relate the characterization given here to rigidity matroids and standard
conjectures on combinatorial rigidity characterizations for 3D [8].

References

[1] S. Ait-Aoudia, R. Jegou, and D. Michelucci. Reduction of constraint systems. In Compugraphics, pages
83–92, 1993.

[2] B. Bruderlin. Constructing three-dimensional geometric object defined by constraints. In ACM SIG-
GRAPH. Chapel Hill, 1986.

14

k

C1

C2

C3

a

b c

d e

f
g

h

i

j

Figure 11: Classic Hinge example: not module-rigid, but dof rigid
.

[3] D. Cox, J. Little, and D. O’Shea. Using algebraic geometry. Springer-Verlag, 1998.

[4] Henry Crapo. Structural rigidity. Structural Topology, 1:26–45, 1979.

[5] Henry Crapo. The tetrahedral-octahedral truss. Structural Topology, 7:52–61, 1982.

[6] I. Fudos. Geometric Constraint Solving. PhD thesis, Purdue University, Dept of Computer Science, 1995.

[7] I. Fudos and C. M. Hoffmann. A graph-constructive approach to solving systems of geometric constraints.
ACM Transactions on Graphics, 16:179–216, 1997.

[8] Jack E. Graver, Brigitte Servatius, and Herman Servatius. Combinatorial Rigidity. Graduate Studies in
Math., AMS, 1993.

[9] B. Hendrickson. Conditions for unique graph realizations. SIAM J. Comput., 21:65–84, 1992.

[10] C Hoffman, M Sitharam, and B Yuan. Making constraint solvers more useable: the overconstraint problem.
to appear in CAD, 2004.

[11] C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Finding solvable subsets of constraint graphs. In Smolka
G., editor, Springer LNCS 1330, pages 463–477, 1997.

[12] C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Geometric constraint decomposition. In Bruderlin B.
and Roller D., editors, Geometric Constr Solving and Appl, pages 170–195, 1998.

[13] Christoph M. Hoffmann, Andrew Lomonosov, and Meera Sitharam. Finding solvable subsets of constraint
graphs. In Constraint Programming ’97 Lecture Notes in Computer Science 1330, G. Smolka Ed., Springer
Verlag, Linz, Austria, 1997.

[14] Christoph M. Hoffmann, Andrew Lomonosov, and Meera Sitharam. Geometric constraint decomposition.
In Bruderlin and Roller Ed.s, editors, Geometric Constraint Solving. Springer-Verlag, 1998.

15

[15] Christoph M. Hoffmann, Andrew Lomonosov, and Meera Sitharam. Planning geometric constraint decom-
positions via graph transformations. In AGTIVE ’99 (Graph Transformations with Industrial Relevance),
Springer lecture notes, LNCS 1779, eds Nagl, Schurr, Munch, pages 309–324, 1999.

[16] Christoph M. Hoffmann, Andrew Lomonosov, and Meera Sitharam. Decomposition of geometric constraints
systems, part i: performance measures. Journal of Symbolic Computation, 31(4), 2001.

[17] Christoph M. Hoffmann, Andrew Lomonosov, and Meera Sitharam. Decomposition of geometric constraints
systems, part ii: new algorithms. Journal of Symbolic Computation, 31(4), 2001.

[18] G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

[19] G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331–340, 1970.

[20] R. Latham and A. Middleditch. Connectivity analysis: a tool for processing geometric constraints. Com-
puter Aided Design, 28:917–928, 1996.

[21] Andrew Lomonosov and Meera Sitharam. Graph algorithms for geometric constraint solving. In submitted,
2004.

[22] A. Middleditch and C. Reade. A kernel for geometric features. In ACM/SIGGRAPH Symposium on Solid
Modeling Foundations and CAD/CAM Applications. ACM press, 1997.

[23] J. J. Oung, M. Sitharam, B. Moro, and A. Arbree. Frontier: fully enabling geometric constraints for feature
based design and assembly. In abstract in Proceedings of the ACM Solid Modeling conference, 2001.

[24] J. Owen. www.d-cubed.co.uk/. In D-cubed commercial geometric constraint solving software.

[25] J. Owen. Algebraic solution for geometry from dimensional constraints. In ACM Symp. Found. of Solid
Modeling, pages 397–407, Austin, Tex, 1991.

[26] J. Owen. Constraints on simple geometry in two and three dimensions. In Third SIAM Conference on
Geometric Design. SIAM, November 1993. To appear in Int J of Computational Geometry and Applications.

[27] J.A. Pabon. Modeling method for sorting dependencies among geometric entities. In US States Patent
5,251,290, Oct 1993.

[28] M Sitharam. Frontier, an opensource 3d geometric constraint solver: algorithms and architecture. mono-
graph, in preparation, 2004.

[29] M Sitharam. Graph based geometric constraint solving: problems, progress and directions. In Dutta,
Janardhan, and Smid, editors, AMS-DIMACS volume on Computer Aided Design, 2004.

[30] M Sitharam and M Agbandje-Mckenna. A geometry and tensegrity based virus assembly pathway model.
submitted, available upon request, 2004.

[31] M Sitharam, A Arbree, Y Zhou, and N Kohareswaran. Solution management and navigation for 3d
geometric constraint systems. submitted, available upon request, 2004.

[32] M Sitharam, J Oung, and A Arbree. Efficient underconstrained completions, updates and on line solution
of general geometric constraint graphs. submitted, available upon request, 2004.

[33] M Sitharam, J Peters, and Y Zhou. Solving minimal, wellconstrained, 3d geometric constraint systems:
combinatorial optimization of algebraic complexity. submitted to ADG 2004, available upon request, 2004.

[34] M Sitharam and Y Zhou. Mixing features and variational constraints in 3d. submitted, available upon
request, 2004.

[35] Meera Sitharam. Frontier, opensource gnu geometric constraint solver: Version 1 (2001) for general 2d
systems; version 2 (2002) for 2d and some 3d systems; version 3 (2003) for general 2d and 3d systems. In
http://www.cise.ufl.edu/∼sitharam, http://www.gnu.org, 2004.

16

