GENERALIZED BOOLEAN HIERARCHIES
AND
BOOLEAN HIERARCHIES OVER RP!

ALBERTO BERTONTI - Universita degli Studi di Milano

DANILO BRUSCHI — Universita degli Studi di Milano and University of Wisconsin
DEBORAH JOSEPH - University of Wisconsin

MEERA SITHARAM — University of Wisconsin

PAUL YOUNG - University of Washington and University of Wisconsin

1. INTRODUCTION.

In this paper we study the complexity hierarchy formed by taking the Boolean closure of sets in RP, the
class of sets decidable in random polynomial time. This hierarchy, which we call the Boolean hierarchy over
RP and denote by RBH, is analogous to the difference hierarchy for r.e. sets studied by Ershov ([Er 68a
68b 69]) and to the Boolean hierarchy over NP studied by ([BuHa 88], [CGHHSWW 88], [CGHHSWW 89],
[CaHe 86], [Ka 88], [K6SchWa 87|, [PaYa 84], [Wa 86 87a 87b 88], [WeWa 85]). RBH lies above RP and
below BPP. It is of particular interest because so little is known about sets that might be in BPP — RP. In
fact, since Adleman and Huang ([AdHu 87]) showed that primality testing lies in RP, (and hence in ZPP),
there have been no natural candidates for the class BPP — RP. Thus, the examples we give for the Boolean
hierarchy over RP should help renew the belief that the classes BPP and RP are truly different.

In Section 3 of this paper we give a uniform proof of the following metatheorem:

e Boolean hierarchies over arbitrary complexity classes satisfy the same definitional equivalences as the
Boolean hierarchy over NP. Moreover, many of the properties of polynomial time machines that make a
constant number of queries to an oracle in NP (adaptively and non-adaptively) generalize to machines
that query an oracle from an arbitrary complexity class, C. For instance, C' could be Random Polyno-
mial time, (RP), FewP, Uniform RNC, the nondeterministic exponential time classes NEXP'"%" and
NEXPP°Y | or the recursively enumerable sets, (RE).

We establish this very general theorem in Section 3 by generalizing many of the theorems for the Boolean
hierarchy over NP to Boolean hierarchies over fairly arbitrary complexity classes C. In doing so, we give a
careful treatment of extended Boolean hierarchies over fairly arbitrary classes. Some of the proofs for the
hierarchy over NP generalize trivially. However, some of the proofs over NP use the existence of complete
sets or other special properties of NP, and these proofs require modification for classes such as RP.

Knowing that Boolean hierarchies over most complexity classes have similar definitional invariants and
relationships to bounded query classes, we begin our studies of the Boolean hierarchy over RP in Section 2
with several natural examples of sets in the hierarchy:

! This work was supported in part by the Ministero della Pubblica Istruzione, through “Progetto 40%: Algoritmi
e Strutture di Calcolo,” the National Science Foundation under grant DCR-8402375, and by the Wisconsin Alumni
Research Foundation under a Brittingham Visiting Professorship.
The last four authors’ 1988-89 address is: Computer Sciences Department, University of Wisconsin, 1210 West
Dayton St., Madison, WI 53706, U.S.A.

e Fermat showed that every integer can be represented as the sum of at most four integer squares. From
recent work of Bach, Miller, Rabin, and Shallit ([BaMiSh 86], [RaSh 88]), it follows that the set {n : n
is perfect and is the sum of two integer squares} is also in RP, and that the set {n : n is perfect and is
the sum of three integer squares} is in RP. Combining these results, we can see that the set {n : n is
perfect and is the sum of three integer squares but not a sum of two integer squares} is in the second
level of the Boolean hierarchy over RP. Similarly, {n : n is perfect and is the sum of four integer squares
but not a sum of three integer squares, or n is perfect and is the sum of two integer squares} is in the
third level of the Boolean hierarchy over RP.

e Schwartz proved that checking whether a polynomial p represented as a straight line program is iden-
tically zero is in coRP, ([Sch 80]). We show that this problem is equivalent to checking whether two
straight line programs compute the same natural number, and thus the latter problem is also in coRP.
However, the problem of deciding whether the polynomial represented by a straight line program is a
monomial seems not to be in either RP or coRP, although we can show that it is in the second level
of the Boolean hierarchy over RP. In fact, we show that if this latter problem is in RP or coRP, then
the problem of checking whether straight line programs are identically zero and the problem of checking
whether two straight line programs compute the same natural number are both in ZPP.

In Section 4 we briefly explore structural properties of the Boolean hierarchy over RP and how truth-
table reducibility from self-reducible sets in NP together with membership in BPP can force sets from the
Boolean hierarchy over NP into the Boolean hierarchy over RP.

One would like to prove that the Boolean hierarchy over RP is a proper hierarchy and satisfies the set
containments “which it should” with respect to the polynomial time hierarchy, other probabilistic classes,
and the Boolean hierarchy over NP. This goal is obviously too ambitious since it would prove P # NP, so
in Section 5 we give various oracle constructions including;:

e There is an oracle, X, relative to which the obvious proper containments which one ezpects to hold for
the regular and extended Boolean hierarchies over RP and for RP vs NP do hold with respect to X.

This at least shows that no simple proof should show that the Boolean hierarchy over RP does not behave
as we would “expect” it to behave.

Sections 3, 4 and 5 have been written so that they are largely independent. Thus, readers should have
no trouble reading these sections in any order.

2. BOOLEAN HIERARCHIES AND THE BOOLEAN HIERARCHY OVER RP.

In this section, we focus our attention on the Boolean hierarchy over RP. We begin with a discussion of basic
definitions and properties of Boolean hierarchies followed by some examples of sets which are in the Boolean
hierarchy over RP. Later, in Section 4, we will discuss characterizations of the Boolean hierarchy over RP
using machine-acceptors and probabilistic quantifiers, and investigate some of the structural properties of
the hierarchy.

Boolean hierarchies are typically formed by taking classes of sets which are closed under union and
intersection but not complementation, and then forming the Boolean closure of the class by iterating closure
under operations involving complementation. We start with basic definitions. Where possible, we use the
notation from Wagner’s survey, [Wa 88a).

Definition 2.0.1. For each k, let hj, be a k-ary Boolean function. For any set Y, let cy denote the
characteristic function of Y. Then for any collection of sets C

BIC] =aep {X:3X1,..., Xk €C [ex(@) = hylex, @),...,ex. (@)] }. (+)

That is, each set in h}[C] is a specific Boolean combination, hj,, of the finite collections of sets taken
k at time from the class C. Regular Boolean hierarchies are typically obtained by taking some reasonable
collection of Boolean functions, {h},, } which are uniformly specifiable from k, and which are so chosen that
the containments

BIC] C WIC) C ... C RIC] ...

are obvious. True hierarchies are obtained when the containments turn out to be proper. The following are
some of the standard choices for hj,.

Definition 2.0.2.

(i) The Difference hierarchy was defined over NP by Kébler and Schoning ([K6 85], [K6ScWa 87]), and
was denoted by them as Diff;, =ge¢ fr[NP], where

fe(@i,...,2k) = 21 ®...Dxp (parity).

(ii) The Wechsung-Wagner hierarchy over NP as defined by Wechsung and Wagner ([WeWa 85]) was
denoted by them as gx[NP], where

gr(z1,-- - xk) = (L AT2) V...V (2mp 1 Ag)

for k even, and
gr(x1,. .., xk) = ("L Az2) V...V (mZp—2 A1)V g

for k odd.

(ii) The Hausdorff hierarchy g, [C], is g;[C] with the additional requirement that for all ¢, j such that
j>i,$,~:1:>wj:1.1.e.,
!
9 = 9k /\ IL'j—).'Ifj+1.
1<j<k

Hausdorff ([Ha 78]) showed that g;[D] = gx[D] for all classes D which are closed under union and
intersection.

(iv) The Boolean hierarchy as defined over NP by Cai and Hemachandra ([CaHe 86]) was denoted by
them as NP[k] =4y hi[NP], where

hk(:cl,...,xk) = (...((IL'l/\".732)V.’173)...)V£L‘k_1)/\—|$k

for k even, and
hk(!El, . ,.’L‘k) = (((z’l A —|$2) \Y .’L'3) .-) A _|£L'k_1) V xp,

for k odd.

In each case, these sequences of truth-tables can be used to define hierarchies over arbitrary base classes
in addition to NP. It is known, (see e.g. Corollary 3.21 and Definition 3.22) that the four collections of
Boolean functions defined in (i) - (iv) generate the same Boolean hierarchy over NP. Thus the notation NP
[k] is standard for all four definitions. Our primary goal in this paper is to study these classes when the base
class is RP.

2.1 THE BOOLEAN HIERARCHY OVER RP

Definition 2.1.1. A set S is in RP if there is a nondeterministic polynomial time Turing machine, M, and
a positive fraction 1/c such that

x €S = M(x) accepts on at least 1/c of its paths

z &S = M(x) rejects on all of its paths.

The machine M is called an RP-acceptor for S, and its acceptance criterion is said to have one-sided error
probability. The complement class of RP is denoted coRP, and the intersection of RP and coRP is the class
ZPP. Obviously from the above definition, RP is contained in NP.

The class BPP, or Bounded error Probabilistic Polynomial time, is given by

Definition 2.1.2. S € BPP if there exists a nondeterministic polynomial time Turing machine, M, and
positive fractions 1/c,1/d, with (1 — (1/d)) < 1/¢, such that

x €8S = M(x) accepts on at least 1/c of its paths

x ¢S = M(x) rejects on at least 1/d of its paths.

The machine M is called a BPP-acceptor for S, and its acceptance criterion is said to have a two-sided error
probability. Notice from this definition that BPP is closed under complements, and that RP and coRP are
subsets of BPP. Following work of Sipser, Gacs and Lautemann have independently shown that BPP is
contained in the ¥ NTI¥ level of the Meyer-Stockmeyer hierarchy, ([La 83], [Si 83]).

Ko ([Ko 82]) and Zachos ([Za 86]) introduced a polynomial time hierarchy over RP (denoted RH) which
is analogous to the Meyer-Stockmeyer hierarchy over NP. Zachos showed that the entire random polynomial
time hierarchy, RH, is contained in BPP. Recalling our motivation for studying the structure of BPP — RP,
it should be noted that there are no known natural candidates for sets in ©2*¥ — RP. This is partly because
SEP_acceptors have awkward acceptance criteria which natural problems do not seem to satisfy. In fact,
Zachos and Heller have attempted to prove that RH collapses to 5P NTIEF (= ARP).

The Boolean hierarchy over RP can now be defined using any of the standard formulas from Definition
2.0.2. In Section 3 we will show that the definition of the regular Boolean hierarchy over RP remains
invariant if one uses any of the standard Boolean functions given in Definition 2.0.2. This justifies the
following definition.

Definition 2.1.3. Let hj, be any one of the standard Boolean functions from Definition 2.0.2. Define
RP[k] = hi,[RP] ={X :3X4,...,Xr € RP [z € X <= hj(cx,,(®)...,cx,(2))]}.
The complement class of hj,[RP] will be denoted as cohj[RP].

2.2 EXAMPLES OF LANGUAGES IN RBH.

Here we give natural examples of languages which lie in the Boolean hierarchy over RP. These languages
are of particular interest because they represent natural problems which are in BPP but do not seem to lie
in RP.

In [SoSt 77], Solovay and Strassen showed that primality testing is in coRP. Recently Adleman and
Huang, ([AdHu 87]), have shown that primality testing is also in RP, and hence primality testing is now
known to be in ZPP. As a consequence problems such as determining whether a number is perfect and
determining whether a number is a Carmichael number that were previously conjectured to be in BPP — RP
are now known to be in RP. However, we can use the fact that the set of perfect numbers is in RP to give
examples of problems that are in the Boolean hierarchy over RP but seem not to be in RP.

Our first examples use Fermat’s well-known result that every integer can be represented as the sum of
at most four integer (possibly zero) squares. Combining Fermat’s result with recent work of Bach, Miller,
Rabin, and Shallit ([BaMiSh 86], [RaSh 88]) shows that the set {n : n is perfect and is the sum of two integer
squares} is in RP and that the set {n : n is perfect and is the sum of three integer squares} is in RP. These
results together give that

(i) {n:n is perfect and is the sum of three integer squares but is not a sum of two integer squares }
is in RP[2).

(ii) {n :mn is perfect and is the sum of four integer squares but is not a sum of three integer squares }
U {n : n is perfect and is the sum of two integer squares } is in RP[3].

Currently there are no known techniques that place either of these two sets in RP. 2

A second, and rather different, collection of problems involving polynomials that are represented by
straight line programs can also be shown to be in RBH. Schwartz has shown that checking whether a
polynomial p, represented as a straight line program, is identically zero is a coRP problem ([Sch 80]). More
formally,

Definition 2.2.1. A straight line program & is an ordered sequence of instructions I, - - -, I,, such that an
individual instruction I}, has one of the following forms:

Tk Tj +Ts; T < Tj — Ts; Tp < T;jTs; T < 0; o < 15
where x, T, T, are indexed variables and j,s < k.

For a straight line program ®, we will let x,, denote the variable with greatest index contained in ®, let
Ng denote the number contained in the variable x,, at the end of the computation of ®, and let I(®) denote
the number of instructions of ®. If we allow instructions of the form: x < z; where z is a formal variable,
then & describes a polynomial Py (z) of degree at most 2/(®).

With this notation we can now formally describe our next set of problems.

Problem 2.2.2. (Schwartz).

Instance : A straight line program, ®;, with a formal variable.
Question: Is Py, identically null?

Problem 2.2.3.

Instance : Two straight line programs, ®; and ®,.

Question: Is Ng, equal to Ng,?

As mentioned above, Schwartz has shown that Problem 2.2.2 is in coRP. Obviously, Problem 2.2.3 can
be polynomially many-one reduced to Problem 2.2.2, so it too is in coRP. A somewhat less obvious proof
shows that Problem 2.2.2 can be reduced to Problem 2.2.3.

Next we consider a problem involving straight line programs that is in RBH, but seems not to be in RP
or coRP. To state the problem, for a polynomial p(z) = > ,_, arz®, we will denote the coefficient of 2* in
p(2) by [z¥]p(2).

Problem 2.2.4.
Instance : A straight line program, ®, with a formal variable.
Question: Does ® represent a monomial? Le., does there exist exactly one k such that [2¥]Ps is not equal to 0?

Using the following lemma we can show that Problem 2.2.4 is in RP[2].
Lemma 2.2.5. For each continuous function p, the following two sentences are equivalent:
(i) Ja3B[p(z) = az® and a # 0], and
(i) Yz[p(1)p(z?) = p*(z) and p(1) # 0].
Now given a straight line program ® which represents a polynomial Pg(z), to verify whether Py (2) is a
monomial we do the following:

2 Of course, we should also point out that it is not known that there are infinitely many perfect numbers (although
this is widely believed to be the case), and even if there are infinitely many perfect numbers, either of the sets described
above could be empty, although many number theorists believe that this is unlikely.

(i) Compute a straight line program ®; such that Ng, = Ps(1);
(ii) Compute a straight line program ®» such that Py, (z) = N, Pe(2%) — Pi(2);
(iii) If Ng, # 0 and P, = 0, then accept; else reject.
Given ®, Steps (i) and (ii) can be computed in polynomial time. Step (iii) can be computed with one query
to an RP oracle and with one independent query to a coRP oracle. Thus Problem 2.2.4 is in RP[2].

Next we give some evidence that it is unlikely that Problem 2.2.4 is either in RP or in coRP.

Theorem 2.2.6. If Problem 2.2.4 is in RP U coRPF, then Problems 2.2.2 and 2.2.3 are each in ZPP.

Proof: To prove this it is adequate to show that if Problem 2.2.4 is in RP (or in coRP), then Problem 2.2.3
and its complement are in RP (and in coRP). Notice that verifying that the number Ng, represented by
the straight line program @, is not equal to zero is equivalent to verifying that Ng is a monomial. In fact:
Ng # 0 if and only if N is a monomial, since every integer greater than zero is a monomial.

On the other hand, verifying that Ng is equal to zero is equivalent to verifying that the program
®; =1+ & x z is a monomial (since ®; is a monomial only if ® z is null). In fact: P, is a monomial
if and only if Ng = 0.

This shows Problem 2.2.3 and its complement are in RP, and thus Problem 2.2.3 is in ZPP. The same
reasoning is applied for the case in which Problem 2.2.4 can be solved with a coRP algorithm. j

We should also comment that by generalizing Problem 2.2.2 to multivariate polynomials we have ob-
tained problems that lie in higher levels of the Boolean hierarchy over RP.

3. BASIC PROPERTIES OF GENERALIZED BOOLEAN HIERARCHIES.

As mentioned in Section 2, Boolean hierarchies are typically formed by taking classes of sets which are closed
under union and intersection but not complementation, and then forming the Boolean closure of the class
by iterating closure under operations involving complementation.

As early examples, Boolean hierarchies were studied by Hausdorff in 1914 in the context of descrip-
tive set theory ([Ha 78]), and the Boolean hierarchy over the recursively enumerable sets was defined and
studied by Ersov ([Er 68a], [Er 68b], [Er 69]) who in [Er 68b] noted the connections between its transfinite
extension through the recursive ordinals and the work done by Putnam, [Pu 65], on “mind changes” of
recursive sequences. Together, the work of Putnam on “mind changes” of recursive sequences and of Er§ov
on extensions of Boolean hierarchies through recursive ordinals shows that the use of either truth-tables or
“mind-changes” provides characterizations of the class ¥ N IIJ in the arithmetic hierarchy. Independent of
the work of Putnam and Ergov, Boolean hierarchies were also studied by Addison in the context of their
applications in logic, ([Ad 65]).

Boolean hierarchies over NP have been defined in various ways, for example, by Papadimitriou and
Yanakakis ([PaYa 84]), by Wechsung and Wagner ([WeWa 85]), by Cai and Hemachandra ([CaHe 86]), and
by Kobler and Schoéning ([K6 85], [K6SchWa 87]). Most of the results of these latter papers are contained
in journal form in [CGHHSWW 88] and [CGHHSWW 89]. For regular Boolean hierarchies over NP, the
various definitions used by these authors have all been proven equivalent ([K6SchWa 87]). In [Wa 88],
Wagner surveys these equivalences for the regular Boolean hierarchy over NP. He also gives a definition
of an extended Boolean hierarchy over NP. In [Wa 87a], Wagner proves the equivalence of these various
definitions for the extended Boolean hierarchy over NP. Although our primary interest is in the Boolean
hierarchy over RP, in this section we build on this earlier work to show how standard properties of Boolean
hierarchies and extended Boolean hierarchies can be generalized to give extended Boolean hierarchies over
quite general complexity classes.

Thus, in this section we lay the foundations for discussing both regular and extended Boolean hierarchies
over quite general complexity classes, and over RP in particular. Our goal here is to instantiate, as thoroughly
as possible, the following general observation:

Observation 3.1. All regular Boolean hierarchies over fairly arbitrary complexity classes, C, satisfy the
same definitional equivalences as the regular Boolean hierarchy over NP. Furthermore, at least at lower levels,
all extended Boolean hierarchies satisfy these same definitional equivalences. Moreover, general proofs of
these equivalences show that many of the properties that relate the number of parallel and sequential calls to
an oracle in NP follow from uniform constructions which apply to machines that query an oracle from these
quite general complexity classes. Classes, C, for which these results apply include not only classes like NP and
RP, but also such classes as Uniform RNC, FewP, the nondeterministic exponential time classes NEXP'imear
and NEXPP°Y | the recursively enumerable sets, standard classes in the polynomial time hierarchy, standard
classes in the arithmetic hierarchy, etc.

To justify this observation, we will give generalizations of many of the results that have been proved
for Boolean hierarchies and for extended Boolean hierarchies over NP. Wagner’s survey paper ([Wa 88])
contains an excellent review of such results over NP, including proofs, and, as mentioned earlier, some of
these proofs generalize trivially. Our development here relies heavily on Wagner’s survey paper. However,
many of the proofs Wagner gives use properties that are specific to NP, such as nondeterministic “guessing”
and the existence of complete sets for NP. Such proofs obviously require modification.

The various basic definitions for building regular Boolean hierarchies were given in Section 2. Definitions
2.0.1 and 2.0.2 are critical to an understanding of this section and we ask the reader to review them here.

Each of the four classes of Boolean formulas used in Definition 2.0.2 can be used to define a Boolean
hierarchy over arbitrary base classes, in addition to hierarchies over NP and over RP. For Boolean hierarchies
over NP these various definitions have all been shown to be equivalent, ([K6SchWa 87], [Wa 87a]). As we
shall see, Wagner ([Wa 88]) has used the proof of these equivalences to find a “normal form” for the ordinary
Boolean hierarchy over NP, and he has used this normal form as a basis for a definition of an extended Boolean
hierarchy over NP. However, from our point of view, following a suggestion of Cai and Hemachandra, a more
natural way to define an extended Boolean hierarchy might be to take any of the above families of functions
{h},} and then build classes above any of the finite levels of the Boolean hierarchy by taking (slowly growing)
functions which majorize any of the finite levels of the hierarchy. Just as one defines h},[C] using definition
(*) to obtain finite levels of the Boolean hierarchy, one might hope to define higher levels of an extended
Boolean hierarchy — for example, by defining classes like

;OQ[C] =def { X EIXI; N 7Xlog(|:c\) eC [CX(m) = h;og(CX1 ($)7 s JCXlog(\m\)(m))] } (**)

Notice that for finite levels of the Boolean hierarchy, one builds the k** level of the Boolean hierarchy
by using k fized sets X1, ..., X} from the base level to build each set at the kt* level. However, to make an
extension beyond finite levels, one must somehow make sense of what it means to use infinitely many sets
X1, Xiog(2|) from the base level to build each set at an extended level in the definition (**). To do so is
very much in the spirit of the approach suggested by Cai and Hemachandra. However, when working over
classes like NP which have complete sets, one can get the sequence of sets to substitute into (**) by using
a uniform reduction of the sequence to a complete set. For example, Cai and Hemachandra have suggested
using sets uniformly reducible to SAT for the substitutions, X;.

When complete sets do not exist, one clearly needs some (efficient) representation of the base sets
X1,..., Xiog(jz)) Which are chosen from the base class C' when defining the set X in (**). That is, the
representation of the X; must be given in terms of some a priori representation, or indexing, of the sets in
the base class, C.

Preliminary Definitions and Detailed Notations.

In building extended Boolean hierarchies over arbitrary complexity classes we obviously will also build finite
Boolean hierarchies, but notational issues which are obvious for the finite case become more delicate in the
extended case. In this section we review definitions and explain the notational conventions which we will
use.

We begin by observing that a finite, or concrete truth-table is one which is syntactically given in some
nice canonical form, for example, like the Boolean formulas of Definition 2.0.2. We leave the reader to supply
their own canonical definition of finite truth-tables. Note that there can be enough flexibility in how one
defines a concrete “truth-table” that for the purposes of this paper one could just as well mean “Boolean
circuit” and all results presented here would still go through. We note that if 7" is a syntactically given
truth-table with length |T|, then NV, which is the number of (distinct) variables appearing in T' must
satisfy NVr < |T).

For our purposes, we will be interested, not just in the forms for truth-tables, but also in various
orderings of the variables of the truth tables. A concrete ordering of a finite truth-table with k variables is
just a nice, syntactically given, permutation of the set {1,2,...,k}. Again, we leave the reader to supply
their own definition, but we observe that any permutation of {1,2,...,k} can always be realized in a nice
syntactic way with a complete table of (bit) length roughly k x log(k), (although no such nice polynomial
bound exists for truth-tables with k variables).

For any order O of the variables z,z,,...,z; and for any value 1 < i < k, we define Ordo (i) =gy
O~1(i); thus Ordo (i) is intuitively just the “position” of the variable z; in the ordering of the variables
under the order O. Orders will be used to define “mind-changes” of truth-tables, which in turn are used as
a means to find homeomorphisms between truth-tables. Such homeomorphisms are necessary to establish
uniqueness and equivalence of the classes based on these truth-tables.

Definition 3.2. Let T be any finite truth-table with k variables and associated ordering O of {1,2,...,k}.
We denote the length k vectors of all zeroes and of all ones by Hk and Tk, respectively. We denote the
function which counts the number of one’s in a Boolean vector, _I;, by #1(_b)). Suppose that @ = (a,...,ax)
and Z = (b1, ...,bx) are Boolean vectors with all a; < b;. We say that T changes its mind from a to Z
if T(a) # T(Z) In addition we let MCT’O(g,i) denote the number of mind changes of T which have

— —
been obtained just after i bits are flipped from 0 to 1 when transforming 0 to b, where the transformation
is accomplished one bit at a time, always flipping a “0” to a “1” in the order specified by the ordering O.
— — —

—
We frequently abbreviate MCr,0(b,#1(b)) to simply MC7,0(b). By convention, for j > #1(b), we define
—

— —
MCr,0(b,j) to be simply MCr o(b,#1(b)). Perhaps the most important thing to notice about mind
changes is that for any order O

N
T(b1,...,b) = T(0,...,08) + MCT’O(b) mod (2).
— —
Since in calculating MC'1,0(b), we always are interested in the pairs (O, b), it will be useful to combine
such pairs as follows:

Definition 3.3. A concrete partial ordering is a function T which maps some number, j, of elements of
{1,2,...,k} to 0 and the remaining k — j elements of {1,2,...,k} in a one-one fashion to {1,2,...,k —j}.
(A concrete ordering is then just the special case in which j = 0.) For any concrete partial ordering T we
denote by a, that Boolean vector which has its jt* bit, 8,,.)j, equal to 0 if 7(j) = 0 and E)m- equal to 1 if
7(j) > 0. We shall use the notation MCT,T(?{T) in the obvious manner. That is, MCT,T(?JT) is the number

N
of mind changes in going from 0 to a, in the order determined by (the nonzero portion of) 7.

It is not hard to see that there are at most 2%*/°9(k) concrete partial orderings of {1,2,...,k}. For
our purposes, these must be coded into strings or integers in some “nice” way, so that the encodings are

“easily” recognized. Equally important, we require of these codings that all of the concrete partial orderings
of {1,2,...,k} be coded as strings or integers less than 2¥*/29(k) We leave details to the reader.

To build truth-tables other than finite, bounded-truth-tables, one needs some class of functions which
are used to build concrete truth-tables of increasing length. Traditionally, one also needs to calculate values
on which to evaluate the truth-tables. For example, a standard definition of a polynomially computable truth-
table is a pair (T, f) of polynomially computable functions, 7" and f. On input x, T produces a concrete,
finite, truth-table, T, of some number of variables. We denote this number of variables by NV r(z). The
truth-table (T, f) is said to reduce the set A to the set B, (A <4 B), if for all z,

CA('Z.) = Ta:(CB(f('Z.J 1)7CB(f(:L.7 2)7 - '7CB(f($7 NVT('Z.)))

In the remainder of this section, we wish to develop a general theory of Boolean hierarchies and of
extended Boolean hierarchies. Thus, we wish to consider hierarchies obtained by unbounded truth-tables
produced, not just by polynomially computable functions, but also by functions chosen from other classes
of functions — for example, log space functions, or functions computable in N or functions computable
in exponential time, or primitive recursive functions. Our results will thus apply to fairly general ways of
producing functions and working with complexity classes. To achieve this, our functions will be chosen from
some fairly arbitrary class, (). The following definition explains what minimal sets of conditions this base
class, @), of functions must satisfy. For the moment, the reader may want to observe that the class () might
be the class of functions computable in polynomial time, but it might just as well be the class of functions
computable in log space. Still smaller classes will also do, as will larger classes of functions.

Definition 3.4. A minimal class of functions is any class of functions, (), which:
(i) is closed under substitution (composition);
(ii) contains a (numerical) successor function, which we denote by +1;
(iii) contains the constant function, Z(z) = 0;
(iv) contains the usual pairing functions (z1, . .., z,) and projection functions, PI*((z1,...,Zi,- .., &pn)) = T4
(v) contains the function Test(x,y, z,w) which returns z if x < y and returns w if z > y;
(vi) contains the characteristic function of the predicate which tests, of a string y and an input x, whether
y represents a concrete partial ordering of {1,2,...,z}.

If Q is any minimal class of functions, a subset B C Q is called bounded if f € B implies that 2/*°9(f) jg
bounded by some function in Q).

Note that in any example in which we explicitly take @) to be the set of all functions computable in
polynomial time or in log space, if we wish we may simply choose

B={f:fe€Q@ & 3 apolynomial p such that f(z) < p(|z|)}.

In this case we’ll also have f € Q and |f(x) * log(f(z))| < (k * log(|z]))?, so that trivially 2/*°9(/) ig
bounded by a function in Q.

Definition 3.5. Let (Q be any minimal class of functions,

(i) A Q-truth-table is a function T € () which on input x, produces Ty, a concrete finite truth-table,
Ty(z1,%2,. .., TNVy(s)) With variables x1,Z2,...,2ZNvy(z)- For T to be a Q-truth-table, we also require
that
(a) the function A\xT,(0,...,0Nv;(z)) be in the function class @,

(b) the function Az, 7 M CTE,T(?{T), where the variable T ranges over all concrete partial orderings of
{1,2,...,NVr(x)}, should be in the function class @, and
(c) the function NV r(x), which simply counts the number of variables in T, be in the subclass B.

(i) For sets A and D, we write A < D and say that A is Q-truth-table reducible to D with NV p(z)
(parallel or non-adaptive queries to D) if there exists a truth-table T € @) and a function f €) such
that

CA(ZU) = Tm(f(;v,l),f(x,Q),,f(w,NVT(m)))

In this case we sometimes write A S?NVT(w)}—tt D.

Definition 3.6. Let (Q be any minimal class of functions.
(i) We say that a set A is QQ-bounded-search reducible to a set D and we write A Sst D, if c4 is in the
smallest class of functions which contains the characteristic function cp of D, contains all functions in
Q, is closed under composition, and is closed under minimalizations which are bounded in output by
functions in the class B.

(ii) If A 5?8 D and if on input x the “program” which does the reduction evaluates c¢p at most n(z) times,
we sometimes write A g?n(w)}_bs D.

We have already remarked that, for any reasonable representation of truth-tables, for any truth-table
T, NVr(z) < |Ty|, so that |2VV7(®)| < |T,| + 1. In most reasonable complexity classes of functions, and
certainly for those at least as strong as log space, if we can compute f(z), then the only thing that stops
us from computing 2/(*) and hence placing 27 in Q, is that 27(*) is too long to write out. The relations
[2NVr(®)| < |T,| + 1 and T € @, thus motivate the requirement that NV, € B. Furthermore, in any
complexity class of functions at least as strong as log space, one can always, given a concrete truth-table,
calculate both the number of variables in the truth-table and the value T;(0,...,0nv;(s)). Thus, in classes
of functions like log space which are a little bit more than minimal, the functions NV ¢ will automatically
be in the bounded subclass B and the function AzT(0,...,0nv;(z)) Will automatically be in the class Q if
the function T" which produces the concrete truth-table is in the class (). The situation with respect to the
function Az, 7 M CT,,T(?{T) is only slightly more difficult. The truth-table T, must itself be produced by a
log space calculation and NVr(z) < |T,|. Thus from the order 7 we can successively produce the sequence
of vector substitions into T, and evaluate the truth-table as we do the substitions. Clearly the count of
mind changes can be maintained within log space. Thus in reasonable complexity classes of functions, @
and certainly for those at least as strong as log space, the only necessary requirement for a truth-table to
be a @ truth-table is that the function T; be a function in Q; conditions (a), (b), and (c) are all superflous.
However, as we shall see, the special truth-tables based on Definition 2.0.2, have such nice properties that
the caluculation of “mind-changes” may be possible by ad hoc methods even when the underlying functional
class @ is not strong enough to permit the successive substitutions just described within logspace.

In the remainder of this section, when we refer to a truth-table we always have in mind a @-truth-table
for some fixed minimal class of functions). When we mean to specify a concrete, finite, truth-table instead
of an arbitrary @Q-truth-table, we will always make this clear. Unless otherwise specified, the class @ with
bounded subclass B may now be thought of as remaining fixed throughout this section.

Definition 3.7. Let () be any minimal class of functions, and let T be any Q-truth-table. Let O be a
function which on input z produces a (concrete) permutation O, of the set {1,2,..., NVr(x)}. We extend
the definition of the the function Ordo preceding Definition 3.2 to the ordering function O by defining
Ordo(w,i) =4ey O (i), which gives the “position” of the i*" variable of T, in the ordering O,. We similarly
extend Definition 3.2 to define mind changes for unbounded Q-truth-tables by defining the mind-change
function MCro by

— —
MCT,()(:C, b,?:) = MCTm,om(b,i),

10

where the reader will recall that MC'r, o, gives the number of mind changes of truth-table T, in going from

— —
0 Nvy(z) to b by flipping i bits in the order dictated by the order O.
(i) We say that the ordering function O is a Q)-ordering of the truth-table T if the functions Az,i Ordo(x, 1)
—
and Az,i MCro(z, 1,i) are in Q.
(ii) For any Q-truth-table T and associated Q-ordering O we define the “maximal mind changes” on input
x as follows:

—
MaxMCro(x) =gy maz {MCro(z, b, NVr(z))}.

{5 b] = NVr(2)}

Just as with the function NV r, and the function Az, 7 M CTE,T(?{T), required to be in () for the definition
of @ truth-tables, if we are dealing with a class @ of functions which is a little bit more than minimal, for
example with a class containing all log space computable functions, if we can compute both T, and O,
within the class), then it will automatically follow that both of the functions Ordp and MCr o are in Q).
Furthermore, since MCro < NVr, MC7,0o will automatically be in the subclass B if it is in). Thus in
Definitions 3.5 and 3.7, the eaplicit assumptions that the functions NV, Ordo, T;(0, .. .,0nv;(5)) and the
various mind-change functions be in the classes B or () are only needed for very minimal classes of functions
Q. For classes of functions Q with reasonable computational power and for any reasonable choice of the
subclass B, there is no way to avoid having these functions be in Q) or in B.

With this background, let us return to the problem of building extended truth-tables based on any of
the special families {h}.}, (k =1,2,3,...) of k-ary Boolean functions from Definition 2.0.2.

Example 3.8. (a) Let Ak{h},} be any of the sequences of k-ary truth-tables of Definition 2.0.2 and suppose
that @ is any minimal class of functions powerful enough that, from the value (string) 2* we can produce the
formula hj, by a function in the class Q. (For example, demanding that () contain all log space computable
functions is much more than adequate.) Let t be any integer valued function in the bounded subclass B. First

—
observe that the number of variables in h;ﬁ(w) is simply t(x) and that hé(w)(O) is always identically 0. These

functions are always in Q. Thus, h; will be a Q-truth-table provided that the function Az, TMCy; , (37) is also
in the class (). For minimal function classes () at least as large as log space, we have seen that this condition
will always hold, but for very minimal function classes this may depend both on the particular choice of h'
and the class (). As the simplest example, for the case where h' is the parity function of Definition 2.0.2 (i),
all that is necessary to make h} a Q-truth table is that the class Q) be strong enough, given a concrete partial
truth-table T, to count the number of 1’s in (_1>T since this gives the mind changes for the parity function.

(b) Now for any of these four choices of h' consider the identity ordering, O,(i) = i. It is easy to see
that

- . . .
o(z, 1,i) =1, fori <t(x)

5
(and of course MCy1 o(x, 1,i) = t(x) for i > t(x)). Furthermore, Ordo(x,i) = i. Thus the functions

Y
Az, i Ordo(z,i) and A\x,i MCro(z, 1,1) are trivially in Q). Thus for any minimal collection of functions Q
and any function t € B the identity ordering is trivially a Q-ordering for the Q-truth-table h} for any choice
of hj.

In the following section, given any Q-truth-table T, we will explain how to define T[C], the T*" level of
the extended Boolean hierarchy over C. For different truth-tables 7" and T", we will be interested in knowing
whether T'[C] C T'[C]. For the case C = NP where the class () is taken to be all functions with finite range,
the best published result we know on how mind changes affect hierarchy containment and uniqueness of
classes is the following “max-max” theorem:

11

Theorem, ([Wagner 88, Thm 8.2 & Cor 8.3]). Take C' to be NP. Take @ to be all functions with a
finite range. Then, if T and T' are QQ-truth-tables such that

maz{ocoy{ MazMCro(x)} < mazrjocoi{ MazMCr o(z)},
then T[C] C T'[C].
From work in [Wa 87a] a similar result clearly holds for extended hierarchies over NP.

Our general goal in the remainder of this section is to see how far we can generalize Wagner’s theorem
to extended hierarchies over arbitrary classes C' and arbitrary minimal function classes Q.

Building Extended Boolean Hierarchies over Arbitrary Complexity Classes.

We begin with the observation that most finite Boolean hierarchies that are of interest are built from base
classes (such as NP or RP) that are closed under finite intersection, union, and reduction by functions
computable in polynomial time. In order to extend these notions, we will need to extend the finite closures
under union and intersection to include closure under appropriate slowly growing, but infinite, unions and
intersections. As discussed earlier, for classes that have complete sets, one can hope to simply code all of the
sets which one hopes to substitute in some formal version of equations like (**) into the complete set, and
then use only the complete set in defining extended hierarchies. But in the general case, making all suitable
substitutions of sets into arbitrary (infinite) truth-tables requires some suitable indezing of the base class,

C.

Definition 3.9. An indexed collection of sets, I : S — C, is a collection of sets C, together with a function
I mapping some subset S of ¥* onto C and a decomposition of C into C = |J Ck, Ck C Ci41. We use the
notation X; for the set I(j) and the notation S* for the set of indices I71[Cy].

Intuitively, for machine based complexity classes, the set S is normally chosen to be just some canonical
set of machines which accept all of the members of C, and then X is just the set accepted by machine 5.3
C}, is normally just the collection of sets recognized by the machines in this machine class computing within
a time bound of some fixed degree, for example of degree at most k. S* is then just the machines which
run within time bound of the same size. For example, for NP, S* might be the set of machines running
nondeterministically within time bound |z|¥. For another application, we might take Sy to be machines
running in nondeterministic time 2¥*/*/. When dealing with a class like the recursively enumerable sets
where uniformity is not an issue, Sy might simply be all Turing machines for all k.

Definition 3.10. Let (Q be a minimal collection of functions with B a bounded subset of). Let I : S —
C = |JC% be any indexed collection of sets. We say that C is fully closed under disjunctions (i.e., under
unions) if for every k and every function s € Q with range s C S* and every function t € Q the set X
defined by
reX < \/ T € Xy (% % %)
i<t(x)
is also in C. We shall abuse this notation when the meaning is clear and write X as U;<y(,) Xs(s)- We say
that C is closed under bounded disjunctions (unions) if for every function s € () with range s C S* and every
function t € B the set X defined by (***) is also in C. Similar definitions hold for closure under full and
bounded conjunctions (i.e., intersections). We will say that a sequence of sets, AiS; is uniform in C if there
is a function s € Q with range s C S* such that S; = X,;).

In the special cases where the class () is the set of functions computable in polynomial time or in log
space, we sometimes call full closure under disjunctions simply closure under exponential unions, and in this
case we call bounded closure under disjunctions closure under polynomial unions.

3 Note that, for base classes like RP, we can not reasonably demand that the set S of machines which define RP
be easily decidable, or even decidable at all.

12

The proofs given below require both uniform closure of sequences under intersections and more flexibility
in accessing the members of the basic sequence {XiX ;) }.

Definition 3.11. We say that an indexed collection of sets C' = |J Cy, is uniformly closed under bounded
conjunctive reducibilities (from the class Q) if for all functions f € Q, for all k and all functions s €) with
range s € S*, and for all functions t € B, there exists a k' and a function s' € with range s' C S* such
that for all j
zeXyug = N\ fl@45) € Xy
i<t(x)

We say that the sequence { X, (;)} is uniformly reducible to the sequence {X,;)}, and, as defined in 3.10,
we often simply say that the sequence { X, ;) } is a uniform sequence in C.

Note that any class which is closed under bounded conjunctive reducibilities is trivially closed under
bounded conjunctions.

Definition 3.12. We say that an indexed collection of sets C' which contains at least one non-trivial set*
is uniformly closed if it is closed under both bounded unions and bounded conjunctive reducibilities.

Example 3.13. For each uniformly closed class) in the following examples, the reader should choose a

sensible bounded sublcass, B.

(i) For both the function class @) of all functions computable in Uniform NC and the function class @} of
all functions computable in log space, the base class Uniform RNC is uniformly closed.

(ii) For both the function class @) of all functions computable in polynomial time and the function class
Q of all functions computable in log space, the base classes C = NP, NEXP'"e®" NEXPP'Y RP,
FewP, and RE all are uniformly closed. Furthermore, NP, NEXP'™¢" NEXP??'Y and RE are also
fully closed under (exponential) unions.

(iii) For the class) of functions computable in EXP'™*" the base classes NEXP'™°%" NEXPP°"Y and RE
are uniformly closed and are fully closed under unions. For both the function class () of all functions
computable in EXP'™®" and the function class Q of all functions computable in EXPP°Y, the base
classes NEXPP°"Y and RE are uniformly closed and are fully closed under unions.

(iv) For the class @ of total recursive functions, the base class RE of all recursively enumerable sets is
uniformly closed and is fully closed under unions.

(v) Take @ to be the class of functions computable in polynomial time and let A be any set in NP. Then
the class C C NP of all sets <I A is uniformly closed and is also closed in NP under full unions. If A
is in RP, then the same class C is a uniformly closed subset of RP, but we cannot be sure that it is
closed in RP under full unions.

Because we are primarily interested in RP, we will be most interested in proving theorems about Boolean
hierarchies built over uniformly closed complexity classes. However, we will point out how to strengthen
these theorems for classes like NP which are also fully closed under intersections. A major goal will be to
delineate differences in Boolean hierarchies built over base classes like RP which are merely uniformly closed
and those built over base classes like NP which are also fully closed under unions. As we shall see, the extent
to which base classes are closed under more than bounded unions directly influences the ease with which
one can build nice extended hierarchies using truth-tables where the number of variables grows faster than
logarithmically.

We now give the basic definition for building extended Boolean hierarchies over quite general collections
of base classes, C.

4 Ie., a set which is neither empty nor universal.

13

Definition 3.14. Let () be any minimal collection of functions, and let T' be any Q-truth-table. Analogously
to the sets defined by (*) for the regular Boolean hierarchy, we build classes in an extended Boolean hierarchy
by defining
TPIC] =aes { X :3k, Is€Q with range s C S*
[CX('Z.) = TLE(CXS(U ($)7 CX (2 (Z‘), R 7CXS(NVT(E))('Z.))] } (* * **)
When the context is clear, we will usually drop the superscript Q in T?[C].

The following lemma explains why, in building extended Boolean hierarchies, we could limit Definition
3.14 to classes which can be defined without using reductions to the sets X, ;).

Lemma 3.15. Let () be any minimal collection of functions and let C' be any uniformly closed collection
of sets. Let T' be any truth-table from the class (). For any function f in @, define
(T, /)?[C] =gy { X: 3k, I 5 € Q with range s C S*
[ex(z) = T2 (ex,q) (F(@, 1)), ex,0 (F(2,2)), -, Xy v oy (F(@, NV T(2))) T}
Then (T, f)?[C] C T9[C].

Proof: Simply define the sequence S} =45 {2 : f(,]) € X,(;)}- Since the class C is closed under bounded
conjunctive reducibilities, the sequence {AjS ;} is a uniform sequence in the class C. But

Tw (ch(l) (f(.fL', 1))7 CXs(z) (f(IE, 2))7 T 7CXS(NVT(E)) (f(z.a NVT(‘:C)))

= T:c(QS{ (33),65; (SE), -5 Cs

(7))

;VVT(E)
This shows that (T, f)?[C] C T?[C]. g

The following two propositions, which are not used in the remainder of this paper, show that things
are not so simple when we instead allow, not just uniform reductions to the base sets X,; but instead
allow many-one reductions to sets in the 7" level of the hierarchy. Recall that a truth-table T is fized if
the function T'(z) is constant. Our next proposition shows that fixed truth-table classes are closed under
many-one reductions.

Proposition 3.16. Let () be any minimal collection of functions and let C' be any uniformly closed collection
of sets. Let T be any fixed truth-table from the class (). For any function f in @), define

TPIC] =aep {X': IX eT®C] [X'<E X}
Then TP[C] = T9[C].

Proof: The containment T%[C] C T]? [C] is obvious. For the reverse containment, suppose that X' <@ X
via the function f € Q. Much as in the proof of Lemma 3.15, define the sequence S} =4e5 {7 : f(z) € Xy(; }-
Since the class C' is closed under bounded conjunctive reducibilities, the sequence {)\jS}} is a uniform
sequence in the class C. But

exi(z) = ex (f(2)) = Ty (ex,q) (f(@)); ex,0) (F(2)); -+ X wvprony (F(2)))
= Tf(z)((CSi (Z’),Csé (x)a"'acS (33))

Since the function T, is constant for fixed truth-tables, so is the function NV (z), and this shows that
X' e TQ[C]. 1

!
NV (f(=))

14

The next proposition shows that the situation is not so pretty in more general truth-table classes.
For example, it shows that sets in standard extended hierarchies which have more than a linear number of
variables in their underlying definition can always be many-one reduced to sets which have a sublinear number
of variables in their underlying definition.? A similar phenomena occurs around sets having a logarithmic
number of variables in their underlying definition. With a little more work Proposition 3.8 could also be
proved with appropriate positive truth-table reductions replacing many-one reductions.

Proposition 3.17. Let () be any minimal collection of functions and let C' be any uniformly closed collection
of sets. Let T' be any truth-table from the class @, and let f be any function in () for which f~! is also in
Q. Define T}, = Tj-1(,) (so that NV (x) = NVp(f~'(z)) and thus NV (x) < NVp(z) if f is monotonic).
Then

X eT[C]= X <2 X' e T'[C].

Proof: Let X € T[C]. Then
¢ (ZL‘) =T, (CXS(U (ZL‘), CX,(2) (1"): w0 CX (N v () (.Z'))

Much as in the preceding proof, define a uniform sequence AjS; by S; =4ey {f(2) : © € X,(;)}. Define X' by

cxi () =aes Ty(es: (x),cs1 (@), - - ,cS;WTI(m)(m)).
Then
9.¢ (:L') =T, (CXS(U (:E), CX4(2) (.’I:), < CX (N (e) (SL‘))
= Thyy (s (F@),es, (@D resy,, (@)
= cx/(f(z))-

Definition 3.14 gives a quite general method for building Boolean hierarchies over quite general com-
plexity classes, and Definition 3.14 together with Example 3.8 provides a method for generalizing the various
definitions for the specific regular Boolean hierarchies given in 2.0.2 to extended hierarchies. We can now
ask how these classes relate to the conventional classes of the regular Boolean hierarchy and to each other.

The chief results used in the standard proofs of the equivalence of the various definitions of the Boolean
hierarchy over NP and in the proofs that Turing reductions over NP require fewer queries to NP sets than
truth-table reductions are the next two basic propositions. The proofs we give are similar in spirit to results
for NP which are surveyed in Wagner’s paper [Wa 88]. However, as discussed above, some changes are
required both because the arbitrary complexity classes which we consider, including RP, need not have
the power of non-determinism and need not have complete sets and because exhaustive searches which are
possible when NV r(z) is bounded by a constant, are not possible at higher levels of extended Boolean
hierarchies where NV r(z) > O(log(|z])).

Proposition 3.18. Consider any Q-truth-table T, associated ordering O, and uniformly closed complexity
class C. Then for any set A € T[C], there exists a set D such that
() ca(@) = SV [ep(i,2)] + To(0,...,0Nvp(@) mod 2;
(ii) ep(i,z) > cep(i+1,z), and ep(NVr(z) +1,2) = 0;
(iii) A S,?s D via a)-bounded-search reduction which makes at most [log(NVr(z) + 1)] queries to D;
(iv) D is in the closure of C' under unions bounded by a function in Q.

4 For example, Proposition 3.17 shows that for any of the truth-table classes arising from Example 3.8, hf o|* [C] 5%
h'\/m[C]. It follows, for example, from Corollary 3.23 that in extended hierarchies over NP and over RP that all of

the sets in the extended hierarchy can be <Z reduced to sets which always have NVr(z) < 1/|z|.

15

Proof: By definition of T[C], the set A is definable by a function s € @ with range s C S* such that

ca(@) = Tolex,q) (T), €x,0) (T), - -5 €X, (v ey (€))- Thus we must prove that
NVT(w)
To(cx,) (T),Cx, 00 (@), - - - ,cXS(NVT(E))(x)) = Z [ep(i,z)] + Ty(0,...,0Nvp(z)) mod 2
i=1

for an appropriate set D. From this formulation, it is clear that to establish (i) it is adequate to define the

set D in such way that for every choice of z there is some concrete order 7 of {1,2,..., NVp(z)} such that
NVT(J))
Z [CD (ia .’L’)] = MCTm,‘r (CXS(U (."L'), CX,(2) ('Z')a < CX (N () (.’E))
i=1

We will define D to be
D =4e5 { (i,z) : for some order 7 of {1,2,..., NVr(x)} there exist at least ¢ mind changes of T,

between (0,0, ..., ONVT(z)) and (CXs(1) (2), CX,(2) ()5 CX o (NVyp(a)) (2)) }

The definition of the set D makes both (i) and (ii) obvious. Part (iii) follows directly from (i) and (ii) by
using bounded minimalization to do a binary search on D.

It remains only to locate the set D in the closure of the class C' under unions bounded by members of
RQ- We begin by observing that for the sequence X1y, X;(2), X4(3), - - - which defines the set A, the related
sequence S1, 52,53, ... given by

Sj=aes {1} J{z+2:2 € X,(;}

is easily seen to be a uniform sequence in C.

Define a function f in) by

fG, i, z,7) =0 if MC’TM(?{T) <4 or T isnot a concrete
partial ordering of {1,2,...,NVr(z)}
=1 if MCTM(?{T) >i and a; =0 and

T is a concrete partial ordering

=z + 2 otherwise.

Next define the sets D, by
<7:,JI)€DT — /\ f(j,i,.%‘,T,)ESj-
J<NVr(z)

Because the class C is closed under bounded conjunctive reducibilities, the sequence ArD. is a uniform
sequence in C.

Now note that for each 7 if (i,z) € D, then you get at least ¢ mind changes in going from 6 NVir(z) tO
?{T by flipping only bits in the vector 37, doing so in the order determined by 7. Furthermore, the definition
of D, guarantees that if (i,z) € D, and Zm-: 1, then z € Xy(;). It follows that

MCTE,T, ((CXS(1) ($)7 CX (2 (Z‘), < CX (N ())) > 4

for an obvious choice of a (total) concrete ordering 7/, so (i,z) € D. Le., for all concrete partial orderings =
we have that D, C D.

16

But from its definition it is now clear that D C |J D,. (The concrete partial ordering 7 witnessing the con-
tainment can be nonconstructively chosen so that @, happens to be (¢ Xy ()5 €X,00) (T); - -+, EX v o (T))-)
Thus the set D can be defined by

(i,x) e D <= (i,z) € U D,.
7 is a partial ordering of {1,2,....NVr(z)}

Since these concrete permutations are all coded as numbers less than or equal to 2VVr(@)*leg(NVr(2)) = e
have that
D= (i,z) € U D;.

{j:§ < 2NVr(a)slog(NVr(2))}

Thus D is in the closure of C under unions bounded by a function in). This establishes part (iv). j

Part (i) of the following corollary for the special case where C' = NP and Q = P is standard in the
literature, ([Be 88], [Wa 88], [Wa 87al).

Corollary 3.19.

(i) Let C be any indexed complexity class, (such as NP), which is uniformly closed and which is also
closed under full unions. Then any set, A, which is @Q)-truth-table reducible to a set X € C can be
@)-bounded-search reduced to some other set D € C' via a bounded-search reduction which makes at
most [log(NV ;(z) + 1)] queries to D; i.e.,

P Q
[A<{Nvep-uX & Xe€C = 3D e C[A<{, nvre)+1)1}-bs DI

(ii)) Let C be any indexed complexity class, (such as RP), which is uniformly closed. Then any set, A, which
is Q-truth-table reducible to a set X € C' via a truth table T with 2VVr(2)*log(NVr(z)) bounded by a
function in B can be QQ-bounded-search reduced to a set D € C' via a bounded-search reduction which
makes at most log([NVr(x) + 1]) queries to D; i.e.,

P Q
[A <inve-u X & X €Cl = 3D € C[A <y, (nvr(a)+1)13-bs D)

Proof: Immediate from Proposition 3.18.

Simple calculations show that meeting the requirement for part (ii) for classes like RP which are based

on polynomial time but not closed under full unions can be met by keeping NVy(z) < O(%).

From our next proposition, it is easily seen that a full converse to Proposition 3.18 also holds provided
that the set D is actually in the class C, (as it always must be if C is closed under full unions) or if the
function 2VVr*09(NVr) js bounded by a function in B.

Proposition 3.20. Suppose that
(i) C is any indexed complexity class which is uniformly closed;
(ii) t is any integer valued function in () and initval is any Boolean valued function in Q;
(iii) D is any nontrivial set in C such that cp(i,x) > cp(i+ 1,z);
(iv) A is any set defined by ca(x) = Zz(:wl) [ep(i,z)] + initval(z) mod 2.

For any Q-truth-table T, define adjust(x) =ges Tz (0, . .,0Nvy(2)) + indtval(x) mod 2. Then for any Q-truth-
table T and any @)-ordering function O for T,

[t(z) < MCr.0(z, 1 nvee), NV7(2)) + adjust()] => A eT[C].

17

Proof:®> We use the two functions Ordo (=, i), which gives the ordering of the i** variable of T}, in the order
—
Og, and the function MCr o(x, 1 Ny, (s),i) Which gives the number of mind changes which have occurred
—
just after flipping the i** bit in the determination of MC7,0(z, 1 Nv;())- Because O is a Q-ordering of T,

both of these functions must be in the class Q.

The idea of the proof is simple: the truth-table 7', with its variables ordered by the ordering O has
enough mind changes to do a mod 2 count of the values (i, z) for which the value of ¢p (i, z) is “1.” Hence,
if we substitute

ep(l,2),...,ep(1,2),ep(2,x),...,cp(2,2),...,cp(t(x),x),...,cp(t(x), x)

into the variables for T, in the order dictated by O, beginning the substitution of the next new variable each

time a mind change occurs, then T, with these substitutions, must give a mod 2 count of E:(:wl) [ep (i, 2)].

—
Since for any vector b
— — —
T:(b) = MCr0(z, b, NVr(2)) + To (0 Nvy(2))) mod 2,
doing the proper substitutions should give us the right result, provided the initial values #nitval(z) and

T, (6 NVi(z)) are identical. If these two variables are not identical, then we must do enough substitutions to
effect one more mind change.

Formally, we proceed as follows. First, we define the function ¢'(z) =g4.s t(x) + adjust(z). It is easily
seen that t' € Q. Next, recall that the function Ord(QO,,j) produces the “position” of the j** variable of T,
in the order determined by O. Thus, if we can force

ep(1,2),...,ep(l,z),ep(2,2),...,ep(2,%),...,cp(t(z),x),...,cp(t(z), z))

to be substituted into T}, in this order and then flip the bits in this order, then all of the bit flipping will occur,
first in all those places where the Boolean values are assigned the value “1”, followed by (attempted, but
blocked) bit flipping in all those places where the Boolean values are assigned the value “0.” This will force
the mind changes in this order for this substitution to reflect the values in the summation Z:(:wl) [ep (i, z)].
Of course, if adjust(z) # 0, then we need to force one more mind change, so we should have used #'(x)
instead of ¢(z) in (7).

To accomplish these substitutions, note that MCr o (=, 1 NVir(z); Ordo(z,) — 1) will tell us how many
mind changes have occurred just before the j** bit is flipped. We should be substituting the j** variable
during those periods when the mind changes that have been witnessed total j — 1, and we should quit when

N
MCT,O(:E; 1NVT($)7OTdO($Jj)) > tl(x)

Since the set D is not trivial, we may let dy be some fixed member of D. To accomplish the substitutions
we have just discussed, we define the function

— —
f(xaj) = <MCT,O(:E; lNVT(a:)yOrdO(xaj) - 1) +].,SU) if MCT70(JE)]-NVT(m);OTdO(xaj)) < tl(x))a
= dy else.

5 At the expense of introducing still more notation, we could get a somewhat stronger result here by replacing the
— —

trivial vector valued function T NVr(z) by an arbitrary vector valued function b(z) in @ satisfying | b(z) | = NV r(x).
We shall see from the proof of Corollary 3.22 that for the applications we have in mind this is not really a stronger
result, except perhaps for very weak minimal function classes,). The reader should also note that, given any function
ingtval in @ and a @Q-truth-table T of the appropriate number of variables, by properly initializing T one can get a
truth-table T' which has ezactly the same mind change sequence as T and satisfies T5(0,0,...,0 NV (z)) = initval(z).
Of course, since in general the classes T[C] are not closed under complements, one should not expect that T[C] =
T'[C]. Note also that t is not only in @Q, but that because t(x) < NVr(z), t is actually bounded by a function in B.
For most definitions of B, this will actually force t € B.

18

By our assumptions on @ and O, the function f is easily seen to be in (), and we then have that

MCT,O(SL’, <CD(f(1,ZL'));CD(f(2,5U)); o ;CD(f(NVT(x)am))>7NVT(SU))

t(z)
= Z [ep(i,2)] + adjust(z) mod 2,
i=1

and thus that

t(z)
Te(ep(f(z,1)),en(f(2,2)),...,en(f(z, NVr(x)))) = Z[Cp(i,.'l,')] + initval(xz) mod 2.

i=1

The result now follows from Lemma 3.15.

Propositions 3.18 and 3.20 together show that classes, like NP, which are closed under full unions must
have Boolean hierarchies defined by @-truth-tables T' where the classes T[C] are determined solely by the
initial values of T' together with the number of mind-changes of T induced by a maximal Q-ordering of the
variables of T

These propositions also show that where the class C is fully closed under unions, one need not have
complete sets in the base class C' in order to give an “indexing free” definition of extended Boolean hierarchies.
Following Wagner, ([Wa 88]), one simply takes something like Part (iv) of Proposition 3.20 as the definition
of the sets, A, in the extended Boolean hierarchy, but limits the selection of the functions ¢ to those t € B.
This definition is equivalent to the definition using truth-tables which we have given, since Proposition
3.20 guarantees that any such set A is in T[C] for any truth-table which has enough mind changes, while
Proposition 3.18 guarantees that any A € T[C] must be definable by some such set D.

Characterizations like those of the preceding two paragraphs also hold for lower levels of extended
Boolean hierarchies over classes, like RP, which are not fully closed under unions, but for most applications
we’ve shown above only that the determination of the classes T[C] is uniquely determined by the number
of mind changes when the number of the variables is given by functions f for which 2/*99(f) is bounded by
a function in @). As stated earlier, in the case of RP, this means, for example, that the number of variables

should be at most about O(%).

In closing this section, we shall make explicit a number of corollaries to Propositions 3.18 and 3.20.
These results show that, for many interesting cases, the number of mind changes of truth-tables T and T’
(sometimes together with the initial values of T" and T") determine whether T[C] C T'[C]. Moreover, we
will see that for truth-tables T based on any of the sequences {h}} of Definition 2.0.2, the antecedents of
the following corollaries are easy to establish. Hence, for quite general base classes, C, equivalence and
uniqueness of the lower levels of the extended Boolean hierarchies defined by the sequences from Definition
2.0.2 will be directly established by a trivial count of the mind changes together with a trivial check of the
initial values of the truth-tables.

Before proceeding, one more bit of notation will prove useful.

Definition 3.21. Let T and T' be any two Q-truth-tables. Define adjustr (x) =dey T5(0, ..., 0nvy(2)) +
T:(0,...,0Nvy(s)) mod 2. (Note that adjusty 1 (z) is always in the function class Q.)

Corollary 3.22. Let () be any minimal collection of functions and let C' be any uniformly closed complexity
class. Let T and T' be Q-truth-tables, and suppose either that C' is closed under full unions or that NV
is bounded by a function f with 27*1°9(f) ¢ B. Then, if there exists a Q-ordering O' for T' such that

5
mazoeg{ MazMCro(z)} < MCr o(%, L Ny, (z), NV (%)) + adjusty (),

then
T[C] € T'[C).

19

Proof: This follows directly from Propositions 3.18 and 3.20. g

Corollary 3.22 is immediately applicable to the hierarchies based on Example 3.8. Let ¢ be any function
in B and let h} be the corresponding truth-table built as in Example 3.8. For any such function ¢, for any
— —
truth-table T with NVr(z) < t(z) and T(0 Nvp(z)) = 0 (= hi(04())), we have for any ordering O and for

the identity ordering O’ that

MazMCro(z) < t(x) = MChy o (@, Lyay H(3)),

so T[C] C hi[C]. In the case that T(B NVr(z)) 7 0, we draw out our conclusions in more explicit fashion
in Corollary 3.23, below.

It should be noted that Parts (ii) and (iii) of Corollary 3.23 establish that for any extended hierarchy over
any complexity class closed under full unions, any of the standard methods for defining Boolean hierarchies
yield identical hierarchies. For classes like RP where the base complexity class is merely uniformly closed,
these basic definitions are shown here to be equivalent only for functions ¢ for which both NV p,s(,) is bounded
by a function f with 27*99(f) ¢ B. As pointed out earlier, for RP and similar classes, this means that the
number of distinct variables should essentially be bounded by O(log(|z|) xlog(log(|z|))) if we are to guarantee
by our methods that the various possible definitions are all equivalent.

Corollary 3.23.

(i) Let Q) be any minimal collection of functions and let C' be any uniformly closed complexity class. Let t
be any function in B and suppose either that C is closed under full unions or that 2t*°9(t) js bounded
by a function in B. Then for any specific Q truth-table h; built from any of the four base classes of
Definition 2.0.2 as explained in Example 3.8, if T is any @)-truth-table for which

—
NVr(z) + T(Onve) < ta),

then
T[C] C hi[C].

(ii) Let Q, C, t, and B, be as in Part (i). Then for each of the four specific truth-tables built from the four
base classes of Definition 2.0.2 as explained in Example 3.8,

m[C] = glC] = gi[C] = Diff [C].

(iii) By the same argument, the complements of these classes, which we denote as coh¢[C], cog[C], cog;[C],
and coDiff ,[C] are also equal.

(iv) For the special case where C = NP and r € P, Wagner defines the rt* level of the Boolean hierarchy
over C by

r(|z))
Clrl =aey {A : 3D € O)[epn(z,i+1) <cp(z,i) & calz) = Z [ep(i,z)] mod 2.]}

i=1

Let Q, C, and B, be as in Part (i), let r € (), and let t(z) = r(|z|). Then for each of the four specific
truth-tables built from the four base classes of Definition 2.0.2 as explained in Example 3.8,

mlC] = g:lC] = g[C] = Diff [C] = CIrl.

Corollary 3.23 justifies using standard definitions as follows.

20

Definition 3.24. Let () be any minimal collection of functions and let C' be any uniformly closed complexity
class. Let t be any function in B and suppose either that C is closed under full unions or that 2t*°9() jg
also in B. Then Q-truth-table h}, we let C[t] denote any of the classes hi[C] from Example 3.8. (Corollary
3.23 guarantees the invariance of the definition no matter which concrete ()-truth-tables are chosen from the
example.)

In the case of the base classes C = NP or C = NP, this yields the notations NP[k], NP[t], RP[k] and
RPJt] for constants k and for suitable functions ¢t € B.

In closing we give a final corollary which generalizes known results on the relations among various
bounded-query classes over NP. To keep these results in a familiar domain, we return to taking the class @
to be either the set of functions computable in polynomial time or in log space but we otherwise let C be
any uniformly closed class of sets. Employing standard notation, we let P [t] denote the class of sets that
are reducible to some set in C via some @-truth-table which has at most t(z) variables, and we let PS[t]
denote the class of languages recognizable by a @)-machine which, on input z, makes at most t(z) queries to
an oracle in C. We then have:

Corollary 3.25. Let Q be the class of functions computable in polynomial time or in log space. Let C
be an arbitrary uniformly closed complexity class. Let t be any function in () such that for some integer k
t(z) < |z|F if C is fully closed under unions, and such that t(z) < k % [%] if C is not fully closed
under unions. Then

(i) PS[[log(t)]] = PG[2M*9®1 — 1], provided that 291 —1 is in the bounded class B.
(ii) Diff,[C] U coDiff,[C] C PY[t] C Diff,,,[C] N coDiff ., [C].

(iii) The PS[t] hierarchy collapses if and only if the P& [t] hierarchy collapses if and only if the Diff , hierarchy

collapses.

Proof: Part (ii) and one of the containments of Part (i) are immediate from Corollary 3.19. The other
containment for Part (i) follows directly from the standard proof that P§ [k] C Pg[2* — 1], which is
proven by a straightforward induction on k for arbitrary classes C, (see, e.g., [Be-88]). Part (iii) follows
directly from Parts (i) and (ii). g

An appropriate version of Corollary 3.25 also holds when @ is taken to be an arbitrary minimal class
of functions. In this case Q[t] is taken to be the class of sets that are reducible to some set in C' via some
Q-truth-table which has at most t(z) variables, but some care is needed in giving an appropriate definition
of Q5[t], and in stating an exact version of Part (i) of the corollary.

We note that Beigel ([Be 88], Section 4.1, Theorems 17 and 18) has briefly considered Boolean hierarchies
and bounded query classes over arbitrary collections of sets, C, and with no assumptions on C' has proved
the following results, for all integers k:

(i) P§[k] C Pf [k] C PF[2* - 1].

(i) Diff ((C) C PZIk] C Diff (o 2443y [C]-
(iii) The PS[k] hierarchy collapses if and only if the P& [k] hierarchy collapses if and only if the Diff,
hierarchy collapses.

Beigel’s results can obviously be extended from integers k to arbitrary functions, ¢t. However in Corollary
3.25 we have seen that, for constant bounded query classes and for lower levels of functionally bounded query
classes, by placing minimal assumptions on the class, C', we obtain sharper results than those obtainable
with no conditions on the class C.

21

4. STRUCTURAL PROPERTIES OF THE BOOLEAN HIERARCHY OVER RP.

In this section, discuss some structural properties specific to the Boolean hierarchy over RP. In the first
subsection we give a characterization of the Boolean hierarchy over RP using machine acceptors and prob-
abilistic quantifiers. Since one of our reasons for studying this hierarchy is to investigate the structure of
BPP — RP, we compare the machines and predicates that define RBH with those that define BPP. For
instance, it is obvious that the languages in RBH are recognized by probabilistic machines with bounded
two-sided error, however we show that they are recognized by machines of this type that take on a very
special form.

In the second subsection, we investigate when self-reducibility and membership in BPP can cause sets
in the Boolean hierarchy over NP to lie in the Boolean hierarchy over RP. Our results extend Ko’s results
which show that self-reducible sets that are both in NP and BPP are in RP, ([Ko 82]).

Machines and Predicates for RBH.

We know that the Boolean hierarchy over RP is contained within BPP and thus that every language in
RBH is recognized by a BPP machine. However, we can show that for languages in RBH these machines
can be assumed to have a very nice form. We obtain these machines by combining Boolean circuits for the
Hausdorff functions of Definition 2.0.2 with simple RP machines in much the same manner that Cai and
Hemachandra used “hardware over NP,” ([CaHe 86]) to recognize sets in the Boolean hierarchy over NP .

Recall that since RP is uniformly closed, by Corollary 3.21, the class RP[k] is invariant with respect to
the Boolean functions used in Definition 2.0.2. We describe machines for RP[k] that are constructed using
the Wechsung-Wagner function gy.

Definition 4.1. A g;[RP]-acceptor M, for a set X € RP[k] is a tuple (b*, My, ..., M), where My, ..., My
are RP-acceptors, and b* is a Boolean circuit of k inputs that computes the Boolean function gi. On input
x, the machines M; non-deterministically guess a computation path and M;(x) outputs a ‘1’ if that path
accepts, and outputs a ‘0’ otherwise. The i** input to the circuit b* is M;(z). The machine M “accepts” if
and only if the output of b* is a ‘1.

Although the RP--acceptors used to define a gi[RP]-acceptor all have one-sided error, the gx[RP]-
acceptor generally has two-sided error. Nevertheless, a gi[RP]-acceptor has a very nice structure and its
two-sided error probability is strictly determined by the one-sided error probabilities of its component RP
--acceptors.

Proposition 4.2. Let the set X be any set in RP[k]. Then there are RP--acceptors My, ..., My, each with
one-sided error probability of 1 — (1/c) such that the gy[RP]-acceptor, M = (b* M,..., M), recognizes
X with a two-sided error probability of 1 — (1/c).

Proof: We give the proof for k even; the case when k is odd can be proved similarly.
First recall the definition of Hausdorff’s Boolean function gj,.
g}c(xl, v ,:L'k) = gk(:cl, .. .,Slfk) /\ T — Tj+1
1<j<k

where
gk, xk) = (CTL Am2) V...V (221 ATy)

when k is even.

Since RP is closed under union and intersection, it follows from Hausdorff’s result ([Ha 78]) (and from
Corollary 3.21) that g;[RP] = gi[RP]. Because of the special form of g;, we can assume without loss of
generality that the sets X71,..., X} form a subset chain: X; C X5 C ... C Xj. Therefore,

z€X <= =z € exactly one of the sets (Xa; — X2;-1).

22

Hence
Prob [M makes an error, given € X] = Prob[b*(M; (z),..., Mi(z)) = 0, given z € X],
which is at most
max; Prob[b*(M;(z),...,My(z)) = 0, given z € (Xa; — X2i_1)].

To analyze the above quantity we assume that z is in (Xa; — X9;-1), for some i < k/2. Then for all
J <1,z & Xo; and since the M»;’s are RP-acceptors they do not make errors on the YQj’s. Therefore

V] <1 PI‘Ob[(—'MQj_l (.’L‘) A MQJ(.’E)) is true, given z € (Xzz — XZz'—l)] = 0.

Hence the event: [b¥(M;(2),..., Mi(z)) = 0, given z € (Xa; — X2;—1)] only occurs when for all j > 2i, M;
correctly accepts z and My; wrongly rejects . Thus

Prob[bF (M (x),..., Mg(z)) =0, given z € (Xo; — Xo;_1)] =

Probl A\ (M;(z) =1) A (Mai(z) =0), given z € (X2 — X2i_1)]. (%)
2i<j<k
Since Prob[A,; ;< (M;(z) = 1)] is at most (1/¢)* 2, and Prob[(Ma;(x) = 0)] is at most (1 — (1/c)), the
probability of (x) is at most
(1/e)* 7+ (1 = (1/c)).

It is easy to see that the above error probability is maximized and equals 1 — (1/c), when i = k/2, i.e. when
z € (X — Xj—1), and the first conjunct in (%), Ay ;<) (M;(z) = 1), disappears.

Moreover, by observing that 2 ¢ X <= =z is in exactly one of the sets: X;, X, and (Xoiy1 — Xo;),
for 1 <i < (k/2) — 1, the above argument extends easily to show that

Prob[M makes an error, given z ¢ X| = 1—1/c.

Thus M has a two-sided error probability of 1 — 1/c. g

Note that (x) shows that the two-sided error probability of a gj,[RP]-acceptor for a set in RP[k] is strictly
determined by the independent one-sided error probabilities of a fixed, finite number of RP-acceptors: a
property that general BPP-acceptors can not be expected to have.

Next, we give a characterization of RP[k] in terms of probabilistic predicates. The polynomially bounded
probabilistic quantifier, “IT,” which denotes “there exists at least a fixed constant fraction of,” together with
the regular polynomially-bounded quantifier “¥” were used by Zachos in [Za 86] to characterize BPP and
RP-predicates. For instance, a set X is in RP if and only if there exists a polynomially computable predicate
P such that

r€X < TtyP(z,y),

and
¢ X < VyP(z,y).

Abbreviating, we can characterize sets in RP as “I*y P(z,y) / Vy =P(z,y),” or just “I*/V.” Similarly, coRP
can be characterized as “V/3%,” and BPP as “3*/3*.” Moreover, by manipulating probabilistic quantifiers,
the following non-trivial characterization of BPP was obtained by Zachos and Heller ([ZaHe 84]).

Theorem 4.3. ([ZaHe 84]) Any set X in BPP can be characterized in each of the following ways.
(i) 3T /3%, that is,
r€X < Ity P(z,y),

r ¢ X < Ity -P(z,y);

23

(ii) 3tV/V3*, that is,
reX <= FyVz Q(z,y,2),

r € X < VYyItz =Q(z,y, 2);

(iii) V3*t/31V, that is
r€X < VyItz R(z,y,2),

r & X < ITyVz =R(z,y,2);
where P, (Q and R are polynomially computable predicates.

The following proposition is a straightforward extension Theorem 4.3 and defines predicates that characterize
RPIE].

Proposition 4.4. Let hj, be any one of the Boolean functions of Definition 2.0.2. We will assume with out
loss of generality that k is even, and we observe that with some renumbering we may assume that the literals
with indices (k/2) + 1 through k are those that appear negated in the expansion of of hj,. Then,

(i) A set, X, in RP[k] can be characterized as: 3TVh} /3tV-h}, that is

zeX — El+y15'"7yk/2Vy(k/2)+1a"'7yk h;g(Pl(xayl)a"'7Pk(mayk))7

T ¢X — El+y15"'ayk/ZVy(k/2)+15"'ayk _'h;g(Pl(xayl)a"'aPk(mayk));

for some Py,..., P, which are polynomially computable predicates.
(ii) the quantifiers that appear in RP[k]-predicates can be interchanged freely:

IVRY J3TY-R, = VAR, VTR, = TTVRL/VIT-R, = V3TRL /IR

Proof: The proof of (i) is immediate from the definition of general Boolean hierarchies. The proof of (ii)
follows by observing that in (i) the quantifiers have independent (non-intersecting) scopes. g

Notice that the characterization of BPP-predicates as 3tyVzP(z,y,2) / YyIt2-P(x,y,2) does not
allow such an interchange of quantifiers without changing the polynomially computable predicate P, while
such an interchange is possible in the case of RP[k]-predicates. This is because, in the case of general
BPP-predicates, the universally and probabilistically quantified variables occur in the same polynomially
computable predicate, i.e, the quantifiers have intersecting scopes, while RP[k]-predicates are completely
characterized by k independent RP-predicates, and hence their quantifiers have non-intersecting scopes.

Remarks on Self-reducibility.

Ko proved that if a disjunctive self-reducible set in NP is also in BPP, then it must be in RP, ([Ko 82]). We
shall see that this result can be extended to show that many sets which arise naturally in NP[k] can not be
in BPP without forcing the collapse of their associated natural “spans” into RP[k].

We begin by considering certain natural operators on sets in NP. For any set S in NP, we denote by
spang any collection of sets of NP which satisfies
(i) A € spang implies A <L S
(ii) A € spang & S disjunctively self — reducible implies A <E S & A disjunctively self — reducible.

As natural examples, we might take spang as the collection of sets <P S or we might take spang as the
collection of sets positive truth-table reducible to S. Note that in these latter two cases, if S is complete for
NP, then spang is just NP.

Now let hj, be any one of the Boolean functions of Definition 2.0.2xcept that for the Hausdorff hierarchy,
gy~ Let

Sk =daer {{z1,---,zk) : hy(es(m1), ..., cs(z))}-

Then S}, corresponds to a “complete” set for the k' level of the Boolean hierarchy built over spang. For
example if S = NP then S}, is just a standard complete set for NHE]. For these choices of hj,, one easily sees

24

that S <P Sj. Following our usual practices, for any polynomially computable function ¢ with ¢t € B we
denote the #** level of the extended Boolean hieararchy over spang by spang[t]. Obviously, spang[t] C NHt].

Proposition 4.5. Let S be in NP and let t be any polynomially computable function with t(z) < p(|z|) for
some polynomial p. Suppose that either S or Sy, is disjunctively self-reducible. Then, Sy € BPP or S € BPP
implies that spang[t] C RPJt].

Proof. Since S < Sy, we see that if Sy, is disjunctively self-reducible, so is S. By hypothesis on spans
this implies that all members of spans are disjunctively self-reducible. Furthermore, since S <P S, and
since every set in spans is <I. to S, we have that every set in spans is < to Sj. But from Zachos, ([Za
86]), membership in BPP is preserved under <% reductions. Thus every set in spang is in BPP. But by
[Ko 82] every disjunctively self-reducible set in BPP U NP is in RP. Thus spang C RP, and so trivially
spang[k] C RPIk].

5. BIBLIOGRAPHY.

[Ad 65] J. Addison, “The method of alternating chains,” Symp Theor Models, North-Holland, (1965), 1-16.

[AdHu 87] L. Adleman and M. A. Huang, “Recognizing primes in random polynomial time,” ACM Symp
Theory Computing, (1987), 462-469.

[BaMiSh 86] E. Bach, G. Miller and J. Shallit, “Sums of divisors, perfect numbers and factoring,” STAM
J Computing, 15, (1986), 1143-1154.

[BaGiSo 75] T. Baker, J. Gill and R. Solovay, “Relativizations of the P = NP question,” SIAM J Com-
puting, 4 (1975), 431-442.

[Be 87] R. Beigel, “Bounded queries to SAT and the Boolean hierarchy,” preprint, (1987).

[BHW 89] R. Beigel, L. Hemachandra and G. Wechsung, “On the power of probabilistic polynomial time:
PNPlogl € PP.” Structure in Complexity Conference, (1989), to appear.

[BeGi 81] C. Bennet and J. Gill, “Relative to a random oracle A, P4 # NP# # ¢coNP# with probability
one,” SIAM J Computing, 10 (1981), 96-113.

[BBJSY 89] A. Bertoni, D. Bruschi, D. Joseph, M. Sitharam and P. Young, “Generalized Boolean hierarchies
and Boolean hierarchies over RP,” Univ Wisconsin, CS Dept Tech Report, 809 (1989), 1-50.

[BJY 89] D. Bruschi, D. Joseph and P. Young, “Strong separations for the Boolean hierarchy over RP,”
Univ Wisconsin, CS Dept Tech Report, 847 (1989), 1-12.

[BuHa 88] S.Buss and L. Hay, “On truth-table reducibility to SAT and the difference hierarchy,” Structure
in Complexity Conference, (1988), 224-233.

[CGHHSWW 88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung, “The Boolean hiearchy I: structural properties,” SIAM J Comput, 6 (1988), 1232-1252.

[CGHHSWW 89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung, “The Boolean hiearchy II: applications,” SIAM J Comput, 7 (1989), 95-111.

[CaHe 86] J. Cai and L. Hemachandra, “The Boolean hierarchy: hardware over NP,” Structure in Complexity
Conference, (1986), 105-124.

[Er 68a] Y. Ershov, “A hierarchy of sets, 1,” Algebra and Logic, 7 (1968), 25-43.
[Er 68b] Y. Ershov, “A hierarchy of sets, I,” Algebra and Logic, 7 (1968), 15-47.
[Er 69] Y. Ershov, “A hierarchy of sets, III,” Algebra and Logic, 9 (1969), 20-31.

[GeGr 86] J. Geske and J. Grollmann, “Relativizations of unambiguous and random polynomial time
classes,” SIAM J Computing, 15 (1986), 511-519.

[GuWe 86] T. Gundermann and G. Wechsung, “Nondeterministic Turing machines with modified accep-
tance,” Proc MFCS, L N CS, 233 (1986), 396-404.

[Ha 78] F. Hausdorff, Set Theory, Chelsea, 3rd ed., 1978.

25

[HiZa 84] P. Hinman and S. Zachos, “Probabilistic machines, oracles and quantifiers,” Proc Recursion
Theory Week, L. N. Math 1141 (1984), 159-192.

[Ka 88] J. Kadin, “The polynomial time hierarchy collapses if the Boolean hierarchy collapses,” Structure
in Complexity Conference, (1988), 278-292.

[K6SchWa 87] J. Kdbler, U. Schoning and K. Wagner, “The difference and truth-table hierarchies for NP
;> RAIRO, 21 (1987), 419-435.

[Ko 82] K. Ko, “Some observations on probabilistic algorithms and NP-hard problems,” Inform Proc Letters,
14 (1982), 39-43.

[La 83] C. Lautemann, “BPP and the polynomial hierarchy,” Inform Proc Letters, 17 (1983), 215-217.

[Pu 65] H. Putnam, “Trial and error predicates and a solution to a problem of Mostow-ski,” J Sym Logic,
30 (1965), 49-57.

[Ra 80] M. Rabin, “Probabilistic tests for primality,” J Number Theory, 12 (1980), 128-138.

[RaSh 88] M. Rabin and J. Shallit, “Randomized algorithms in number theory,” To appear Comm Pure
Appl Math.

[Ra 82] C. Rackoff, “Relativized questions involving probabilistic algorithms,” JACM, 29 (1982), 261-268.

[Sch 80] J. Schwartz, “Fast probabilistic algorithms for the verification of polynomial identities,” JACM,
27 (1980), 701-717.

[Si 83] M. Sipser, “A complexity theoretic approach to randomness,” Proc Symp Theory Comput, (1983),
330-335.

[SoSt 77] R. Solovay and V. Strassen, “A fast Monte-Carlo test for primality,” SIAM J Comput 6 (1977),
84-85; [Erratum: 7 (1978), 118].

[Wa 86] K. Wagner, “More complicated questions about maxima and minima, and some closure properties
of NP,” ICALP, L N Comp Sc, 226 (1986), 434-443.

[Wa 88] K. Wagner, “Bounded query computations,” Structure in Complezity Conference, (1988), 260-277.

[WeWa 85] G. Wechsung and K. Wagner, “On the Boolean closure of NP,” Proc Conf Fundament Comput
Theory, L N Comp Sc, 199 (1985), 485-493.

[ZaHe 84] S. Zachos and H. Heller, “A decisive characterization of BPP,” Information and Control, 69
(1986), 125-135.

[Za 86] S. Zachos, “Probabilistic quantifiers, adversaries and complexity classes: an overview,” Structure in
Complexity Conference, (1986), 383-400.

26

