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We study noncooperative games whose players are selfish, distributed users of a net-
work and the game’s broad objective is to optimize Quality of Service (QoS) provision.
Our classes of games are based on realistic microeconomic market models of QoS provision
[21] and have two competing characteristics - stability and optimality. Stability refers to
whether the game reaches a Nash equilibrium. Optimality is a measure of how close a
Nash equilibrium is to optimizing a given objective function defined on game configura-
tion. The overall goal is to determine a minimal set of static game rules based on pricing
that result in stable and efficient QoS provision. We give a new and general technique to
establish stability and demonstrate a close trade-off between stability and optimality for
our game classes. We also state several open problems and directions together with initial
observations and conjectures.

1. INTRODUCTION

QoS provision and network resource allocation are problems relevant to Internet
usage. One approach by the networking [1, 7, 6, 3, 26, 25, 20] research commu-
nity over the past several years is to use a microeconomic model: treat the net-
work as a market and its users and providers as players of a noncooperative game
[7, 6, 21, 10]. A number of related, fundamental issues have been isolated — in algo-
rithmic mechanism design, computational aspects of game theory, and complexity
of distributed computing and communication — that are of interest to theoreticians
[18, 15, 16, 24, 2] and potentially have other applications as well.

The overall goal of noncooperative game theoretic modeling is to design a game
that permits the users and providers of a network (or their agents) to behave like
selfish and distributed players [7, 26, 17], realistically and fairly, with minimal
intervention by any external network manager. On the other hand, despite this
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market anarchy, at natural equilibrium game configurations, this game should result
in “desirable” overall QoS provision and resource allocation or assignment.

To a theoretician, one valid view of noncooperative game theoretic approaches
and algorithmic mechanism design approaches to network problems is that they
are simply paradigms for designing efficient algorithms [2, 16, 24] for distributed
optimization (or approximation) on a network. Within this view, the game, i.e,
the feasible game configurations, the players, their wtility and reward or pricing
functions, their selfish moves or dominant strategies are all free to be defined in
any computationally meaningful manner.

In this paper however, we adopt the network modeler’s [7, 26, 17] point of

view that these definitions should - in addition - correspond to a meaningful,

realistic and fair market architecture for the users and providers of network
resources.

One difficult issue is a precise definition of a “desirable” game configuration, which
takes many forms. One purely market based point of view is that “a desirable
outcome is simply any natural outcome of a fair and selfish game — further inter-
ference is undesirable.” Once constraints are imposed on the rules of the game
(fairness, personal freedom, and efficiency of individual moves) thereafter any equi-
librium that this game naturally reaches should be accepted as desirable. The
common type of equilibria studied in this context are the so-called Nash equilibria,
defined as configurations where none of the players individually has any (selfish)
reason to make a move. In a mechanism design framework, Nash equilibria often
automatically correspond to a so-called “social choice” function [16] that aggre-
gates (privately known) preferences of many people into a consistent social choice
configuration. Sometimes “desirable” is defined as configurations that optimize a
communal welfare function, optionally subject to constraints based on equitable
distribution, collective efficiency etc. [4, 9]; or as configurations that satisfy a pre-
scribed set of constraints arising from measures of fairness, freedom etc; or as a
combination of the two: configurations that optimize a well-defined function, sub-
ject to a set of constraints. In these cases, the game design problem is closely
related to mechanism design optimization problems: I.e, to obtain a social choice
function that in addition maps to desirable configurations [5]. In the game context,
how to guide a selfish game towards desirable configurations, i.e, to design (realis-
tic, fair, typically pricing based [16] incentive or reward) functions that alter the
players’ personal utility functions in such a way that their purely selfish behavior
according to the altered utilities results in (Nash) equilibria that have the desirable
properties.

In this paper, we consider a simple (and commonly used [7, 26]) communal

welfare function defined simply as the sum of the individual player’s utilities

(volume-adjusted and minus prices); we then design pricing incentive func-

tions that result in Nash equilibria that (approximately) optimize communal

welfare.
Many interesting problems lend themselves to a static game approach, i.e, one
defines the game by specifying the set of feasible game configurations, individual
player utility functions, pricing incentive functions and selfish moves or strategies,
and thereafter simply studies the relevant properties of Nash equilibria. Other
computational problems arise from imposing dynamic rules on (a discretized version
of the) game such as the order or frequency of player moves. This translates to
interpreting the game configurations and selfish moves as the vertices and edges of
a finite game configuration graph, studying the lengths of particular paths in this



graph, which represent game plays, or interpreting the graph as a Markov chain with
probabilities attached to the edges or moves. In the latter randomized setting, one
problem is determining the stationary probability distribution on (necessarily Nash
or terminal cycle) configurations, given a natural initial distribution, and thereby
determine properties of Nash configurations that hold with high probability. In
both the randomized and deterministic settings, a complexity issue of interest is
the time taken for convergence of game plays to Nash equilibria, terminal cycles,
or to a stationary distribution.

Our approach in this paper is primarily static, although we touch upon

simple (deterministic) dynamic aspects.

Remark 1. Further interesting issues in network resource allocation and QoS
provision games - which we do not emphasize in this paper — are: game sensitivity
to a small changes in total resources, disclosure of information by players and game
outcome, computational complexity of the player utility functions, and the pricing
function, etc. These and other issues have been listed in a comprehensive DIMACS
talk [27].

One issue that is however usually ignored in the literature is stability: Does the
game have stable configurations, i.e, Nash equilibria at all? Or are there only
terminal cycles in the game configuration graph. i.e, a set of at least two configu-
rations and a cyclic sequence of moves between them that the players are trapped
into traversing indefinitely if they always choose their selfishly optimal move. It is
usually assumed [7, 6, 17] that Nash equilibria always exist, and that there is a path
from every game configuration to a Nash equilibrium (which ensures convergence).
One rationale for this assumption relies on a version of Brouwer’s fixed point the-
orem called Kakutani’s theorem which states that if the player’s selfish moves are
based on maximizing utility functions that are quasiconcave, it follows that a Nash
equilibrium — which is a type of fixed point — always exists.

This assumption was challenged by [21], where it was shown that for a natural
class of games their realistic utility functions — based on a commonly used network
model — are not quasiconcave and result in natural QoS provision games that may
not have Nash equilibria.

In this paper, we show that the stability question for practically realistic

classes of QoS network games of [21] gives rise to potentially fundamental

new problems and techniques. Our main contributions here are described in
the following section.

Remark 2. We do not practically justify our base classes of QoS network games,
relate them to other commonly used classes of network games, nor provide the fun-
damental reason why our games cannot be assumed to have guaranteed stability.
All of these issues were discussed extensively in [21] and have been generally ac-
cepted and cited [22, 13, 14, 23, 11, 12, §].

2. DESCRIPTION OF RESULTS

1. In Theorem 1 we give a simple but general technique to establish the stability
of game classes and to establish properties of the game configuration graph such as
the existence of cycles and the existence of paths from an arbitrary configuration
to a Nash configuration. In other theorems, we apply this technique to establish
the stability of various realistic classes of QoS provision games based on [21].



We also use this theorem to classify all network games based on their stability.
Later, this classification is illustrated by concrete examples.

2. For these classes of games, we prove a series of results that demonstrate a close
tradeoff between stability and optimality. In classes of games that are stable, i.e,
where Nash equilibria are guaranteed to exist, they could be far from optimizing the
communal welfare function. However, when we systematically alter such a game
class to ensure that Nash equilibria are a reasonable approximation of the communal
welfare optimum, then the games in the altered class are no longer guaranteed to
be stable, i.e, they may not have Nash equilibria at all. In particular, we show the
following;:

(i) Theorem 2, and Observation 1 show that a realistic class Q of QoS provision
games from [21] (that is formally defined later and does not use pricing functions to
alter user utilities) has guaranteed stability, but Nash equilibria may be arbitrarily
far from optimizing communal welfare.

(ii) Observations 2, 3 and Theorem 5 show that on expanding Q to a class of
games PQ (and its natural extension SPQ) by adding a single realistic type of
pricing function to all of the individual player utilities, the new class of games is no
longer guaranteed to have Nash equilibria. We additionally give examples of cases
when Nash equilibria coexist with games cycles. However, when Nash equilibria
do exist for games in class P Q, these equilibria achieve optimal communal welfare,
under certain conditions C' on the parameters of the game. When the conditions C'
do not hold, arbitrarily suboptimal counterexamples exist.

(iii) These conditions C have both a practical and theoretical justification. The-
orem 3 demonstrates the latter: optimization of communal welfare - over all feasible
network (QoS provision) configurations - is a computational problem independent
of any game-theoretic context. This optimization problem, which we call CW is
NP-complete (can be seen as a general version of SUBSET SUM) and the set C'
arises as a natural set of conditions on the input parameters for which a greedy
approach gives an optimal solution.

The greedy approach however is traditionally algorithmic, i.e, it dictates a strict
sequence or order of steps that is crucial for arriving at the solution to CW. One
standard interpretation of our type of result is that our games provide a more self-
organizing, less externally dictated method that results in solutions to CW, under
the same conditions C. In other words, simply designing the static rules of PQ
games appropriately, any terminating sequence of valid game moves - no matter
what their order - in fact terminates in a solution to the optimization problem
CW. le, just the static property of being a Nash equilibrium configuration of a
PQ game makes it a solution to the optimization problem CW. This could also be
viewed as a type of Church-Rosser property.

(iv) Theorem 6 and associated Observation 4 show that on restricting PQ to a
class HPQ of games by placing constraints on player moves that hurt other players,
we guarantee stability again at the cost of deteriorated communal welfare at Nash
configurations.

(v) Theorems 7 and 8 show that by modifying PQ (which forces the use of a
single pricing function), to a class DPQ of games that use several carefully ordered
price functions simultaneously, we guarantee both stability and optimal communal
welfare at Nash configurations, under the conditions C.

3. For all of these game classes Theorem 9 introduces simple dynamic rules that
impose a priority order in which the players take turns for moves: these guarantee



fast convergence of game-plays to the Nash configurations. Particularly for the
classes PQ and DPQ under the conditions C, these simple dynamic rules give an
equally efficient but nevertheless less dictated alternative to greedy algorithms for
communal welfare optimization.

4. Finally, we state several open problems, conjectures and directions for extending
our results and motivate them by initial observations.

Organization

In Section 3 we formally define our base classes of QoS Provision network games
and the essential terminology appearing in italics in the Introduction. In Section
4, we demonstrate a technique for proving existence of Nash equilibria. In Section
5, we prove the main results described above. In Section 6, we state a rule that
allows for a rapid convergence to Nash equilibria. In the final Section 7, we discuss
open problems, conjectures, interesting directions and initial results.

3. DEFINITIONS

A game (instance) G in the base class of QoS provision network games is specified
by the game parameters G = (n,m € N,{\; € Rt : 1 < i < n},{b;; € R" :
1<i<ml<j<m}h{pj:R" - R1<j<m}). The best way to define
G is by identifying it with its finite game configuration graph (formally defined
below) which consists of a set of feasible game configurations (vertices) and the
valid or selfish game moves (oriented edges). The game G is played by n users or
players each wanting to send a traffic of A; units through one of m network service
classes and (for convenience of analysis) an overflow or Dummy Class with index
0, referred to as DC. Each player ¢ additionally has a volume threshold b; ; (to be
described below) for each class j. A price function p;() for each service class is a
nonincreasing function that maps the total (traffic) volume in the class to a unit
price. (Unit price typically decreases with increasing congestion or total volume in
any service class). The price for using DC is 0. A feasible configuration A of G is
fully specified by an allocation Jy : {1,...,n} = {1,...,m} which describes which
service class Jj (i) that the user or player i has decided to place their chunk A; of
traffic. This allocation Jx results in a total traffic volume qa,; = 351 <i<nniy (i)=j i
in each class 1 < j < m at the game configuration A. The set of feasible game
configurations F' form the vertez set of the game configuration graph Q.

Individual wutility function U;(A) is a type of step function based on 4’s volume
threshold being met at the configuration A, and on the unit price incurred by the
player 4 in its class j = Jp (7). U;(A) is:

-0 if j = 0 (user 7 is in DC)

-0 if b; ; < ga,; (volume threshold exceeded)

-Equal to X\;(1 — p;qa,;) otherwise.

It is assumed that the price functions are always appropriately normalized so that
this quantity is always strictly positive for all players i and their classes Ja (i) at
any configuration A. A typical utility function is shown on Figure 1. We say that
user 4 is satisfied at configuration A if U;(A) # 0, and not satisfied otherwise. We
define a function Sata (i) = 1 if Ua (i) # 0, otherwise Sata (i) = 0.

A selfish move by user i at a configuration A4 is a reallocation of i’s volume A; from
a departure class j; (i-e Ja, (¢) = j1), to a a destination class j» resulting in a config-
uration Ay (i-e, Ja, (1) = j2) that increases utility of this user, i.e, U;(A1) < U;(A2).



Price Utility

Volume b' Volume

FIG. 1 Utility as a function of volume, volume threshold and price

Each selfish move is an ordered pair of feasible game configurations (for example
(A1,A2) € F x F), and represents an oriented edge of the game configuration graph
Q. A game play for G is a sequence of valid selfish moves in G,

ie (A1,A2), (A2, Az), ..., (Ak—1,Ax), or a path in the game configuration graph Q.

This concludes the static description of our base class of games.

A Nash Equilibrium or NE of a game G is a configuration A such that there is no
selfish move possible for any user i. Nash equilibria are exactly sink vertices of
a game configuration graph 2 that have no outgoing edges toward other vertices.
A game is resource plentiful if there is a configuration A such that all users are
satisfied. For our classes of games, the communal welfare function for configuration
A is defined as ¥;Sata (i) A;. The feasible game configuration that has highest value
of communal welfare function is called the System Optimum or SO.

Dynamic augmentations of the games G (that we consider) contain the parameters
of G and respect the static definition of G given above, but in addition they also
include a fixed linear ordering of players which translates to a partial ordering of all
the edges (selfish moves) emanating from each vertex (game configuration) in G’s
configuration graph. (All selfish moves corresponding to the same player are given
the same priority). A valid game play in the dynamic setting should also respect
the dynamic rules.

For reasons motivated in the Introduction and detailed in Section 5 we alter
the base class of QoS games by adding or removing appropriate pricing function(s)
to the individual user utilities. More specifically, @ denotes the class of games
where Vj, z, pj(z) = 0 (or any fixed positive constant). The class DPQ of games
has strictly decreasing price functions: Vj, pj(z1) < p;j(z2) <= z1 > x2; and in
addition, they are strictly differentiated between classes j, i.e., ¥j, p;j(00) > p;+1(0).
The class PQ of games satisfies both: Vj, p;(z1) < pj(x2) <= z1 > 22, and in
addition, the price functions are the same for all classes, i.e., Vi, p1(z) = p2(x) =
... = pm(x). The class SPQ is a modification of P Q that allows price function to be
constant on predefined intervals around points corresponding to volume thresholds.
Finally HPQ is the subclass of PQ where selfish moves are restricted to those that
do not exceed volume threshold of another player, i.e, do not cause any other player
to become dissatisfied.

Here we will give a pictorial example, Figure 2, of some notions introduced in this
section. A game configuration graph Q and configurations A of a particular game
G are shown. Columns represent classes, rectangles represent users, the size of a



rectangle corresponds to volume of a user, volume thresholds of users are indicated
on the right. In this example the game G in class PQ has 2 classes, 2 users A and
B that have equal volumes and the volume threshold of A is greater than that of B.
Game configuration graph 2 has 4 vertices. This game G has no Nash equilibrium.
We will use this game in Observation 2.

O _ b — b —b —h
-0 — bg — bg — b %
| v E H
A - - R
Configuration ; S oc L bC 12 DC 1 2
graph
Configuration] ~ Configuration |1 Configuration |11 Configuration IV

FIG. 2 Game configuration graph and individual configurations

Remark 3. Throughout this paper we assume wlog that every player ¢ has the
same volume threshold b; = b;1 = b;2 = ...b;;, in every class j = 1...m. We
also assume that players are sorted in the increasing order of their thresholds, i.e
by < by < ... < b, (The former assumption could be easily generalized for all
results in this paper, the latter assumption is realistic and commonly made [21]).

Remark 4. In proofs when describing a game configuration A, we will specify
values of game parameters n and m, provide a list of users in the form User(Volume,
Volume Threshold) (for example A(5,12) means that User A has volume 5 and
volume threshold 12), as well as specify where these users are, i.e {Ja(¢)}.

4. GENERAL TECHNIQUE FOR ESTABLISHING STABILITY OF
NETWORK GAMES

First we give a simple, general result that however yields a clean technique for
establishing stability in game configuration graphs.

THEOREM 1. The following statements are equivalent:
(1) There is a function defined on configuration graph Q that increases after every
selfish move (a so-called stability function).
(i) In configuration graph Q there is no oriented cycle C' of selfish moves
A1, Ao, ... Ay (i-e such that there is an oriented edge from Ay to As, from As to
As ..., from Ay to Aq).
(iii) Every mazimal oriented (simple) path starting from any initial vertex of
terminates at a vertex corresponding to a Nash configuration.

Proof.

(iiif) = (i) Let f(A) be equal to a 2" —d, where d is the maximum oriented distance
(number of edges in the longest oriented path) from A to a Nash configuration.
Because of (iii), f is well-defined. Let e = (A1, A2) be an oriented edge of Q, then



f(A2) — (A1) > 1 since for every oriented path P from A, to a Nash configuration
A there is a longer oriented path ((A1,A2), P) from Ay to A. Thus f is a stability
function.

(i) = (ii) Suppose that there is an oriented cycle C. Then f will continually
increase over C, which contradicts the fact that C is a cycle and f is a function.

(ii) = (iii) Let P be a maximal, simple, oriented path. Due to finiteness, maxi-
mality, and the fact that there are no cycles, the P must terminate at a vertex with
no outgoing edges, i.e, at a Nash configuration. 1

Remark 5. Formally, a cycle mentioned in the Theorem 1 can be defined as a
sequence of selfish moves that begins and ends at the same configuration A. This
cycle explicitly specifies which player makes the first move, which makes the second
move etc. There are two different types of cycles. One is where all possible sequences
of selfish moves originating at any cycle configuration A will revisit A eventually.
Such cycles are called terminal cycles. Another type of cycles is where there is
some configuration A and some sequence of selfish moves that would never visit A
again. Such cycles are called nonterminal. Note that according to the Theorem 1
a game cannot lack both Nash equilibria and selfish cycles. In Section 5.2, we will
give examples of terminal and nonterminal cycles, as well as of all 3 other possible
Nash/cycle combinations: (1) games that have Nash equilibria and do not have any
selfish cycles, (2) games that have both Nash equilibria and selfish cycles and (3)
games that have no Nash equilibria and have selfish cycles.

5. STABILITY VS OPTIMALITY
5.1. Class Q of games with no pricing

First we consider the class of games Q where there is no pricing, i.e p;(z) = 0, for
all classes j and their volumes x, and users are only motivated by their desire to
satisfy their volume thresholds.
A selfish move by user i in a game G € Q is a reallocation of 4’s volume from a
departure Class j; to destination Class j» # 0, provided that the volume threshold
of i was exceeded in Class j; prior to the move and it is not exceeded in Class jo
after the move.

A corollary of the following result is that all games in Q always have a Nash
equilibrium.

THEOREM 2. For a game in Q, any mazimal sequence of selfish moves starting
at an arbitrary initial feasible configuration will terminate at a Nash configuration.

Proof. We will give two independent proofs of this theorem, one by constructing
the stability function of item (i) of Theorem 1, second by proving nonexistence of
cycle of item (ii) of Theorem 1.

By construction of stability function: Suppose that players 1,...,n have thresholds
by < by < ... < by Recall that Sata(i) = 1, if in Configuration A, Player i is
satisfied; otherwise Sata (i) = 0. Define f(A) = Y, 2'Sata(i). Note that after
every selfish move, the function f() is increasing (since Sata (i) of a moving Player
i changes from 0 to 1 and if Saty(i') changes for any other i’, then i’ < 4, and
Sy 2" < 27). Therefore f() satisfies the criteria for being a stability function.

Proof of nonexistence of a cycle: Assume that such a cycle C exists. Let M be the
maximum value of b; over all active players i defined as those players whose moves



correspond to edges in C. Let k be the corresponding player, i.e. by = M. Suppose
that a move by Player k changes Configuration A; into Configuration As in C. By
definition of selfish move, Player & must be unsatisfied at A; and satisfied at As.
Therefore there must be a selfish move by some Player ¢ that makes k unsatisfied.
However by definition of k, b; < by, hence ¢t cannot make a move that will dissatisfy
k while satisfying ¢, contradiction. Thus such a cycle C' cannot exist. 1

Next we consider the complexity of finding a System Optimum configuration
A of a game G. This problem is in general NP-Complete. It can, however, be
solved greedily for two special subclasses of games defined by conditions we refer
to collectively as C.

THEOREM 3. 1. The problem of finding a System Optimum of a network game
is NP-complete.
2. A System Optimum of a network game when all players have the same volume
A can be found in time linear in the game parameters.
3. A System Optimum of a network game when all players have superincreasing
volumes X\; (i.e if by < ... < by, then \; > qu A, Vi and also b; > 2);,Vi) can be
found in time linear in the game parameters.

Proof.

1. By reduction from MAXIMUM SUBSET SUM problem (i.e given set S =
{s1,---,8n} and target ¢, find A C S such that ), , s; <t and this sum is max-
imum). Reduction to System Optimum of network game can be done as follows.
Suppose that players 1,...,n all have same threshold by = bs = ...b, = t, indi-
vidual volumes \; = s; and there is one non-DC class. Then System Optimum
configuration corresponds to subset A described above.

2. The greedy algorithm solves this problem (let b; < ... < by; place Player n
in Class 1, place Player n — 1 in Class 1 if b,_1 > 2\, otherwise place Player n — 1
in Class 2; place Player n — 2 in Class 1 if b,_» > 3\ etc.).

3. The greedy algorithm solves this problem, similarly to 2.

Remark 6. When we consider the subset of a class of games X that satisfies
conditions of item 2 (resp. 3) of Theorem 3 above we will denote this subclass of
games by Xg (resp. Xs).

We know that for games in Q, Nash equilibria always exist. The next result
states how far these Nash equilibria could be from System Optimum of their games.

OBSERVATION 1. For any A, there is a game G € Q with a Nash equilibrium

A whose communal welfare is O(OI;T) where OPT is the communal welfare of G’s

System Optimum, and X is one of G’s player volumes.

Proof. Consider a configuration that has two classes plus the dummy class DC,
users A1 (1,2)), A5(1,2X), B(A, A), A >> 2. Then there is a Nash equilibria A when
Aj isin Class 1, A, is in Class 2, B is in DC. The communal welfare of A is 2. On
the other hand, the System Optimum has A; and A, in Class 1, B in Class 2 and
the communal welfare of System Optimum is A + 2.

THEOREM 4. 1. Any Nash equilibrium of any game G € Qg, has communal
welfare of at least a half of that of G’s System Optimum.



2. Any Nash equilibrium of any game G € Qs, has communal welfare of at least
(1 —1/2™)OPT where m is the number of classes and OPT is communal welfare
of G’s System Optimum.

Proof. Case of games in class Qg: Let A be a Nash equilibrium when all players
have the same volume A. Consider the unsatisfied Player ¢ that has the largest vol-
ume threshold b;. (If there are no unsatisfied players then such a Nash equilibrium
is a System Optimum). Total traffic volume g; in every class j is strictly greater
than b; — A; hence communal welfare of A is greater than or equal to m(b; — A;)
but communal welfare of System Optimum cannot be more than 2(m(b; — A;)).

Case of games in class Qs: At Nash equilibria say the players n,...n —m are
satisfied. Due to conditions C, A\p + ... + Apem > (An + ... A1)(1 — 1/2™) and
communal welfare of System Optimum is at most A, +...A1. 1

Classes of games with pricing functions

As we have shown so far, games without pricing may result in Nash equilibria
that are arbitrarily far from System Optima. Now we will examine effects that
(nondegenerate) pricing has on existence and optimality of Nash equilibria.
Recall that a pricing function is a pricing per unit volume (or pricing for short)
function p;() : R — R. This is a nonincreasing function, i.e p;(z) > p;(y) & z <
y. As defined for games with no pricing, a selfish move by user i (in games with
pricing) is a reallocation of i’s volume from a departure class j; to destination class
Jj2 # 0, that increases utility of this user. The difference is that now utility of user
i depends both on satisfaction of volume threshold of ¢ and prices in j; and jo.
Our motivation for introducing pricing is to increase communal welfare of the
resulting Nash equilibrium. Consider for example Figure 3. It shows an original
Nash equilibrium in a game G without pricing and a new Nash equilibrium of a game
G’ that has a pricing function (H denotes highly demanding users, M moderately
demanding and L low demanding). In this case, the new NE clearly has greater
value of community welfare function (i.e volume of all rectangles in non-DC classes)
than the original Nash equilibrium. In the remainder of this section we will examine
various pricing schema and the effects they have on stability and optimality of the
corresponding network games.

-b -b
L L
~by ~by
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(@]
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FIG. 3 Nash equilibrium without pricing and one without

5.2. Class PQ of games with strictly decreasing pricing function

Here we examine the class of games P Q when there is only one pricing function p(x)
for all classes j and this pricing function is strictly decreasing i.e p(z) < p(y) &

10



x> y.
We first show that even under the conditions C, the existence of NE is not guar-
anteed.

OBSERVATION 2. There are games in PQg and in PQs that do not have Nash
equilibria.

Proof. Case of games in class PQg: Consider the game depicted in Figure 2.
This game is in the class PQg since all players have equal volumes. Consider
Configuration 1. Current utility of both players is positive. However Player A can
improve his utility by moving into Class 2, since price p(2)), when volumes (= \)
of A and B are combined, is lower than the price p(A) when A is alone, due to the
strictly decreasing nature of the pricing function p(). This move by Player A to
Class 2 results in a Configuration 2. Utility of Player B is now equal to 0, since
his volume threshold is exceeded. Player B can improve his utility by moving into
Class 1, Player A will follow him, and so on. This sequence of selfish moves will
never terminate. Since every configuration in this game has a selfish move leading
from it, this game has no Nash equilibrium.

Case of games in class PQg: Consider the game consisting of two classes, and
two users A(100,300) and B(10,30). User A will always want to move to the class
where B is, and B will always want to move away from A, thus creating a cycle. 1

The next result states however that when Nash equilibria do exist under conditions
C they optimize communal welfare.

THEOREM 5. If a game G in PQg or in PQs has a Nash equilibrium A, then
A is a System Optimum of G.

Proof. Case of games in class PQg: Consider a System Optimum A;. If Player
i is in DC then all the players k such that by < b; are also in DC (otherwise i could
have moved into the class where k is increasing communal welfare, contradiction).
Consider a Nash equilibria Ao. If Player 4 is in DC then all the players & such that
br < b; are also in DC (otherwise ¢ would move into the class where k is). Hence
any Nash equilibrium is a System Optimum.

Case of games in class PQs: We can transform any System Optimum into any
Nash equilibrium by means of either exchanging players between DC and non-DC
classes or between non-DC classes. Since all players have equal volumes the result-
ing Nash equilibria will have the same communal welfare as the original System
Optimum.

Class of games SPQ

So far we have shown that introduction of strictly decreasing price function tends
to cause instability by creating cycles and destroying Nash Equilibria. Intuitively
cycles are created by higher threshold players “chasing” lower threshold players, as
in Figure 4.

It was shown in Section 5.1 that if the price is a constant function then Nash
equilibrium always exists. Figure 4 seems to indicate that if price function were
constant in a small neighborhoods around volume thresholds and strictly decreas-
ing elsewhere, as shown in Figure 5, then Nash equilibrium would always exist.
Unfortunately, this is not the case, as results below indicate.

First we will formally define the pricing function shown in Figure 5. Let players
1,...,n have volume thresholds b; < by < ... < b, and volumes Aq,...,A,. Define
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FIG. 4 Game without Nash equilibrium

a stopping price function p(z) as a function that is flat on intervals (b; — A, b; +A), Vi,
where A = max; A;, and p(x) is strictly decreasing between these intervals. SPQ
denotes the class of games that have stopping price functions.

OBSERVATION 3. There is a game in SPQ where there is a cycle of selfish
moves.

Proof. Consider a game with 2 non-DC classes and 12 players:
Al(]-a 9)7 A2(17 9)3 A3(17 9)3 Bl(]-a 6); B2(17 6)3 B3(13 6)7 Cl(]-a 3)7 R Cﬁ(la 3) Initial
configuration A : players Cy4, C5 and Cg are in Class 2, all other players are in Class
1. First players By, B, and Bz move to Class 1, after that players C;, Cs, C3 move
to DC, then players A1, A3 and A3 move to Class 2 and finally players Cy, Ca, Cs
move from DC to Class 1. Current configuration is essentially isomorphic to A,
hence a cycle has occurred. 1

Remark 7. We mentioned in Section 4 that there are 3 different possibilities for
Nash/cycle existence. By now we have seen examples of all such possibilities. Any
game in class Q has Nash equilibria and has no cycles (terminal or nonterminal).
In Observation 2 we have seen an example of a game with a (terminal) cycle and
no Nash equilibria. In Observation 3 we gave an example of a game where there is
both a (nonterminal) cycle of selfish moves and a Nash equilibrium (all A and B
players in one class, three C players in another class, remaining C players in DC).

5.3. Class HPQ of games with nonhurting moves

So far we have shown that the introduction of pricing tends to cause instability
by creating cycles and destroying Nash Equilibria. Now we will impose natural
restrictions on types of selfish player moves allowed. We will show that the class of
games HP Q with such restrictions will be free of instabilities. We will also examine
optimality of games in HP Q.

A (selfish) nonhurting move by Player i is a reallocation of i’s volume from a depar-
ture Class j; to destination Class ja, changing the Configuration A; to Configura-
tion Ay such that U;(A;) < U;(As) and there is no player k such that Sata, (k) # 0

12
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and Sata,(k) = 0. In other words, player ¢ improves his utility without violating
volume thresholds of any other players.

A corollary of the following result is that all games in HPQ always have a Nash
equilibrium.

THEOREM 6. For any game G € HPQ any maximal sequence of selfish non-
hurting moves starting at an arbitrary feasible configuration A will terminate at a
Nash equilibrium.

Proof. We will give two proofs of this theorem, one by constructing a stability
function of item (i) of Theorem 1 and secondly proving nonexistence of cycle of
item (ii) of Theorem 1.

m
Construction of stability function: Let f(A) = > qJ? (DC contributes zero). Note
i=1
that whenever a selfish move by some Player ¢ changes Configuration A; into a
Configuration A, then f(A2) > f(A1). This is because when Player i moves from

class j1 to class ja the following holds

(g, = M) + (@i + X)* > ¢f, + 5,

provided g;, < gj, + A;; and when Player ¢ moves from DC to Class j2, it holds
that (g;, + Ai)* > ¢;,. Finally, no player ever moves to DC.

Nonexistence of cycle: Assume that such a cycle C' exists. Let M be the minimum
value of p(g;), where j is taken over all destination and departure classes j» and
j1 of active players i defined as those players whose moves correspond to edges in
C. Since M is the minimum, no active player will move away from the Class O
with price M. The price M of the Class O also will not be reduced by any active
players moving into O since the function p() is decreasing. Since active players
that are stuck at O will not be able to move out, there cannot be such a cycle C,
contradiction. Note that none of the players in DC can participate in such a cycle
C either since no selfish move ever causes a player to return to DC.

13



How far can a Nash equilibrium of a HPQ game be away from a System Optimum
of this game? The following theorem states that it can be arbitrarily far, even when
restricted by conditions C'.

OBSERVATION 4. For any n, M, there is a game G € HP Qg (resp. in HPQs)
that has o NE A such that communal welfare of A is O(2EL) (resp. O(25T))
where OPT is communal welfare of SO of G, n is number of players of G, and M
is the ratio of two of G’s player volumes.

Proof.

Case of games in class HPQg: Consider a game that has 1 class plus DC and
users A; (A, n)), A2(X\,n)),..., A,(A,n\),B(\,A). Then there is a Nash equilib-
rium A in which B is in Class 1 and all other users are in DC. The communal
welfare of A is A. On the other hand, a System Optimum has 4;...4,, in Class 1,
B in DC, communal welfare of System Optimum is n.

Case of games in class HPQgs: Consider a game that has 1 class plus DC, with
users A(M,M),B(1,2), M >> 1. Then there is a Nash equilibrium A when B is
in Class 1 and A is in DC, and communal welfare of A is 1. On the other hand,
a System Optimum has A in Class 1, B in DC, and communal welfare of System
Optimum is M. 1

5.4. Class of games DPQ with (different) separating price functions

So far we have considered classes of games when there was one price function
in effect for all classes. Examples of the price functions we have seen would either
not induce Nash equilibria or induce suboptimal Nash equilibria. However if we
were allowed to introduce special different price functions for different classes then
we can show that games in this class DPQ always terminate at a Nash equilibrium
and under conditions C, these Nash equilibria are also System Optimal.

DEFINITION 1. A set of strictly decreasing functions pi(),...,pm() are sepa-
rating price functions if py,(0) > pm(00) > pm—1(0) > pm—_1(c0) > pPpm—_2(0) >
Pm—2(00) > ... > p1(0) > p1(00). The class of games with such pricing functions
is denoted by DP Q. See Figure 6.

P3(X)

P

r

i
¢ P1(x)

e

Volume

FIG. 6 Separating price functions

A corollary of the following result is that all games in DPQ always have a Nash
equilibrium.
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THEOREM 7. For any game G € DPQ any mazximal sequence of selfish moves
starting at an arbitrary initial feasible configuration will terminate at a Nash equi-
librium.

Proof.

We will give two proofs of this theorem, one by constructing stability function
of item (i) of Theorem 1, second by proving nonexistence of cycle of item (ii) of
Theorem 1.

Construction of stability function: Let f(A) = > (m — Ja (1))2%" where the sum-

K

mation is taken over all satisfied players (i.e those not in DC and whose volume
thresholds are not exceeded). Due to the structure of pricing functions, all selfish
moves are either by currently satisfied players A to a lower indexed class ji, or by
currently unsatisfied players B to a different class jo. In the former case, a gain in
f() caused by decrease in Ja (A) is greater than the loss in f() caused by all players
in j; who become unsatisfied (their indexes are less than that of A). Therefore the
function f() increases. Similarly, in the later case, a gain in f() caused by adding
a summation term for B is greater than the loss in f() caused by all players in j;
who become unsatisfied. Thus the function f() increases after every selfish step.

Nonexistence of a cycle: Suppose that there is a cycle of selfish moves C. Let i be
the highest threshold player that participates in this cycle. Let j be the smallest
numbered class that ¢ moves into during C'. Then since price at Class j is less than
price at any other class (regardless of total volume values) Player ¢ will never leave
class j, thus cycle C' cannot exist, contradiction.

The next result states that in general, Nash Equilibria of games in class DPQ can
be arbitrarily far from corresponding System Optimum.

OBSERVATION 5. For any A, there is a game G € DPQ with a Nash equilibrium
A whose communal welfare is O(OI;T), where OPT is communal welfare of G’s

System Optimum, and X is one of G’s player volumes.

Proof.
Similar to the proof of Observation 1

Under conditions C, however, Nash equilibria have the largest possible value of
communal welfare.

THEOREM 8. For any game in DPQg or DPQs every Nash equilibrium is a
System Optimum.

Proof.
Similar to the proof of Theorem 5. 1

6. DYNAMICS

Here we briefly examine speed of convergence to the Nash configurations for various
game classes. First we introduce simple rules that impose a priority order in which
users move.

A dynamic game rule that orders user moves at any configuration proportionally
to user’s thresholds (i.e if by < bs < ... < b, then user n has a right to move before
everybody else does, then n — 1,n — 2 etc) is called increasing-threshold-order rule.
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THEOREM 9. For any game in Q, DPQ (resp in DPQs, PQs, Qs) and for
any nitial configuration A, every maximal increasing-threshold-order sequence of
selfish moves will terminate at a Nash equilibrium after O(n?) steps (resp after
O(n) steps), where n is the number of players. (Note this results holds for games
in PQs provided these games actually have Nash equilibria).

Proof.

Case of games in class Q: Note that once Player n has moved, it will not move
again. Suppose by induction that there were O((n — 1)?) moves before and after
Player n has moved, hence total time is O(n?).

Cases of games in classes Qgs, PQs and DPQs: Note that Player n can always
move first (to Class 1 in case of DPQs and Qg, to class where Player n — 1 resides
in case of PQs). Player n will not move after that (unless in case of PQg volume
threshold of Player n — 1 was exceeded, so Player n — 1 would move to another
class and Player n will follow him, creating a cycle. But we are only considering
cases where Nash Equilibrium exists). Therefore every player will move at most a
constant number of times, hence the total time is O(n).

Case of games in class DPQ: Note that Player n can move at most n times.
After Player n has stopped moving, Player n — 1 can move at most n times etc.
Therefore the total time is O(n?).

7. DIRECTIONS, CONJECTURES, INITIAL RESULTS

7.1. Advantages of pricing

We now argue that games with pricing in general have greater communal welfare
at Nash equilibria than similar games without pricing. Unfortunately, counterex-
amples such as Observation 2 and 4 indicate the existence of unstable games and
games with arbitrarily suboptimal communal welfare at Nash equilibria for some
game classes. Even Theorem 8 for (approximate) optimal communal welfare at Nash
equilibria of certain game classes relies on the conditions C; and counterexamples
such as Observation 5 indicate that these conditions are necessary. In addition, we
have the following Observation 6 that apparently questions the efficacy of using of
pricing to increase communal welfare at Nash equilibria.

In this section, we first describe Observation 6 and then conjecture that when
averaged over all games in certain classes, pricing tends to improve communal
welfare at Nash equilibria. In order to compare games with and without pricing,
we need to introduce appropriate definitions.

Let G1 be a game in class Q of games without pricing. Let A; be a Nash
equilibrium of G;. Let G5 be a game in PQ that has the same game parameters as
G1 plus a pricing function p(). Let As be a configuration in G that corresponds to
Ay in Gy (i-e configurations A; and A, have identical assignment of users to classes).
Note that Ay may or may not be a Nash equilibrium in G5. A Nash equilibrium
A3 in game G5 is said to be induced by Nash equilibrium A; and pricing function
p() if there is a game play in G5 that leads from As to Az. Similarly game Gs is
said to be induced by G1 and p().

OBSERVATION 6. For any strictly decreasing price function p(), there is a Nash
equilibrium A1 of game Gy € Q such that a Nash equilibrium Az (of a game G2 €
PQ) induced by A1 and p() has strictly smaller communal welfare than A;.
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Proof. Consider a configuration that has two classes plus DC, and users
A1(4,9),A42(4,9),B(1,13),C(10,11), D(6,14). A NE A; without pricing has Users
Aj, Ay, and B in Class 1, User C in Class 2, User D in DC, and communal welfare
equal to 19. A NE induced by A; and any strictly decreasing price function p()
has User D in Class 1, Users B and C in Class 2, Users A; and As in DC, and
communal welfare = 17. See Figure 7. 1

- bp
-bp " EB
- bB 5 c
=ba1=baz =ba1= b4z
B
A2 c A2 C
D
Al Al
DC 1 2 DC 1 2

FIG. 7 Nash equilibria without and with pricing

One way to offset Observation 6 is by establishing an approximate upper bound
on the possible deterioration of communal welfare caused by the introduction of
pricing. We have the following weak conjecture and believe that significantly
stronger statements should be provable.

CONJECTURE 1. Let Ay be a Nash equilibrium of a game without pricing. Let
p() be any strictly decreasing cost function. Let A3 be a Nash equilibrium induced by
Ay and p() (assuming that As exists, which is not always guaranteed in PQ). Let
A = max; \;. Then communal welfare of A1 minus communal welfare of A3 < Zj z;
where T; = q; — L%J)\, and q; denotes the total volume in Class j in configuration
As.

Another way of offsetting Observation 6 is to use probabilistic analysis to com-
pare communal welfare of all Nash equilibria of the original game to communal
welfare of all Nash equilibria of the induced game. Furthermore such analysis
should be applied to entire classes of games (for example Q vs PQ) instead of
specific individual games.

Here we will introduce some straightforward probability notions dealing with
Markov chains, that could allow us to compare Nash equilibria in entire classes of
original and induced games.

The transition probability of a game configuration graph Q = (V, E) is an assignment
of weights W : E — R that has the following properties. Weight of an edge
w(A1,A2) is equal to the probability of a move from configuration Ay to As. Thus
weights of all the edges leaving any node should add up to one. Nodes corresponding
to Nash configurations have one outgoing looping edge of weight one. The transition
probability is uniform if weight of an edge w(A;, As) is a reciprocal of the number
of edges leaving A;. The probability distribution P over the configuration graph
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Q = (V,E) is a probability assignment P : V' — R* such that ) ., P(v) = 1.
The uniform probability distribution assigns 1/|V| to every vertex v. A sequence
of probability distributions Py, Py,...,P;,... is induced by an initial probability
distribution Py and transition probability W if for all configurations A

Pi(A) = Z Po(Ar))w(Ar1y; Ar2)) - - - w(Ar(im1y, Argiy)

where 7 is a game play to A of length ¢ in 0, i.e A;(;) represents the jth vertex in

this path and A,;) = A. Wlog, we assume that initial probability distribution and

transition probabilities are uniform. The limit of induced probability distributions

lim; o, P;(A) is called the stationary distribution and is denoted Py, (A). If this

limit does not exist then Py (A) = 0. The stationary communal welfare Eq (W) of

a game G is defined as Y, P (A)W(A) where W(A) is the communal welfare of
AeG

a configuration A. The expected value of communal welfare E4(W) for a class of
games A is a

E (W)= Z Prob(G) * Eq(W)
GeA

where Prob(G) is the probability attached to a particular game G in A (we generally
assume that G is picked uniformly from the space of game parameters m,n, b;, A;).

The definitions above would allow us to compare various classes of network
games.

CONJECTURE 2. E(DPQ) > E(SPQ) > E(HPQ) > E(Q).

Move-correlated welfare functions

A different way of comparing various classes of games to class Q is by using
move-correlated welfare functions defined on game configurations. Intuitively a
function g¢() is an increasing (resp. decreasing) move-correlated welfare function
(for games G in class A) if g() increases (resp. decreases) on average after a selfish
move in G and g() is positively correlated with communal welfare. The existence
of such a function for a class of games would indicate that the Nash equilibria of
such games tend to have high communal welfare values.

One possible candidate for such a decreasing move-correlated welfare function for
games in class PQ is the volume function defined as

v )= Y (bi-q)

Jj o i:Ja(d)=j

Intuitively this function assigns small values to those configurations where most
of the players in any given class j have thresholds close to the total volume in
j. Hence at Nash equilibria the volume function is (inversely) correlated with
communal welfare.

The volume function decreases after every selfish move for games in HPQg,
since users always move from classes with smaller total volumes to the larger ones.
Unfortunately for games in PQ, this is no longer the case, since users might move
to the smaller class if their volume threshold was exceeded in a larger class (which
was explicitly disallowed in HPQ¢). However we conjecture that it is possible to
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amortize such moves from larger to smaller classes by the moves that caused those
thresholds to be exceeded in the first place. Since there are selfish moves that do
not exceed any player’s volume threshold and since the function v() would decrease
for such moves, the overall expected change in v() would be negative, motivating
the following claim.

CONJECTURE 3. The volume function is a decreasing move-correlated welfare
function for games in class PQ.

Remark 8. The technique described above can be extended for studying inter-
esting functions other than communal welfare on Nash equilibria. For example we
conjecture that for games in PQ, the volume function is highly correlated with the
function that measures the number of occupied classes, i.e the number of classes
used by at least one user.

7.2. New ways of proving existence of Nash equilibria

Our stability function technique of Theorems 2, 6 etc. is only useful in estab-
lishing existence of Nash equilibria in the situations where no cycle is present in the
game configuration graph. As was shown in Section 5.2, there are game classes that
are generally not cycle-free. Hence we would like to extend the stability function
technique to be able to show Nash existence in games that may have Nash equilibria
coexisting with cycles. One way to do this is by using the concept of local stability
local stability functions.

Intuitively a function g() is a local stability function for a subgraph A of a game
configuration graph €2, if it increases after a selfish move within 4, i.e g(A1) < g(A2)
whenever A1,As € A and there is an oriented edge in A from A; to As. The
existence of a local stability function for a subgraph A (and a graph Q) would
imply existence of a Nash equilibrium in this subgraph A, provided that A is closed
under selfish moves, i.e any edge from any vertex in A points to another vertex in
A (and not in Q \ A).

One example of such a local stability function for games in class PQ is the
satisfied volume function defined as

so(A) =D (¢))” + a0

J

where ¢ is the total volume of all satisfied players in Class j, i.e.

q = Z i
i|Ja(i)=j& Sata ()70

Recall that go denotes total volume in DC. Consider a subgraph A that consists
of a Nash equilibrium A; and all configurations As,...,A, that have only one
outgoing edge each, and this edge points toward A;. It is easy to see, that on such
a subgraph A, the satisfied volume function increases after every selfish move in A
(due to the reasons similar to the ones used in the proof of Theorem 6).

Note that the subgraph A above is small and more significantly defined in terms
of Nash equilibrium A;, and hence A is useless for proving the general existence
of Nash equilibria. This presents a problem when analyzing a class of games using
local stability functions, since natural local stability functions may correspond to
unnatural subgraphs and vice versa.
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A different approach to proving existence of Nash equilibria would be to relax the
condition that forces stability functions to increase after every selfish move. If say
the average value of a function were shown to be increasing for any sequence of ¢
consecutive selfish moves, for some fixed ¢, then this would guarantee the existence
of Nash equilibria. By constructing such functions, it would be possible to identify
and completely classify subclasses of P Q that have both cycles of selfish moves and
Nash equilibria.

7.3. Provider participation

So far, we considered network users as the only players. These users move ac-
cording to their individual preferences and fixed price functions set by a benevolent
network manager. Now we would like to extend this model, so it would include
network providers as players as well. The role of network provider is to determine
the price functions that will be used by network users. During the network game a
move by a provider replaces current price function by a new price function. There
are two types of providers: selfish providers that try to choose price functions that
maximize the total amount paid by all network users and benevolent providers that
try to choose price functions that will result in a Nash equilibria that have high
value of communal welfare. In order to prevent selfish providers from charging in-
finite prices we define price thresholds (in addition to the old volume thresholds) ¢;
for players i. If the price in a class exceeds player 4’s price threshold, then player
i is not satisfied. We assume that b; < b; iff ¢; > t;, i.e users who demand better
quality of service (smaller traffic volume in their class) are willing to pay more.

Remark 9. We conjecture that in addition to being realistic such price thresh-
olds also tend to improve the speed of convergence to Nash equilibria. This is due
to the game plays in games with price thresholds spending less time looping in non-
terminal cycles. We have performed a set of computer experiments that support
this conjecture, see Section 7.4.

In this section, we show that if the provider is benevolent then in fact convergence
to Nash with optimal communal welfare can be ensured for our classes of games.
However, if the providers are realistically selfish, several counterexamples show
that the resulting games are either highly unstable or have highly suboptimal Nash
equilibria.

Now we introduce appropriate definitions. The profit to a provider is defined as the
sum of total prices paid by all satisfied users (unsatisfied users do not pay anything)
ie.

Z Satn, (i)pa, (g1i)) A(3)

A move by a provider replaces the current price function by a new price function
(wlog in this section we only consider the case when there is only one price function
in effect for all classes). The supplier’s move is selfish, if the profit to the supplier
increases after this move and is maximal among all possible moves, i.e. the supplier
chooses a new price function p() that maximizes its profit. More formally a selfish
move by the supplier is a mapping M (A;) = Ay such that the following holds:

o for all 4, Ja, (i) = Jp,(3), i.e. no users move.
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hd Zz SatAl (i)pAl (qJ(i) ))‘(7') < Zz Satl\z (i)pl\z (qJ(i) )’\(7')

® pa, is the price function that maximizes ), Sata, (i)pa,(qs(:))A(7)

The class of games with selfish (resp. benevolent) provider is denoted by PRSE
(resp. PRBE.

THEOREM 10. Any game in PRBEs or PRBEs (i.e when provider is benevolent
and users have equal or superincreasing volumes) terminates at a Nash equilibrium
which is also System optimum.

Proof. Consider the following sequence of moves: (wlog we assume that moves
are done under increasing order threshold rule defined in Section 6) first the provider
introduces a strictly decreasing price function. Than all users move until there is a
class X that contains users n, ...,k such that >0 , A < bg, > i jq Ai > bp—q. In
other words, all users in class X are satisfied and of the remaining users, the ones
with the highest volume threshold cannot move into X. At this point, provider

adjusts the price function so as to prevent users n, ..., k from ever leaving X again.
This is done by making p() constant (= p(}_;, Ai)) on [>.i, A, 00]. The process
is repeated for the remaining users 1,...,k — 1, until Nash equilibria is reached.

Proof that this Nash equilibrium is System Optimum is similar to the proof of
Theorem 5. 1

Remark 10. Note that the above proof did not rely on the concept of price
thresholds (which were designed to restrain selfish providers and are not needed for
benevolent providers).

In general, we cannot expect a selfish provider to produce a sequence of moves that
will result in a System Optimum Nash equilibrium, or any Nash equilibrium at all.

OBSERVATION 7. There are games in PRSEs (and PRSEs) such that have
Nash equilibria that are not System Optimum.

Proof. Consider a game in PRSE¢ consisting of Class 1 and two users A and
B, Ay = A =10,by =t = 100,bg = t4 = 1000. A selfish provider’s move will
set p(10)=1000, forcing B to move to DC, while a System Optimum would have
both A and B in Class 1. 1

OBSERVATION 8. There is a game in PRSE that does not have any Nash equi-
librium.

Proof. Consider a game consisting of three classes and three users A, B,C,Ag =
10 = bg = to,ta = 100,Ap = 20,tp = 50,bp = A¢ = bc = 30. The selfish
provider’s move will set p(10)=100, p(20)=50, p(30)=10. Then B will indefinitely
chase A.

7.4. Experimental results

We have conjectured in Section 7.3 that introduction of price thresholds tends
to improve speed of convergence to Nash equilibria. In this section we describe
running time of a computer program simulating a game in class PQ. Later we
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have added pricing thresholds to the game (but no participating provider) which
has considerably improved time lapsed before convergence to Nash equilibria.

Parameters of the game were M = number of classes, M /T = number of types of
users that have the same volume and volume threshold, K = number of users of
the same type that can fit in one class without exceeding their volume threshold.
Volumes were in increments of one, i.e there are T x K users that have volume 1 and
volume threshold K, T « K users that have volume 2 and threshold 2K, ..., T x K
users that have volume M /T and threshold M x K/T. Thus there are a total of
M x K users. For example let K = 10, M = 20,7 = 5. This means that there are
20 classes, 4 types of users and at most 10 users of any one type can fit into one
class. Users are

Al(]., 10), sy A50(1, 10), 31(2, 20), ey B50(2, 20), 01(3, 30), ey 050(3, 30),
D1(4,40), ..., Dso(4,40).

Initially all users are in the dummy class (DC). A game proceeds by picking one
of the M x K users at random and this user moves either to the largest class where
his threshold would not be exceeded or to the DC. (Even if this move exceeds the
volume threshold of some other users in the destination class of the moving user,
these unsatisfied users cannot move until it is their turn to move and turns are
determined at random). Eventually a Nash equilibrium was always reached (where
all users of the first type were in T' classes, all users of the second type were in
the second set of T' classes etc). Results are shown below. "Moves” denotes the
total number of user moves until Nash equilibrium was reached, ”drops” denotes
the number of those moves where user has to move to DC, “volume” denotes the
total combined volume of all users.

K M T Moves Drops  Volume
5 10 1 5014 599 275
100 10 1 2829 97 5500
1000 10 5 23596 42 15000
1000 10 2 23646 88 30000
1000 10 1 27794 992 55000
4000 10 5 66099 1 60000
5000 10 2 124947 171 150000
5 20 10 215 5 150
5 20 5 19711 2018 250
5 20 2 60739 4278 550
5 20 1 161061 11918 1050
9 20 2 10127195 481950 990
10 20 10 385 5 300
10 20 5 3318 236 500
10 20 2 16697738 632131 1100
10 20 1 17077935 669161 2100
20 20 2 1354811 47192 2200
50 20 10 2006 9 1500
50 20 5 2636 41 2500
50 20 2 9582 397 5500
50 20 1 56164 1710 10500
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100
500
500
500
500
100
100
100
100
500

100
500

100
100

20
20
20
20
20
20
20
20
0 20
0 20
0 20
0 20
0 20

30
30
30

40
40
40

50

3849 14 3000
5500 81 5000
8413 153 11000
49119 415 21000
22905 20 15000
35778 1596 25000
35801 255 55000
35732 789 105000
35963 11 30000
53056 468 50000
70786 464 110000
73082 1622 210000
254378 19 150000
1350248 92978 2325
311679 3894 46500
71955 1351 232500
2360327 144451 4100
33755 1078 18000
2422134 50040 82000
8391269 452722 6375

Later a simulation of pricing thresholds was added to the experiment. Effectively
it would prohibit a user ¢ that has volume threshold b; to move into any class j
such that ¢; + A; < b; — A where A is some constant. The reason for this is that
class j is too expensive for the i" user.

When A = oo this is equivalent to the old experiment without pricing thresh-
olds. In general introduction of small A significantly improved number of moves
that was needed to reach the Nash equilibrium.

K

)

10
20
50
100
100
1000

M
20
20
20
20
20
20
20
40
50

T A
1 5
1 10
2 20
1 50
1 100
10 100
10 1000
1 5
1 5

Moves
7000
9000
25000
35000
46000
5000
49000
190000
940000
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