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Last time, we mentioned that we shall prove the

Main Result: MOD r cannot be computed by {A,V,—,MOD p}-circuits of

depth k and size Q(2nl/k), where r # p™ for any m. (Here “size” takes into
account all gates.)

We also mentioned that we will proceed to prove the above Result by prov-
ing two statements which constitute pretty much all of the all of the proof:

Statement 1. If F,, (the finite field of p elements) contains a nontrivial gth root
of unity, then MOD ¢ cannot be interpolated by polynomials over F, (or any
field F of characteristic p), of degree < /n on any subset of {0,1}" of size
> 27~1 4 o(2"). This is what we mean when we say that MOD gq is not approz-
imable by \/n-degree polynomials.

Statement 2. Depth k circuits with arbitrary many MOD p and — gates, and
at most 2" /“A and v gates, can be interpolated over some subset of {0,1}" of
size > 2! + 0(2") by polynomials over F, (or any field F of characteristic p,
of degree < /n.

We begin today by proving the second statement which we will call

Theorem 1 Let p > 2 be prime. Let C be a depth k circuit over {0,1}™ that

has an arbitrary number of MOD p and NOT gates, and < o0/ AND and
OR gates. Then there exists a set A C {0,1}™ with |A| > 2™ 4+ o(2"), and with
the following property: There ezists a O(\/n)-degree polynomial over F, that is
equal to C on A.

Proof: We first show how each of the four types of gates can be expessed as a
O(y/n)-degree polynomial over F,. Note that each gate can be thought of as a
Boolean function of its input “variables.” Moreover, these input “variables” to
gates are themselves functions of the n variables that form the input to C.

A NOT gate with input “variable” g can be expressed exactly as the degree
1 polynomial 1 — g. A MOD p gate with input “variables” gi,...,gm can be
expressed exactly as the (p — 1)-degree polynomial (37, g;)° ~!. This follows
from the so-called Little Theorem of Fermat: If a € F,, and p does not divide a,
then a?~! = 1(mod p). The proof of this theorem is as follows: All the nonzero
elements of I, form a multiplicative group with identity 1, and the order of an
element in a group divides the order of the group.
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We saw in Lecture 5 that AND(gy,...,gx) can be expressed exactly as the
m-degree polynomial ¢1g2 - - gm. And hence OR(g1,...,9m) can be expressed
exactly as =(=g1 A ... A —gp,), which is also a degree m polynomial. However,
this does not serve our purpose since m may be much larger than O(y/n). To
find O(y/n)-degree polynomial representations of OR and AND, we will allow
some error to be introduced, in contrast to the case of the NOT and the MOD
p gates.

We claim that for any [, the OR of “variables” g1, ..., gm» can be expressed
as a polynomial of degree at most (p — 1)! over a subdomain D C {0,1}",
where |D| > 2" — 2"l To prove our claim, we will find a polynomial V in
the g;s of degree (p — 1)l such that V agrees with OR(g1,...,gm) on all but at
most 2"~ inputs. Let V(g1,...,9m) = Vio; (Xie(cijg:)P~"), where ¢;; € Fp.
The following table will help us to conveniently “visualize” V. Note that the
summation is “across the rows,” while the disjunction is “down the columns”
after the summations are completed:

+ | (erg)?™! (Cio19i0)P " (Cm1gm)?P™!

+ | (cr291)?7! (Cip29i0)P " (cm2gm)?P ™"
v : : :

+ | (cu—191)P7 1 (Cigi—1Gio )P " (Cmi—19m)P "

+ | (cug)?™! (Cig19i)" " (Cmigm)?~"

Let z; = Y " (ci;9:)P ' and let ~z; = 1—3"7" (cij9:)P~*. Now if we think

of AND(—z1,...,—x;) as the [-degree polynomial (—x;—z5 - - - —x;) and think of
OR(z1,...,7;) as ~(=x1 A ... A —x;), then it follows that V is a polynomial in
the g;s of degree I(p — 1).

We will now show that V(gi,...,9m) = OR(g1,-..,gm) on all but at most
27! inputs. First note that if OR(g1,...,gm) = 0, then each g; = 0, and hence
V(g1,-.-,9m) = 0 also. Now suppose OR(g1,...,9m) = 1. Then there exists
an index ig € {1,...,m} such that g;; = 1. Referring to the table above, we
see that for any choice of the c¢;js with i # i, there is exactly one choice of [
elements cjy1,Cig2, - --,Ciqt € F, such that V(gi,...,gm) = 0 for these choices
of F, elements. This is simply because the ¢;;1,¢iy2,. - ., cioi form the solution
set of a homogeneous system of linear equations. Now there are p' choices
for the ¢jy1,¢42,- - ., Cigr of which exactly one choice (after the ¢;; with i # 4
are chosen) which makes 1 = OR(g1,...,9m) # V(91,---,9m) = 0. It follows
that for a random choice of c;;s, i.e., for a random choice of V, the probability
that OR(g1,---,9m) # V(91,---,9m) is 1/p". Recall that the g;s are functions
of the 2" possible inputs to C. Hence OR(gi,...,gm) and V(gi,...,gm) are
ultimately functions of the 2™ possible inputs to C' as well. Now for a random
choice of V, we have Prob[OR # V on at most 2"/p! inputs to C] > Prob[OR #
V on all 2" inputs to C] = [],¢ g1}~ Prob[OR # V on z]. Since Prob[OR #
V] = 1/p', we can conclude that for each x € {0,1}", we have Prob[OR #
V on z] > 1/p'2". Hence Prob[OR # V on at most 2"/p' inputs to C] >
[1.c 0,13~ Prob[OR # Vonz] > (1/p'27)2" > 0. In other words, the probability
is nonzero that there is a choice of V such that V # OR on at most 2"/p' <
27 /20 = 27~ inputs to C.

Now that we have shown that for any I, the OR of “variables” g1,...,9m
can be expressed as a polynomial of degree at most (p — 1)l over a subdomain
D C {0,1}", where |D| > 2" —2"~! it follows that the same is true for the AND

9-2



of any set of “variables” g1,...,gm,. This is simply because ANDs can be written
in terms of ORs, and NOTs are exactly represented by degree 1 polynomials.

To complete the proof, let I = 2n!/2*. For each OR (resp. AND) gate of
C, we can express this OR (resp. AND) as a polynomial of degree I(p — 1) =
2(p— 1)nl/2k on all but 27— = 27=(n""*") inputs to C, i.e., elements in {0, 1}".
This is assuming that all the children and descendents of this OR (resp. AND)
. . 1/(2k)
gate have also been expressed as polynomials. Since C' has at most 2"
AND and OR gates, the polynomial C' expressing the top gate of C' agrees with
C on all but 2n—(2n'/*") . gn'/Y Y= o(2™) inputs. Hence the set
A C {0,1}" where C = C is such that |A4| > 2" + 0(2"). Finally we claim
that the degree of C is O(y/n). To see this, first note that the polynomials
representing the MOD p and the NOT gates are of degree 1 and so do not
contribute much to the degree of C'. Each time we rise a level in C, an OR or
an AND gate cotributes I(p — 1) = 2(p — 1)n'/2* to the degree of C. Since the
depth of C is k, we can rise at most k levels and thereby compose polynomials
k times. Hence the degree of C < [2(p — 1)n'/?¥]F = O(/n).

— 2n—n

|
Before proving Statement 1, we will need a definition and a theorem:

Definition 2 For each function f and set A, let dega(f) denote the minimum
degree of a polynomial that agrees with f on A.

Definition 3 1. A function f is Ug -complete if for every set A C {0,1}" and
for every function u € Ug , we have dega(u) < dega(f) + (n/2).

2. A set of functions (f1,...,fs) is U -complete if for every set A C {0,1}"
and for every function u € U , we have dega(u) < lrgéiécs{deg,q(f,-)} + (n/2).

Theorem 4 Let the set (f1,..., fs) of functions be L{ﬁ -complete. Suppose there
is an A C {0,1}" such that max {dega(fi)} < O(v/n). Then |A] < 2" 14+o0(27).

Proof: By the definition of L{gp— completeness, every function in L{ﬁ 4 can be
written as a polynomial of degree < O(y/n)+(n/2). We showed in Lecture 8 that
dim(Ug 4) = |A|. Furthermore, we have [A| = dim(Ug ,) < [The number of
ZEB/EH"/Q) " =

(3

multilinear polynomials of degree at most /n + (n/2)] =
2n=1 4+ o(27).

Statement 1 now follows immediately from Theorems 1 and 4, and the fol-
lowing theorem. A good chunk of the proof of the following theorem, is left as
exercises:

Theorem 5 If F, (or any field F of characteristic p) contains a nontrivial
qt* root of unity, then for each i € {0,1,...,q— 1}, MOD; , is Z/{]{-‘P -complete
(respectively, UF -complete).

n

Proof: Step 1. We will show that the polynomial H y; 18 Uﬁ—complete, where
=1

yi=(h—1z;+1, h€F,, h#0,and h # 1. We have z; = (h — 1) (y; — 1)
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and y;* = (h=' — 1)z; + 1. So any polynomial in the z; is also a polyno-
mial in the y; of no higher degree. Let u € Uy and let A C {0,1}" . We

must show that dega(u) < dega (H yl> + (n/2). For each w C {0,...,n},
i=1
the monomial H x; can be written in terms of the y; as H(h — 1)ty - 1).

i€Ew 1€EW

If |w| < n/2, then clearly dega (H(h— 1)y — 1)) = dega (H y,)

1€w i€w

IA

(n/2) + dega (ﬁ y,) And if |w| > n/2, then dega (H(h 1) Yy — 1))

i=1 1€w

dega (H y,> = dega Hyz H yZ < (n/2)+dega (H y,) . Thus we have

i€w i=1 i¢w i=1

shown that the degree over A of every monomial of u is < (n/2)+dega (H y,) .

i=1

It follows that dega(u) < dega (H yz> (n/2) also.

=1

Step 2. (Exercise) If F, contains a nontrivial gth root of unity, then for
each i € {0,1,...,¢ — 1}, MOD; q is Uf -complete. HINT: Use h = ¢ to define
n

the y;s. Express Hy, in terms of the MOD; , times a polynomial of degree
i=1

<n/2.

Now the Main Result follows from Statements 1, 2 and the following Exercises.

(Remainder of Proof of Main Result). We need to show that if » # p™, then
MOD r does not have < 27" sized {MOD p, A, V,~}-circuits of depth k.

To do this, take ¢ to be a prime divisor of r not equal to p.
Exercise: Show that if p and ¢ are distinct primes, then there is a field of
characteristic p that contains a gth root of unity.

We know from Statements 1 and 2 that if any field F contains a gth root of
unity, then MOD ¢ does not have < 27" sized {MOD p, A, V, ~}-circuits of
depth k. Now, finally:

Exercise: Show if ¢ divides r, then MOD ¢ is AC°-reducible to MOD r (this
is like the exercises from Lecture 7 and 8).
Exercise: Why does this complete the proof of the main result?
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