Recent advances in Complexity CIS 6930/CIS 4930

September 19, 2002

Lecture 8

Lecturer: Dr. Meera Sitharam Scribe: Zia Uddin

In today's lecture, we will set up the background in order to begin the proof of the

Fact: MOD q, MAJORITY, and related functions cannot be computed by $\{\land, \lor, \neg, \text{MOD}p\}$ -circuits of depth k and size $\Omega(2^{n^{1/k}})$, where $q \neq p^m$ for any m.

Here "size" takes into account all gates. We will prove this result only for MOD q. Note that for all $q \neq p^m$ for any m, we have MOD $q = \text{MOD}_{0,q} = 1$ if and only if the input is divisible by q, and for $i \in \{1, \ldots, q-1\}$, we have $\text{MOD}_{i,q} = 1$ if and only if the input is divisible by q with remainder i.

Exercise 1 Show that the above result holds for MAJORITY $(=TH_{n/2,n})$ and $EXACT_k$, where $EXACT_k = 1$ if and only if the number of 1s in the input is exactly k. In other words, $EXACT_k = TH_{k,n} \wedge \neg TH_{k+1,n}$.

Hint: Show that $EXACT_k \leq MAJORITY$ and $MODq \leq EXACT_k$, where " \leq " means "is reducible to," and where the reduction uses constant-depth, polynomial-size $\{\land, \lor, \neg\}$ -circuits $(AC^0 \text{ circuits})$.

We will proceed to prove the above fact by proving two things:

- (i) If $q \neq p^m$ for any m, then MOD q cannot be interpolated by polynomials over \mathbb{F}_p (the finite field with p elements) of degree $\leq \sqrt{n}$ on any subset of $\{0,1\}^n$ of size $\geq 2^{n-1} + o(2^n)$. This is what we mean when we say that MOD q is not approximable by \sqrt{n} -degree polynomials.
- (ii) Depth k circuits with arbitrary many MOD p and \neg gates, and at most $2^{n^{1/k}} \land$ and \lor gates, can be interpolated over *some* subset of $\{0,1\}^n$ of size $\geq 2^{n-1} + o(2^n)$ by polynomials over \mathbb{F}_p of degree $\leq \sqrt{n}$.

We will first need

Definition 1 The space of all functions from $\{0,1\}^n$ to \mathbb{F}_p is denoted by $\mathcal{U}_{\mathbb{F}_p}^n$. And $\mathcal{U}_{\mathbb{F}_n,A}^n$ denotes the space of all functions from $A \subseteq \{0,1\}^n$ to \mathbb{F}_p .

Note that $|\mathcal{U}^n_{\mathbb{F}_p}|=(2^n)^p$ and $|\mathcal{U}^n_{\mathbb{F}_p,A}|=|A|^p$. Moreover, $\mathcal{U}^n_{\mathbb{F}_p}$ and $\mathcal{U}^n_{\mathbb{F}_p,A}$ are both vector spaces over \mathbb{F}_p , and so we can speak of their dimensions. We have:

Claim: $\dim(\mathcal{U}_{\mathbb{F}_p}^n) = 2^n = |\{0,1\}^n| \text{ and } \dim(\mathcal{U}_{\mathbb{F}_p,A}^n) = |A| \leq 2^n$. Proof of Claim: For each $\sigma \in \{0,1\}^n$, let $f_{\sigma} \in \mathcal{U}_{\mathbb{F}_p}^n$ be the function that is 1 on σ and 0 on every other element of $\{0,1\}^n$. Then the set $\{f_{\sigma}\}_{\sigma \in \{0,1\}^n}$ spans $\mathcal{U}_{\mathbb{F}_p}^n$. This is because every $f \in \mathcal{U}_{\mathbb{F}_p}^n$ can be written as a linear combination of the f_{σ} as follows: $f = \sum_{\sigma \in \{0,1\}^n} f(\sigma) \cdot f_{\sigma}$. Furthermore, the f_{σ} are linearly independent.

This is because if $f = \sum_{\sigma \in \{0,1\}^n} c_\sigma \cdot f_\sigma$, is a nontrivial linear combination of the

 f_{σ} , i.e., the $c_{\sigma} \in \mathbb{F}_p$ and not all the c_{σ} are 0, then $f \not\equiv 0$: Simply take one of the nonzero c_{σ} ; then for that particular σ , we have $f(\sigma) = c_{\sigma} \not\equiv 0$. Thus the set $\{f_{\sigma}\}_{\sigma \in \{0,1\}^n}$ is a basis for $\mathcal{U}^n_{\mathbb{F}_p}$.

The same arguments shows that $\dim(\mathcal{U}^n_{\mathbb{F}_p,A}) = |A|$ if we simply let σ range over A instead of over $\{0,1\}^n$.

Now for each $i \in \{1, 2, ..., n\}$, let $X_i(x_1, x_2, ..., x_n) = x_i$, the *i*th projection. Consider the set $\mathbb{F}_{p,L}[X_1, X_2, ..., X_n]$ of multilinear polynomials in $X_1, ..., X_n$ with coefficients in \mathbb{F}_p , where the powers on the X_i are 0s or 1s. A typical element of $\mathbb{F}_{p,L}[X_1, X_2, ..., X_n]$ is written $\sum_{\alpha \in \{0,1\}^n} a_\alpha X^\alpha$. We ex-

plain this notation by an example: Let p=n=3. Then the element $2X_1X_2+X_1X_3\in\mathbb{F}_{3,L}[X_1,X_2,X_3]$ is in fact the element $a_{000}X_1^0X_2^0X_3^0+a_{001}X_1^0X_2^0X_3^1+a_{010}X_1^1X_2^0X_3^0+a_{011}X_1^0X_2^1X_3^1+a_{100}X_1^1X_2^0X_3^0+a_{101}X_1^1X_2^0X_3^1+a_{110}X_1^1X_2^1X_3^0+a_{111}X_1^1X_2^1X_3^1$, where $a_{110}=2$, $a_{101}=1$, and $a_{\alpha}=0$ for $\alpha\in\{0,1\}^3$ and $\alpha\notin\{110,101\}$.

Any element $\sum_{\alpha \in \{0,1\}^n} a_{\alpha} X^{\alpha}$ of $\mathbb{F}_{p,L}[X_1,X_2,\ldots,X_n]$ can be regarded as an

element of $\mathcal{U}^n_{\mathbb{F}_p}$ by evaluating the "variable" X_i as 0 (resp. 1) if the ith symbol of $\sigma \in \{0,1\}^n$ is 0 (resp. 1). For example, the value of the polynomial $2X_1X_2 + X_1X_3$ above on (1,1,1) is $2(1)(1) + (1)(1) = 3 = 0 \in \mathbb{F}_3$, and on (1,0,1) is $2(1)(0) + (1)(1) = 1 \in \mathbb{F}_3$. Thus we have shown that $\mathbb{F}_p[X_1, X_2, \ldots, X_n] \subseteq \mathcal{U}^n_{\mathbb{F}_p}$. We leave the other inclusion as an exercise:

Exercise 2 $\mathcal{U}_{\mathbb{F}_p}^n \subseteq \mathbb{F}_{p,L}[X_1, X_2, \dots, X_n]$ and hence $\mathcal{U}_{\mathbb{F}_p}^n = \mathbb{F}_{p,L}[X_1, X_2, \dots, X_n]$.

Hint: Since we have already shown that the dimension of $\mathcal{U}_{\mathbb{F}_p}^n=2^n$, it is sufficient to show that the 2^n monomials X^α - (which by definition span $\mathbb{F}_{p,L}[X_1,X_2,\ldots,X_n]$) - in fact form an independent basis over $\{0,1\}^n$. There are several possible one-liner proofs of this. At least 2 of them were hinted in class. As a warning, note, for example, that 1, X_1 , X_2 , X_1X_2 , viewed as monomials over \mathbb{R} (instead of \mathbb{F}_p) are independent over the $2^2=4$ points in $\{0,1\}^2\subseteq\mathbb{R}^2$, the vertices of the unit 2-cube (i.e., the unit square). But 1, X_1 , X_2 , X_1X_2 are not independent over the 4 points $\{00,01,02,03\}$ in $\mathbb{R}^2\not\subseteq\{0,1\}^2$.