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Today we will finish the proof of the stronger version of Hastad’s Lemma
started in Lecture 6. We will include the Lecture 6 notes to have the complete
proof in one set of notes. Recall that min(C) denotes the maximum possible
length of a minterm of the function computed by the circuit C. And given a
Boolean function F' and a random distribution p, we let F'|, denote the restric-
tion of F' to those variables that are assigned the value 1 by p.

w
Lemma 1 (Stronger Hastad Lemma) Let G = /\ G; be a Boolean circuit
i=1
of n wvariables with an AND gate at the top, where the G;s are circuits with
OR gates on top and of fan-in < t to these OR gates. Let F(xy,...,2,) be a
Boolean function on the same n variables, and let p be a random distribution in
Rp, p> 0. Then for every s > 1, we have Problmin(G|,) > s | F|, =1] < o,

t t
where a is the unique positive root of (1 + ﬁ) = (1 + ﬁ) + 1.

Remark: I mentioned the following a couple of times when we used Hastad’s
lemma to prove Theorem 2, Theorem 3 in Lecture 5,6, i.e, the desired expo-
nential (constant depth) circuit size lower bound for parity: Any function and
in particular the function computed by the restricted circuit G, above can be
written as an OR of ANDS, where the ANDS are the function’s minterms.
Therefore, for an appropriate choice of s and p, Hastad’s switching lemma actu-
ally says that there exists a restriction (of not too many variables)which allows
us to convert an AND of ORS which have small fan-in to an OR of ANDs of
small fan in. And this is what we use for Theorem 2 and Theorem 3.

The “there exists” above follows from non-zero probability of the minterm
size event being estimated above; minterm size is exactly the bottom level AND
fan-in of the resulting OR of ANDs circuit.

Proof: We proceed by induction on w. If w = 0, then G = 1 and the lemma is
clearly true.

Now assume the lemma is true when the number of G;s is w — 1 or less. Let
G be the rightmost “OR gate.” (See Figure 1.) Then we have Prob[min(G|,) >
s| F|, =1] < max{I,II}, whereI = Prob[min(G|,) >s | F|, =1AG1|, =1]
and II = Prob[min(G|,) >s | Fl,=1 A Gi]|, #1].

We shall now examine I. Let ' = F A G;. We observe that if G; = 1,



=t

Figure 1: The Circuit G

w w
then G|, = /\Gi|p = /\Gi|p- We have I = Prob[min(G|,) > s | F|,
i=1 i=2
1 A Gi|, = 1] = Prob[min(G|,) > s | (FAG1)|, =1]. Thus I is the prob-
ability that A}, Gi|, has a minterm of size at least s given F'|, = 1. By the
induction hypothesis, we have I < a®.

Now we examine II = Prob[min(G|,) >s | F|, =1 A Gi|, # 1]. Suppose
that the variables “going into” G; belong to a set T C {z1,...,z,}, where
|T| < t. Write p = p1 o pa2, where p1 : T — {0,1,*} is the restriction of p to
the variables in T', and po : {z1,...,2,} = {0,1, %} is the restriction of p to the
variables not in 7" and assigns * to the variables in 7. We now have G|, # 1
if and only if Gi|,, # 1. Since G; is an OR circuit, G1|, # 1 if and only if
p1 assigns all the variables in 7' the values 0 and * only. Thus we in fact have
p1: T — {0,x}. Since G is an AND of ORs circuit, every minterm of G|, must
make G; true. Hence for every minterm o of G|,, there exists a variable x; € T
such that z; is part of ¢ and such that if ¢ = 1, then z; = 1. In other words,
every minterm of G|, must nontrivially intersect T'. Hence we can partition the
minterms of G|, according to those variables in T' to which the minterms give
the values 0 or 1. Now suppose that for a minterm o of G|,, we have cNT =Y.
Then the fact that o gives the value 0 or 1 to the variables in Y means that all
the variables in Y are left unfixed (i.e., assigned x) by p;. We will write this
event as p1(Y) = x. And we will let “minY (G|,) > s” denote the event that G|,
has a minterm of size at least s, whose restriction to the variables in T" assigns
values (0 or 1) to precisely those variables of T' that are in Y.

Recall the fact from elementary probability theory that Prob[AA B | C] =
Prob[B|C] - Prob[A | B A C]. (This is true because from a diagram of three
intersecting circles A, B, and C, it readily follows that |[A N B N C|/|C| =
|IBNC|/|IC|-|[AnBNC|/|BNC|.) Using this and letting A, B, and C denote
the events minY (G|,) > s, p1(Y) =%, and F|, = 1A Gy|, £ 1, respectively,
we now have:

IT = Prob[min(G|,) >s | Fl,=1 A Gi|, 1]

< Y Probmin(Gl,)Y >s | Fl,=1 A Gil, #1]
YCT,Y#(

< Y Probmin(G|,)Y > s A p1(Y) =% | Fl,=1 A Gy, £1]
YCT,Y#0
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= ) Prob[AAB|C]

YCT,Y 0
= > Prob[B|C]-ProblA | BAC]

Y CT,Y #0
= > Problp(Y)=x | Fl,=1AGy|, #1]

Y CT,Y #0

-Probmin(G|,)Y >s | pm(Y) =% A Fl,=1 A G1|, #1].

Let P = Prob[pi(Y) =% | Fl, =1AG], #1] andlet Q =
Prob[min(G|,)Y >s | m(Y) =% A F|, =1 A Gi|, # 1] for notational
convenience.

We will now proceed to obtain an upper bound for P using the following
three claims:

Claim 1: Looking at P and ignoring the condition F|, = 1, we arrive at
Prob[py(V) =+ | Chl, 1] = 2p/(1+p)]'¥.

Proof of Claim 1: The condition G1|, #Z 1 is equivalent to saying that all vari-
ables “going into” Gy are assigned 0 or * by p;. The probability of a variable
going into Gy being assigned a 0 or a x is (1 —p)/2+p = (p+ 1)/2. Hence
the probability of a variable in Y being assigned a *, given that all variables
going into G; are assigned 0 or =, is p/[(p + 1)/2] = 2p/(p + 1). It follows
that the probability of every variable in Y being assigned a *, given that all
variables going into G are assigned 0 or #, i.e., Prob[p;(Y) = x | Gi|, #1], is
[2p/(1 +p)] .

Claim 2: Prob[A | B A C] < Prob[A|C] if and only if Prob[B | AA C] <
Prob[B|C].

Proof of Claim 2: From a diagram of three intersecting circles A, B, and C,
it is evident that we have Prob[A | B A C] < Prob[A|C] if and only if we have
|ANBNC|/|BNC| < |ANC|/|C|. But we have |[ANBNC|/|BNC| < [ANC|/|C|
if and only if |[ANBNC|/|ANC| < |BNC|/|C| if and only if Prob[B | AANC] <
Prob[B|C].

Claim 3: Prob[F|, =1 | p1(Y) =% A Gi|, Z1] <Prob[F|, =1 | G|, Z1].
Proof of Claim 3: The condition p;(Y’) = * does not affect the event F|, = 1.

Now let A, B, and C denote the events p1(Y) =x, F|, =1, and Gi|, #1,
respectively. Then P = Prob[A | B A C]. By Claim 1, we have Prob[A|C] =
[2p/(1 + p)]¥!. Thus P < [2p/(1 + p)]'¥! if and only if Prob[A | B A C] <
Prob[A|C]. But Prob[A | B A C] < Prob[A|C] if and only if Prob[B | AAC] <
Prob[B|C], which is true by Claim 3. Thus we have established an upper bound
for P, i.e., the fact that P < [2p/(1 + p)]IY'.

We will now proceed to obtain an upper bound for Q. Our method will uti-
lize the induction hypothesis. We first need to explain some notation. Let o €
{0,1}Y be an assignment of the variables in Y to 0 and 1. Let “minY*<(G|,) >
s” denote the event that G|, has a minterm of size at least s, whose restriction
to the variables in T assigns ¢ to precisely those variables of T' that are in Y,
and fixes no other variables in T'.
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We have Q = Prob[min(G|,)Y >s | p(Y) =% A Fl,=1 A G1|, 1] <
Z Prob[min(G|,)¥7 >s | p(Y) =% A F|, =1 A Gi|, Z 1].
a€{0,1}Y ,0#0Y
This is because if G|, has a minterm of size at least s, whose restriction to the
variables in T assigns 0 and 1 to precisely those variables of T' that are in Y,
then this value assignment is some o € {0,1}Y. Hence the sum of probabilities
for all such o (excluding o = 0Y since a minterm must fix some variable in Y
to 1) must be an upper bound.
Now fix 0. We have Prob[min(G|,)Y <7 >s | p(Y)=xAF|,=1AG1|, %
1] < Ir}JaXProb[min(Gb)Y‘_" >s | p(Y) =% A Fl,=1 A Gi], #1]. This is
1

because the maximum is taken over all p; (not to be confused with the specific
p1 that we were concerned with earlier) assigning 0Os and #s to the variables in
T and only *s to the variables in Y.

Having already fixed o, we now fix p; (again, not necessarily the specific p;
that we were concerned with earlier). Let W be the set of variables in T\ 'Y
that are assigned * by this p;. Let 7 € {0,1}" and let G be G without Gy,
ie., G = /\z":2 G;|,- Suppose the variables in Y take the assignments given
by our fixed 0. Now the phrase “min((G|o o T o p1)|p,) > s” makes sense
since o o T o p; fixes all the variables in T, thereby “getting rid off” G; and
allowing us to use the induction hypothesis. We have Prob[min(G|,)Y <7 >
s | p(¥) =+ A Fl,=1 A Gil, 21] < _max  Problmin((Cloorop)l,.) >

s 1 p¥)=+ AFl,=1 A Gil, £ < _max Probmin((@ooropm),,) 2
s—=Y| | pY) =% A F|, =1 A Gi|, # 1]. This is because the proba-
bility of a minterm having a certain length and certain properties is less than
the probability of a minterm having the same properties but shorter length.
Furthermore, the events p(Y) = x and Gi|, # 1 do not depend on ps, and
hence can be dropped. So if we fix the maximizing 7 € {0,1}", we obtain
Q < Y maxProbfmin(Glooropl) 25— V] | (Fl,) =1
0€{0,1}Y ,0£0Y
Z max o~ Y (induction hypothesis)

o€{0,1}Y ,0£0Y
— Z as—|Y|

o€{0,1}Y ,0£0Y
= (2 —1)a*~IY (2I¥] ways of assigning 0s and 1s to variables in Y, including

the all 0 assignment).

IA

Wenowhavell < Y PQ < Y [2p/+p]Y@Y —1)a I

YCT,Y 40 YCT,Y 40
Z ( 2p )Yl( vl _1)
- o P ) @y
YCT,Y 0 a(l+p)
4p )Yl ( 2 )lYl
- 3 () - X it
YCT,Y 40 a(l +p) YCT,Y 40 a(l+p)

|| ||

- o3 (T Gs) - o2 (7)) i)

(number of ways of choosing i-element nonempty subsets of T")
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IA

S0 i) - 0 () e

|0+ sa%) - ()

= «af, since « is the solution to the equation mentioned in the statement of
the lemma.

s

= a (Binomial Theorem)

It follows that Prob[min(G|,) > s | F|, =1] < max{ I, II} < a?®, and the
proof is complete.

Aside: Two events A and B are independent if and only if Prob[A A B] =
Prob[A] - Prob[B], i.e, |A N B|/|U| = |A||B|/|U|?, where U is the universe.
All events are subsets of the universe. This is also equivalent to saying that
Prob[A|B] = Prob[A4], i.e, |A N B|/|B| = |A|/|U|. Now recall the two facts
concerning conditional probabilities that were used in the proof above:

Fact 1: Prob[A A B | C] = Prob[B|C] - Prob [A | B A C].

Fact 2: Prob[A | BAC] < Prob[A|C] if and only if Prob[B | AAC] < Prob[B|C].

Exercise 1 These two facts concerning conditional probabilities and events A,
B, and C hold irrespective of whether the three events are independent or not.
In particular, the two facts hold even if the three events A, B, and C are all the
identical event, say, A.

We have seen that constant-depth {A,V, —}-circuits must have exponential
size in order to compute PARITY, which is a mod 2 computation. In the
next lecture, we shall see the Razborov-Smolensky result, which extends this
result using the oracle technique to show that for any prime p, constant-depth
{A,V, =, modp}-circuits also must have exponential size in order to compute
MAJORITY and to carry out mod ¢ computations for any ¢ # p*. This will
involve showing that A, V, =, and mod p can be approximated by low-degree
polynomials, while MAJORITY and mod ¢ computations require polynomials
of large degree. Meanwhile we have an

Exercise 2 Show that the PARITY lower bound also applies to MAJORITY.
In particular,

(i) Show exactly where to change the proof for PARITY to prove that constant-
depth {A,V,—}-circuits must have exponential size in order to compute MA-
JORITY.

(i) Characterize the class of functions for which the argument in part (i) holds.

7-5



