September 17, 2002

Lecture 7

Lecturer: Dr. Meera Sitharam Scribe: Zia Uddin

Today we will finish the proof of the stronger version of Hastad's Lemma started in Lecture 6. We will include the Lecture 6 notes to have the complete proof in one set of notes. Recall that min(C) denotes the maximum possible length of a minterm of the function computed by the circuit C. And given a Boolean function F and a random distribution ρ , we let $F|_{\rho}$ denote the restriction of F to those variables that are assigned the value 1 by ρ .

Lemma 1 (Stronger Hastad Lemma) Let $G = \bigwedge_{i=1}^{w} G_i$ be a Boolean circuit of n variables with an AND gate at the top, where the G_i s are circuits with OR gates on top and of fan-in $\leq t$ to these OR gates. Let $F(x_1,\ldots,x_n)$ be a Boolean function on the same n variables, and let ρ be a random distribution in \mathcal{R}_p , p>0. Then for every $s\geq 1$, we have $\operatorname{Prob}[\min(G|_{\rho})\geq s\mid F|_{\rho}\equiv 1]\leq \alpha^s$, where α is the unique positive root of $\left(1+\frac{4p}{\alpha(1+p)}\right)^t=\left(1+\frac{2p}{\alpha(1+p)}\right)^t+1$.

Remark: I mentioned the following a couple of times when we used Hastad's lemma to prove Theorem 2, Theorem 3 in Lecture 5,6, i.e, the desired exponential (constant depth) circuit size lower bound for parity: Any function and in particular the function computed by the restricted circuit G_{ρ} above can be written as an OR of ANDS, where the ANDS are the function's minterms. Therefore, for an appropriate choice of s and p, Hastad's switching lemma actually says that there exists a restriction (of not too many variables)which allows us to convert an AND of ORS which have small fan-in to an OR of ANDs of small fan in. And this is what we use for Theorem 2 and Theorem 3.

The "there exists" above follows from non-zero probability of the minterm size event being estimated above; minterm size is exactly the bottom level AND fan-in of the resulting OR of ANDs circuit.

Proof: We proceed by induction on w. If w = 0, then $G \equiv 1$ and the lemma is clearly true.

Now assume the lemma is true when the number of G_i s is w-1 or less. Let G_1 be the rightmost "OR gate." (See Figure 1.) Then we have $\operatorname{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1] \leq \max\{\mathrm{I},\mathrm{II}\}$, where $\mathrm{I} = \operatorname{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1 \wedge G_1|_{\rho} \equiv 1]$ and $\mathrm{II} = \operatorname{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1 \wedge G_1|_{\rho} \not\equiv 1]$.

We shall now examine I. Let $F'=F\wedge G_1$. We observe that if $G_1\equiv 1,$

Figure 1: The Circuit G

then $G|_{\rho} = \bigwedge_{i=1}^{w} G_{i}|_{\rho} = \bigwedge_{i=2}^{w} G_{i}|_{\rho}$. We have $I = \operatorname{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1 \land G_{1}|_{\rho} \equiv 1] = \operatorname{Prob}[\min(G|_{\rho}) \geq s \mid (F \land G_{1})|_{\rho} \equiv 1]$. Thus I is the probability that $\bigwedge_{i=2}^{w} G_{i}|_{\rho}$ has a minterm of size at least s given $F'|_{\rho} \equiv 1$. By the induction hypothesis, we have $I \leq \alpha^{s}$.

Now we examine II = Prob $[min(G|_{\rho}) \ge s \mid F|_{\rho} \equiv 1 \land G_1|_{\rho} \not\equiv 1]$. Suppose that the variables "going into" G_1 belong to a set $T \subseteq \{x_1, \ldots, x_n\}$, where $|T| \leq t$. Write $\rho = \rho_1 \circ \rho_2$, where $\rho_1 : T \to \{0,1,*\}$ is the restriction of ρ to the variables in T, and $\rho_2:\{x_1,\ldots,x_n\}\to\{0,1,*\}$ is the restriction of ρ to the variables not in T and assigns * to the variables in T. We now have $G_1|_{\rho} \not\equiv 1$ if and only if $G_1|_{\rho_1} \not\equiv 1$. Since G_1 is an OR circuit, $G_1|_{\rho} \not\equiv 1$ if and only if ρ_1 assigns all the variables in T the values 0 and * only. Thus we in fact have $\rho_1: T \to \{0, *\}$. Since G is an AND of ORs circuit, every minterm of $G|_{\rho}$ must make G_1 true. Hence for every minterm σ of $G|_{\rho}$, there exists a variable $x_i \in T$ such that x_i is part of σ and such that if $\sigma = 1$, then $x_i = 1$. In other words, every minterm of $G|_{\rho}$ must nontrivially intersect T. Hence we can partition the minterms of $G|_{\rho}$ according to those variables in T to which the minterms give the values 0 or 1. Now suppose that for a minterm σ of $G|_{\rho}$, we have $\sigma \cap T = Y$. Then the fact that σ gives the value 0 or 1 to the variables in Y means that all the variables in Y are left unfixed (i.e., assigned *) by ρ_1 . We will write this event as $\rho_1(Y) = *$. And we will let " $min^Y(G|_{\rho}) \geq s$ " denote the event that $G|_{\rho}$ has a minterm of size at least s, whose restriction to the variables in T assigns values (0 or 1) to precisely those variables of T that are in Y.

Recall the fact from elementary probability theory that $\operatorname{Prob}[A \wedge B \mid C] = \operatorname{Prob}[B \mid C] \cdot \operatorname{Prob}[A \mid B \wedge C]$. (This is true because from a diagram of three intersecting circles A, B, and C, it readily follows that $|A \cap B \cap C|/|C| = |B \cap C|/|C| \cdot |A \cap B \cap C|/|B \cap C|$.) Using this and letting A, B, and C denote the events $\min^Y(G|_{\rho}) \geq s, \ \rho_1(Y) = *, \ \text{and} \ F|_{\rho} \equiv 1 \wedge G_1|_{\rho} \not\equiv 1, \ \text{respectively,}$ we now have:

$$\begin{split} & \text{II} = \text{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1 \ \land \ G_{1}|_{\rho} \not\equiv 1] \\ & \leq \sum_{Y \subseteq T, Y \neq \emptyset} \text{Prob}[\min(G|_{\rho})^{Y} \geq s \mid F|_{\rho} \equiv 1 \ \land \ G_{1}|_{\rho} \not\equiv 1] \\ & \leq \sum_{Y \subseteq T, Y \neq \emptyset} \text{Prob}[\min(G|_{\rho})^{Y} \geq s \ \land \ \rho_{1}(Y) = * \mid F|_{\rho} \equiv 1 \ \land \ G_{1}|_{\rho} \not\equiv 1] \end{split}$$

$$\begin{split} &= \sum_{Y \subseteq T, Y \neq \emptyset} \operatorname{Prob}[A \wedge B \mid C] \\ &= \sum_{Y \subseteq T, Y \neq \emptyset} \operatorname{Prob}[B \mid C] \cdot \operatorname{Prob}[A \mid B \wedge C] \\ &= \sum_{Y \subseteq T, Y \neq \emptyset} \operatorname{Prob}[\rho_1(Y) = * \mid F \mid_{\rho} \equiv 1 \wedge G_1 \mid_{\rho} \not\equiv 1] \\ &\quad \cdot \operatorname{Prob}[\min(G \mid_{\rho})^Y \geq s \mid \rho_1(Y) = * \wedge F \mid_{\rho} \equiv 1 \wedge G_1 \mid_{\rho} \not\equiv 1]. \end{split}$$

Let P = $\operatorname{Prob}[\rho_1(Y) = * \mid F|_{\rho} \equiv 1 \land G_1|_{\rho} \not\equiv 1]$ and let Q = $\operatorname{Prob}[\min(G|_{\rho})^Y \geq s \mid \rho_1(Y) = * \land F|_{\rho} \equiv 1 \land G_1|_{\rho} \not\equiv 1]$ for notational convenience.

We will now proceed to obtain an upper bound for P using the following three claims:

Claim 1: Looking at P and ignoring the condition $F|_{\rho} \equiv 1$, we arrive at

 $\operatorname{Prob}[\rho_1(Y) = * \mid G_1|_{\rho} \not\equiv 1] = [2p/(1+p)]^{|Y|}.$ $\operatorname{Proof} \text{ of } \operatorname{Claim} 1: \text{ The condition } G_1|_{\rho} \not\equiv 1 \text{ is equivalent to saying that all variable}$ ables "going into" G_1 are assigned 0 or * by ρ_1 . The probability of a variable going into G_1 being assigned a 0 or a * is (1-p)/2+p=(p+1)/2. Hence the probability of a variable in Y being assigned a *, given that all variables going into G_1 are assigned 0 or *, is p/[(p+1)/2] = 2p/(p+1). It follows that the probability of every variable in Y being assigned a *, given that all variables going into G_1 are assigned 0 or *, i.e., $Prob[\rho_1(Y) = * \mid G_1|_{\rho} \not\equiv 1]$, is $[2p/(1+p)]^{|Y|}$.

Claim 2: $Prob[A \mid B \land C] \leq Prob[A \mid C]$ if and only if $Prob[B \mid A \land C] \leq$

Proof of Claim 2: From a diagram of three intersecting circles A, B, and C, it is evident that we have $Prob[A \mid B \land C] \leq Prob[A|C]$ if and only if we have $|A \cap B \cap C|/|B \cap C| \leq |A \cap C|/|C|$. But we have $|A \cap B \cap C|/|B \cap C| \leq |A \cap C|/|C|$ if and only if $|A \cap B \cap C|/|A \cap C| < |B \cap C|/|C|$ if and only if $|A \cap B \cap C|/|A \cap C| < |B \cap C|/|C|$ Prob[B|C].

Claim 3: $\text{Prob}[F|_{\rho} \equiv 1 \mid \rho_1(Y) = * \land G_1|_{\rho} \not\equiv 1] \leq \text{Prob}[F|_{\rho} \equiv 1 \mid G_1|_{\rho} \not\equiv 1].$ *Proof of Claim 3*: The condition $\rho_1(Y) = *$ does not affect the event $F|_{\rho} \equiv 1$.

Now let A, B, and C denote the events $\rho_1(Y) = *$, $F|_{\rho} \equiv 1$, and $G_1|_{\rho} \not\equiv 1$, respectively. Then $P = \text{Prob}[A \mid B \land C]$. By Claim 1, we have $\text{Prob}[A \mid C] = [2p/(1+p)]^{|Y|}$. Thus $P \leq [2p/(1+p)]^{|Y|}$ if and only if $\text{Prob}[A \mid B \land C] \leq$ $\operatorname{Prob}[A|C]$. But $\operatorname{Prob}[A\mid B\wedge C]\leq \operatorname{Prob}[A|C]$ if and only if $\operatorname{Prob}[B\mid A\wedge C]\leq$ Prob[B|C], which is true by Claim 3. Thus we have established an upper bound for P, i.e., the fact that $P < [2p/(1+p)]^{|Y|}$.

We will now proceed to obtain an upper bound for Q. Our method will utilize the induction hypothesis. We first need to explain some notation. Let $\sigma \in$ $\{0,1\}^Y$ be an assignment of the variables in Y to 0 and 1. Let " $min^{Y\leftarrow\sigma}(G|_{\rho})\geq$ s" denote the event that $G|_{\rho}$ has a minterm of size at least s, whose restriction to the variables in T assigns σ to precisely those variables of T that are in Y, and fixes no other variables in T.

We have Q = Prob $[min(G|_{\rho})^{Y} \ge s \mid \rho(Y) = * \land F|_{\rho} \equiv 1 \land G_{1}|_{\rho} \not\equiv 1] \le \sum_{\sigma \in \{0,1\}^{Y}, \sigma \ne 0^{Y}} Prob[min(G|_{\rho})^{Y \leftarrow \sigma} \ge s \mid \rho(Y) = * \land F|_{\rho} \equiv 1 \land G_{1}|_{\rho} \not\equiv 1].$

This is because if $G|_{\rho}$ has a minterm of size at least s, whose restriction to the variables in T assigns 0 and 1 to precisely those variables of T that are in Y, then this value assignment is some $\sigma \in \{0,1\}^Y$. Hence the sum of probabilities for all such σ (excluding $\sigma = 0^Y$ since a minterm must fix some variable in Y to 1) must be an upper bound.

Now fix σ . We have $\operatorname{Prob}[\min(G|_{\rho})^{Y \leftarrow \sigma} \geq s \mid \rho(Y) = * \wedge F|_{\rho} \equiv 1 \wedge G_{1}|_{\rho} \not\equiv 1] \leq \max_{\rho_{1}} \operatorname{Prob}[\min(G|_{\rho})^{Y \leftarrow \sigma} \geq s \mid \rho(Y) = * \wedge F|_{\rho} \equiv 1 \wedge G_{1}|_{\rho} \not\equiv 1]$. This is because the maximum is taken over all ρ_{1} (not to be confused with the specific ρ_{1} that we were concerned with earlier) assigning 0s and *s to the variables in T and only *s to the variables in Y.

Having already fixed σ , we now fix ρ_1 (again, not necessarily the specific ρ_1 that we were concerned with earlier). Let W be the set of variables in $T\setminus Y$ that are assigned * by this ρ_1 . Let $\tau\in\{0,1\}^W$ and let \overline{G} be G without G_1 , i.e., $\overline{G}=\bigwedge_{i=2}^w G_i|_{\rho}$. Suppose the variables in Y take the assignments given by our fixed σ . Now the phrase " $min((\overline{G}|\sigma\circ\tau\circ\rho_1)|_{\rho_2})\geq s$ " makes sense since $\sigma\circ\tau\circ\rho_1$ fixes all the variables in T, thereby "getting rid off" G_1 and allowing us to use the induction hypothesis. We have $\operatorname{Prob}[\min(G|_{\rho})^{Y\leftarrow\sigma}\geq s\mid \rho(Y)=*\wedge F|_{\rho}\equiv 1\wedge G_1|_{\rho}\not\equiv 1]\leq \max_{\tau\in\{0,1\}^W}\operatorname{Prob}[\min((\overline{G}|\sigma\circ\tau\circ\rho_1)|_{\rho_2})\geq s\mid \rho(Y)=*\wedge F|_{\rho}\equiv 1\wedge G_1|_{\rho}\not\equiv 1]\leq \max_{\tau\in\{0,1\}^W}\operatorname{Prob}[\min((\overline{G}|\sigma\circ\tau\circ\rho_1)|_{\rho_2})\geq s\mid P(Y)=*\wedge F|_{\rho}\equiv 1\wedge G_1|_{\rho}\not\equiv 1$. This is because the probability of a minterm having a certain length and certain properties is less than the probability of a minterm having the same properties but shorter length. Furthermore, the events $\rho(Y)=*$ and $G_1|_{\rho}\not\equiv 1$ do not depend on ρ_2 , and hence can be dropped. So if we fix the maximizing $\tau\in\{0,1\}^W$, we obtain $Q\leq\sum_{\sigma\in\{0,1\}^Y,\sigma\neq0^Y}\max_{\rho_1}\operatorname{Prob}[\min((\overline{G}|\sigma\circ\tau\circ\rho_1)|_{\rho_2})\geq s-|Y|\mid (F|_{\rho})_{\rho_2}\equiv 1]$ $\leq\sum_{\sigma\in\{0,1\}^Y,\sigma\neq0^Y}\max_{\rho_1}\operatorname{Prob}[\min((\overline{G}|\sigma\circ\tau\circ\rho_1)|_{\rho_2})\geq s-|Y|\mid (F|_{\rho})_{\rho_2}\equiv 1]$ $\leq\sum_{\sigma\in\{0,1\}^Y,\sigma\neq0^Y}\max_{\rho_1}\operatorname{Prob}[\min((\overline{G}|\sigma\circ\tau\circ\rho_1)|_{\rho_2})\geq s-|Y|\mid (F|_{\rho})_{\rho_2}\equiv 1]$ $\leq(2^{|Y|}-1)\alpha^{s-|Y|}$ (induction hypothesis)

We now have II
$$\leq \sum_{Y \subseteq T, Y \neq \emptyset} \operatorname{PQ} \leq \sum_{Y \subseteq T, Y \neq \emptyset} [2p/(1+p)]^{|Y|} (2^{|Y|} - 1)\alpha^{s - |Y|}$$

$$= \alpha^{s} \sum_{Y \subseteq T, Y \neq \emptyset} \left(\frac{2p}{\alpha(1+p)}\right)^{|Y|} (2^{|Y|} - 1)$$

$$= \alpha^{s} \sum_{Y \subseteq T, Y \neq \emptyset} \left(\frac{4p}{\alpha(1+p)}\right)^{|Y|} - \alpha^{s} \sum_{Y \subseteq T, Y \neq \emptyset} \left(\frac{2p}{\alpha(1+p)}\right)^{|Y|}$$

$$= \alpha^{s} \sum_{i=1}^{|T|} {|T| \choose i} \left(\frac{4p}{\alpha(1+p)}\right)^{i} - \alpha^{s} \sum_{i=1}^{|T|} {|T| \choose i} \left(\frac{2p}{\alpha(1+p)}\right)^{i}$$
(number of ways of choosing *i*-element nonempty subsets of T)

the all 0 assignment).

$$\leq \alpha^{s} \sum_{i=1}^{t} {t \choose i} \left(\frac{4p}{\alpha(1+p)}\right)^{i} - \alpha^{s} \sum_{i=1}^{t} {t \choose i} \left(\frac{2p}{\alpha(1+p)}\right)^{i} \quad (|T| \leq t)$$

$$= \alpha^{s} \left[\left(1 + \frac{4p}{\alpha(1+p)}\right)^{t} - \left(1 + \frac{2p}{\alpha(1+p)}\right)^{t} \right] \quad \text{(Binomial Theorem)}$$

 $= \alpha^s$, since α is the solution to the equation mentioned in the statement of the lemma.

It follows that $\operatorname{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1] \leq \max\{I, II\} \leq \alpha^{s}$, and the proof is complete.

Aside: Two events A and B are independent if and only if $\operatorname{Prob}[A \wedge B] = \operatorname{Prob}[A] \cdot \operatorname{Prob}[B]$, i.e, $|A \cap B|/|U| = |A||B|/|U|^2$, where U is the universe. All events are subsets of the universe. This is also equivalent to saying that $\operatorname{Prob}[A|B] = \operatorname{Prob}[A]$, i.e, $|A \cap B|/|B| = |A|/|U|$. Now recall the two facts concerning conditional probabilities that were used in the proof above:

Fact 1: $Prob[A \wedge B \mid C] = Prob[B|C] \cdot Prob[A \mid B \wedge C]$.

Fact 2: $\operatorname{Prob}[A \mid B \wedge C] \leq \operatorname{Prob}[A \mid C]$ if and only if $\operatorname{Prob}[B \mid A \wedge C] \leq \operatorname{Prob}[B \mid C]$.

Exercise 1 These two facts concerning conditional probabilities and events A, B, and C hold irrespective of whether the three events are independent or not. In particular, the two facts hold even if the three events A, B, and C are all the identical event, say, A.

We have seen that constant-depth $\{\land,\lor,\neg\}$ -circuits must have exponential size in order to compute PARITY, which is a mod 2 computation. In the next lecture, we shall see the Razborov-Smolensky result, which extends this result using the oracle technique to show that for any prime p, constant-depth $\{\land,\lor,\neg,\bmod p\}$ -circuits also must have exponential size in order to compute MAJORITY and to carry out mod q computations for any $q\neq p^k$. This will involve showing that \land,\lor,\neg , and mod p can be approximated by low-degree polynomials, while MAJORITY and mod q computations require polynomials of large degree. Meanwhile we have an

Exercise 2 Show that the PARITY lower bound also applies to MAJORITY. In particular,

- (i) Show exactly where to change the proof for PARITY to prove that constant-depth $\{\land,\lor,\lnot\}$ -circuits must have exponential size in order to compute MA-JORITY.
- (ii) Characterize the class of functions for which the argument in part (i) holds.