Today we will finish the proof of the stronger version of Hastad’s Lemma started in Lecture 6. We will include the Lecture 6 notes to have the complete proof in one set of notes. Recall that \(\min(C) \) denotes the maximum possible length of a minterm of the function computed by the circuit \(C \). And given a Boolean function \(F \) and a random distribution \(\rho \), we let \(F|_{\rho} \) denote the restriction of \(F \) to those variables that are assigned the value 1 by \(\rho \).

Lemma 1 (Stronger Hastad Lemma) Let \(G = \bigwedge_{i=1}^{w} G_i \) be a Boolean circuit of \(n \) variables with an AND gate at the top, where the \(G_i \)'s are circuits with OR gates on top and of fan-in \(\leq t \) to these OR gates. Let \(F(x_1, \ldots, x_n) \) be a Boolean function on the same \(n \) variables, and let \(\rho \) be a random distribution in \(\mathcal{R}_p, p > 0 \). Then for every \(s \geq 1 \), we have

\[
\Pr[\min(G|\rho) \geq s | F|_{\rho} \equiv 1] \leq \alpha^s,
\]

where \(\alpha \) is the unique positive root of

\[
\left(1 + \frac{4p}{\alpha(1+p)}\right)^t = \left(1 + \frac{2p}{\alpha(1+p)}\right)^t + 1.
\]

Remark: I mentioned the following a couple of times when we used Hastad’s lemma to prove Theorem 2, Theorem 3 in Lecture 5,6, i.e., the desired exponential (constant depth) circuit size lower bound for parity: Any function and in particular the function computed by the restricted circuit \(G_{\rho} \) above can be written as an OR of ANDS, where the ANDS are the function’s minterms. Therefore, for an appropriate choice of \(s \) and \(p \), Hastad’s switching lemma actually says that there exists a restriction (of not too many variables) which allows us to convert an AND of ORS which have small fan-in to an OR of ANDS of small fan-in. And this is what we use for Theorem 2 and Theorem 3.

The “there exists” above follows from non-zero probability of the minterm size event being estimated above; minterm size is exactly the bottom level AND fan-in of the resulting OR of ANDS circuit.

Proof: We proceed by induction on \(w \). If \(w = 0 \), then \(G \equiv 1 \) and the lemma is clearly true.

Now assume the lemma is true when the number of \(G_i \)'s is \(w-1 \) or less. Let \(G_1 \) be the rightmost “OR gate.” (See Figure 1.) Then we have

\[
\Pr[\min(G|\rho) \geq s | F|_{\rho} \equiv 1] \leq \max\{I, II\},
\]

where

\[
I = \Pr[\min(G|\rho) \geq s | F|_{\rho} \equiv 1 \land G_1|_{\rho} \equiv 1],
\]

and

\[
II = \Pr[\min(G|\rho) \geq s | F|_{\rho} \equiv 1 \land G_1|_{\rho} \not\equiv 1].
\]

We shall now examine \(I \). Let \(F' = F \land G_1 \). We observe that if \(G_1 \equiv 1 \),
then \(G|_\rho = \bigwedge_{i=1}^w G_i|_\rho = \bigwedge_{i=1}^w G_i|_{\rho_i} \). We have I = \(\text{Prob}[\min(G|_\rho) \geq s \mid F|_\rho \equiv 1 \land G_i|_{\rho_i} \equiv 1] \). Thus I is the probability that \(\bigwedge_{i=1}^w G_i|_{\rho_i} \) has a minterm of size at least \(s \) given \(F|_\rho \equiv 1 \). By the induction hypothesis, we have \(I \leq \alpha^s \).

Now we examine II = \(\text{Prob}[\min(G|_\rho) \geq s \mid F|_\rho \equiv 1 \land G_i|_{\rho_i} \neq 1] \). Suppose that the variables “going into” \(G_1 \) belong to a set \(T \subseteq \{x_1, \ldots, x_n\} \), where \(|T| \leq t \). Write \(\rho = \rho_1 \circ \rho_2 \), where \(\rho_1 : T \to \{0, 1, *\} \) is the restriction of \(\rho \) to the variables in \(T \), and \(\rho_2 : \{x_1, \ldots, x_n\} \to \{0, 1, *\} \) is the restriction of \(\rho \) to the variables not in \(T \) and assigns * to the variables in \(T \). We now have \(G_i|_{\rho_i} \neq 1 \) if and only if \(G_i|_{\rho_1} \neq 1 \). Since \(G_1 \) is an OR circuit, \(G_i|_{\rho_i} \neq 1 \) if and only if \(\rho_1 \) assigns all the variables in \(T \) the values 0 and * only. Thus we in fact have \(\rho_1 : T \to \{0, *, \} \). Since \(G \) is an AND of ORs circuit, every minterm of \(G|_{\rho} \) must make \(G_1 \) true. Hence for every minterm \(\sigma \) of \(G|_{\rho} \), there exists a variable \(x_i \in T \) such that \(x_i \) is part of \(\sigma \) and such that if \(\sigma = 1 \), then \(x_i = 1 \). In other words, every minterm of \(G|_{\rho} \) must nontrivially intersect \(T \). Hence we can partition the minterms of \(G|_{\rho} \) according to those variables in \(T \) to which the minterms give the values 0 or 1. Now suppose that for a minterm \(\sigma \) of \(G|_{\rho} \), we have \(\sigma \cap T = Y \). Then the fact that \(\sigma \) gives the value 0 or 1 to the variables in \(Y \) means that all the variables in \(Y \) are left unfixed (i.e., assigned *) by \(\rho_1 \). We will write this event as \(\rho_1(Y) = * \). And we will let “\(\min^Y(G|_{\rho}) \geq s \)” denote the event that \(G_i|_{\rho} \) has a minterm of size at least \(s \), whose restriction to the variables in \(T \) assigns values (0 or 1) to precisely those variables of \(T \) that are in \(Y \).

Recall the fact from elementary probability theory that \(\text{Prob}[A \land B \mid C] = \text{Prob}[B|C] \cdot \text{Prob}[A \mid B \land C] \). (This is true because from a diagram of three intersecting circles \(A \), \(B \), and \(C \), it readily follows that \(|A \cap B \cap C|/|C| = |B \cap C|/|C| : |A \cap B \cap C|/|B \cap C| \).) Using this and letting \(A \), \(B \), and \(C \) denote the events \(\min^Y(G|_{\rho}) \geq s \), \(\rho_1(Y) = * \), and \(F|_\rho \equiv 1 \land G_i|_{\rho_i} \neq 1 \), respectively, we now have:

\[
\begin{align*}
\text{II} & = \text{Prob}[\min(G|_{\rho}) \geq s \mid F|_\rho \equiv 1 \land G_i|_{\rho_i} \neq 1] \\
& \leq \sum_{Y \subseteq T, Y \neq \emptyset} \text{Prob}[\min(G|_{\rho})^Y \geq s \mid F|_\rho \equiv 1 \land G_i|_{\rho_i} \neq 1] \\
& \leq \sum_{Y \subseteq T, Y \neq \emptyset} \text{Prob}[\min(G|_{\rho})^Y \geq s \land \rho_1(Y) = * \mid F|_\rho \equiv 1 \land G_i|_{\rho_i} \neq 1]
\end{align*}
\]
\[
\begin{align*}
&= \sum_{Y \subseteq T, Y \neq \emptyset} \text{Prob}[A \land B \mid C] \\
&= \sum_{Y \subseteq T, Y \neq \emptyset} \text{Prob}[B \mid C] \cdot \text{Prob}[A \mid B \land C] \\
&= \sum_{Y \subseteq T, Y \neq \emptyset} \text{Prob}[\rho_1(Y) = * \mid F_{\rho} \equiv 1 \land G_1|_{\rho} \neq 1] \\
&\quad \cdot \text{Prob}[\min(G|_{\rho})^Y \geq s \mid \rho_1(Y) = * \land F_{\rho} \equiv 1 \land G_1|_{\rho} \neq 1].
\end{align*}
\]

Let \(P = \text{Prob}[\rho_1(Y) = * \mid F_{\rho} \equiv 1 \land G_1|_{\rho} \neq 1] \) and let \(Q = \text{Prob}[\min(G|_{\rho})^Y \geq s \mid \rho_1(Y) = * \land F_{\rho} \equiv 1 \land G_1|_{\rho} \neq 1] \) for notational convenience.

We will now proceed to obtain an upper bound for \(P \) using the following three claims:

Claim 1: Looking at \(P \) and ignoring the condition \(F_{\rho} \equiv 1 \), we arrive at \(\text{Prob}[\rho_1(Y) = * \mid G_1|_{\rho} \neq 1] = [2p/(1 + p)]^{|Y|} \).

Proof of Claim 1: The condition \(G_1|_{\rho} \neq 1 \) is equivalent to saying that all variables “going into” \(G_1 \) are assigned 0 or * by \(\rho_1 \). The probability of a variable going into \(G_1 \) being assigned a 0 or a * is \((1 - p)/2 + p = (p + 1)/2 \). Hence the probability of a variable in \(Y \) being assigned a *, given that all variables going into \(G_1 \) are assigned 0 or *, is \(p/[(p + 1)/2] = 2p/(p + 1) \). It follows that the probability of every variable in \(Y \) being assigned a *, given that all variables going into \(G_1 \) are assigned 0 or *, i.e., \(\text{Prob}[\rho_1(Y) = * \mid G_1|_{\rho} \neq 1] \), is \([2p/(1 + p)]^{|Y|}\).

Claim 2: \(\text{Prob}[A \mid B \land C] \leq \text{Prob}[A|C] \) if and only if \(\text{Prob}[B \mid A \land C] \leq \text{Prob}[B|C] \).

Proof of Claim 2: From a diagram of three intersecting circles \(A, B, \) and \(C \), it is evident that we have \(\text{Prob}[A \mid B \land C] \leq \text{Prob}[A|C] \) if and only if we have \(|A \cap B \cap C|/|B \cap C| \leq |A \cap C|/|C| \). But we have \(|A \cap B \cap C|/|B \cap C| \leq |A \cap C|/|C| \) if and only if \(|A \cap B \cap C|/|A \cap C| \leq |B \cap C|/|C| \) if and only if \(\text{Prob}[B \mid A \land C] \leq \text{Prob}[B|C] \).

Claim 3: \(\text{Prob}[F_{\rho} \equiv 1 \mid \rho_1(Y) = * \land G_1|_{\rho} \neq 1] \leq \text{Prob}[F_{\rho} \equiv 1 \mid G_1|_{\rho} \neq 1]. \)

Proof of Claim 3: The condition \(\rho_1(Y) = * \) does not affect the event \(F_{\rho} \equiv 1 \).

Now let \(A, B, \) and \(C \) denote the events \(\rho_1(Y) = *, F_{\rho} \equiv 1, \) and \(G_1|_{\rho} \neq 1, \) respectively. Then \(P = \text{Prob}[A \mid B \land C]. \) By Claim 1, we have \(\text{Prob}[A|C] = [2p/(1 + p)]^{|Y|}. \) Thus \(P \leq [2p/(1 + p)]^{|Y|} \) if and only if \(\text{Prob}[A \mid B \land C] \leq \text{Prob}[A|C] \). But \(\text{Prob}[A \mid B \land C] \leq \text{Prob}[A|C] \) if and only if \(\text{Prob}[B \mid A \land C] \leq \text{Prob}[B|C] \), which is true by Claim 3. Thus we have established an upper bound for \(P \), i.e., the fact that \(P \leq [2p/(1 + p)]^{|Y|}. \)

We will now proceed to obtain an upper bound for \(Q \). Our method will utilize the induction hypothesis. We first need to explain some notation. Let \(\sigma \in \{0, 1\}^Y \) be an assignment of the variables in \(Y \) to 0 and 1. Let \(\text{min}^{Y \rightarrow \sigma}(G|_{\rho}) \geq s \) denote the event that \(G_1|_{\rho} \) has a minterm of size at least \(s \), whose restriction to the variables in \(T \) assigns \(\sigma \) to precisely those variables of \(T \) that are in \(Y \), and fixes no other variables in \(T \).
We have $Q = \text{Prob}[\min(G|\rho)^Y \geq s \mid \rho(Y) = * \land F|\rho \equiv 1 \land G_1|\rho \neq 1] \leq \sum_{\sigma \in \{0,1\}^Y, \sigma \neq 0^Y} \text{Prob}[\min(G|\rho)^{Y\leftarrow\sigma} \geq s \mid \rho(Y) = * \land F|\rho \equiv 1 \land G_1|\rho \neq 1]$. This is because if $G|\rho$ has a minterm of size at least s, whose restriction to the variables in T assigns 0 and 1 to precisely those variables of T that are in Y, then this value assignment is some $\sigma \in \{0,1\}^Y$. Hence the sum of probabilities for all such σ (excluding $\sigma = 0^Y$ since a minterm must fix some variable in Y to 1) must be an upper bound.

Now fix σ. We have $\text{Prob}[\min(G|\rho)^{Y\leftarrow\sigma} \geq s \mid \rho(Y) = * \land F|\rho \equiv 1 \land G_1|\rho \neq 1] \leq \max_{\tau \in \{0,1\}^w} \text{Prob}[\min((G\sigma \circ \tau \circ \rho_1)|\rho_2) \geq s \mid \rho(Y) = * \land F|\rho \equiv 1 \land G_1|\rho \neq 1]$. This is because the maximum is taken over all ρ_1 (not to be confused with the specific ρ_1 that we were concerned with earlier) assigning 0s and 1s to the variables in T and only $*$s to the variables in Y.

Having already fixed σ, we now fix ρ_1 (again, not necessarily the specific ρ_1 that we were concerned with earlier). Let W be the set of variables in $T \setminus Y$ that are assigned $*$ by this ρ_1. Let $\tau \in \{0,1\}^W$ and let $G = G|\rho_1$. Suppose the variables in Y take the assignments given by our fixed σ. Now the phrase $\min((G\sigma \circ \tau \circ \rho_1)|\rho_2) \geq s$ makes sense since $\sigma \circ \tau \circ \rho_1$ fixes all the variables in T, thereby “getting rid off” G_1 and allowing us to use the induction hypothesis. We have

$$\text{Prob}[\min(G|\rho)^{Y\leftarrow\sigma} \geq s \mid \rho(Y) = * \land F|\rho \equiv 1 \land G_1|\rho \neq 1] \leq \max_{\tau \in \{0,1\}^w} \text{Prob}[\min((G\sigma \circ \tau \circ \rho_1)|\rho_2) \geq s \mid (F|\rho)|\rho_2 \equiv 1]$$

This is because the probability of a minterm having a certain length and certain properties is less than the probability of a minterm having the same properties but shorter length. Furthermore, the events $\rho(Y) = *$ and $G_1|\rho \neq 1$ do not depend on ρ_2, and hence can be dropped. So if we fix the maximizing $\tau \in \{0,1\}^W$, we obtain $Q \leq \sum_{\sigma \in \{0,1\}^Y, \sigma \neq 0^Y} \max_{\rho_1} \text{Prob}[\min((G\sigma \circ \tau \circ \rho_1)|\rho_2) \geq s \mid (F|\rho)|\rho_2 \equiv 1]$}

$$\leq \sum_{\sigma \in \{0,1\}^Y, \sigma \neq 0^Y} \max_{\rho_1} \alpha^{s-|Y|} \quad \text{(induction hypothesis)}$$

$$= \sum_{\sigma \in \{0,1\}^Y, \sigma \neq 0^Y} \alpha^{s-|Y|} = (2^{|Y|-1}) \alpha^{s-|Y|} \quad \text{[2^{|Y|} ways of assigning 0s and 1s to variables in Y, including the all 0 assignment].}$$

We now have $\text{II} \leq \sum_{Y \subseteq T, Y \neq \emptyset} PQ \leq \sum_{Y \subseteq T, Y \neq \emptyset} [2p/(1+p)]^{|Y|} \cdot (2^{|Y|} - 1) \alpha^{s-|Y|}$

$$= \alpha^s \sum_{Y \subseteq T, Y \neq \emptyset} \left(\frac{2p}{\alpha(1+p)}\right)^{|Y|} \cdot (2^{|Y|} - 1)$$

$$= \alpha^s \sum_{Y \subseteq T, Y \neq \emptyset} \left(\frac{4p}{\alpha(1+p)}\right)^{|Y|} - \alpha^s \sum_{Y \subseteq T, Y \neq \emptyset} \left(\frac{2p}{\alpha(1+p)}\right)^{|Y|}$$

$$= \alpha^s \sum_{i=1}^{|T|} \left(\frac{|T|}{i}\right) \left(\frac{4p}{\alpha(1+p)}\right)^i - \alpha^s \sum_{i=1}^{|T|} \left(\frac{|T|}{i}\right) \left(\frac{2p}{\alpha(1+p)}\right)^i$$

(number of ways of choosing i-element nonempty subsets of T)
\[\leq \alpha^s \sum_{i=1}^{t} \left(\frac{4p}{\alpha(1+p)} \right)^i - \alpha^s \sum_{i=1}^{t} \left(\frac{2p}{\alpha(1+p)} \right)^i \quad (|I| \leq t) \]
\[= \alpha^s \left[\left(1 + \frac{4p}{\alpha(1+p)} \right)^t - \left(1 + \frac{2p}{\alpha(1+p)} \right)^t \right] \quad \text{(Binomial Theorem)} \]
\[= \alpha^s, \text{ since } \alpha \text{ is the solution to the equation mentioned in the statement of the lemma.} \]

It follows that \(\text{Prob}[\min(G_{\rho}) \geq s \mid F_{\rho} \equiv 1] \leq \max\{ I, II \} \leq \alpha^s \), and the proof is complete.

Aside: Two events \(A \) and \(B \) are independent if and only if \(\text{Prob}[A \land B] = \text{Prob}[A] \cdot \text{Prob}[B] \), i.e., \(|A \cap B|/|U| = |A||B|/|U|^2 \), where \(U \) is the universe. All events are subsets of the universe. This is also equivalent to saying that \(\text{Prob}[A | B] = \text{Prob}[A] \), i.e., \(|A \cap B|/|B| = |A|/|U| \). Now recall the two facts concerning conditional probabilities that were used in the proof above:

Fact 1: \(\text{Prob}[A \land B \mid C] = \text{Prob}[B | C] \cdot \text{Prob}[A | B \land C] \).

Fact 2: \(\text{Prob}[A \mid B \land C] \leq \text{Prob}[A | C] \) if and only if \(\text{Prob}[B \mid A \land C] \leq \text{Prob}[B | C] \).

Exercise 1 These two facts concerning conditional probabilities and events \(A, B, \) and \(C \) hold irrespective of whether the three events are independent or not. In particular, the two facts hold even if the three events \(A, B, \) and \(C \) are all the identical event, say, \(A \).

We have seen that constant-depth \(\{\land, \lor, \neg\}\)-circuits must have exponential size in order to compute \(\text{PARITY} \), which is a mod 2 computation. In the next lecture, we shall see the Razborov-Smolensky result, which extends this result using the oracle technique to show that for any prime \(p \), constant-depth \(\{\land, \lor, \neg, \text{mod} p\} \)-circuits also must have exponential size in order to compute \(\text{MAJORITY} \) and to carry out \(\text{mod} \ q \) computations for any \(q \neq p^k \). This will involve showing that \(\land, \lor, \neg, \) and \(\text{mod} \ p \) can be approximated by low-degree polynomials, while \(\text{MAJORITY} \) and \(\text{mod} \ q \) computations require polynomials of large degree. Meanwhile we have an

Exercise 2 Show that the \(\text{PARITY} \) lower bound also applies to \(\text{MAJORITY} \). In particular,

(i) Show exactly where to change the proof for \(\text{PARITY} \) to prove that constant-depth \(\{\land, \lor, \neg\}\)-circuits must have exponential size in order to compute \(\text{MAJORITY} \).

(ii) Characterize the class of functions for which the argument in part (i) holds.