In today’s lecture, we will start the proof of the stronger version of Hastad’s Lemma stated in Lecture 4. We first explain some notation.

We will let \(\text{min}(C) \) denote the maximum possible length of a minterm of the function computed by the circuit \(C \). And given a Boolean function \(F \) and a random distribution \(\rho \), we will let \(F|_\rho \) denote the restriction of \(F \) to those variables that are assigned the value 1 by \(\rho \).

Lemma 1 (Stronger Hastad Lemma) Let \(G = \bigwedge_{i=1}^w G_i \) be a Boolean circuit of \(n \) variables with an AND gate at the top, where the \(G_i \)'s are circuits with OR gates on top and of fan-in \(t \) to these OR gates. Let \(F(x_1, \ldots, x_n) \) be a Boolean function on the same \(n \) variables, and let \(\rho \) be a random distribution in \(\mathcal{R}_p, p > 0 \). Then for every \(s \geq 0 \), we have \(\Pr[\text{min}(G|_\rho) \geq s \mid F|_\rho \equiv 1] \leq \alpha^s \), where \(\alpha = \gamma t \) and \(\gamma = 2/\ln \phi \approx 4.16, \phi = (1 + \sqrt{5})/2 \) being the golden ratio.

Proof: We proceed by induction on \(w \). If \(w = 0 \), then \(G \equiv 1 \) and the lemma is clearly true.

Now assume the lemma is true when the number of \(G_i \)'s is \(w - 1 \) or less. Let \(G_1 \) be the rightmost “OR gate.” (See Figure 1.) Then we have \(\Pr[\text{min}(G|_\rho) \geq s \mid F|_\rho \equiv 1] \leq \max\{I, II\} \), where \(I = \Pr[\text{min}(G|_\rho) \geq s \mid F|_\rho \equiv 1 \land G_1|_\rho \equiv 1] \) and \(II = \Pr[\text{min}(G|_\rho) \geq s \mid F|_\rho \equiv 1 \land G_1|_\rho \not\equiv 1] \).

![Figure 1: The Circuit G](image)

We shall now examine \(I \). Let \(F' = F \land G_1 \). We observe that if \(G_1 \equiv 1 \), then \(G|_\rho = \bigwedge_{i=1}^w G_i|_\rho = \bigwedge_{i=2}^w G_i|_\rho \). We have \(I = \Pr[\text{min}(G|_\rho) \geq s \mid F|_\rho \equiv 1] \).
1 \land G_1|_\rho \equiv 1 \right] = \text{Prob}[\min(G|_\rho) \geq s \mid (F \land G_1)|_\rho \equiv 1]. \text{ Thus I is the probability that } \bigwedge_{i=2}^{w} G_i|_\rho \text{ has a minterm of size at least } s \text{ given } F|_\rho \equiv 1. \text{ By the induction hypothesis, we have } I \leq \alpha^s.

Now we examine II = \text{Prob}[\min(G|_\rho) \geq s \mid F|_\rho \equiv 1 \land G_1|_\rho \not\equiv 1]. \text{ Suppose that the variables “going into” } G_1 \text{ have indices in a set } T \subset \{1, \ldots, n\}, \text{ where } |T| \leq t. \text{ Write } \rho = \rho_1 \circ \rho_2, \text{ where } \rho_1 : \{x_i \}_{i \in T} \rightarrow \{0, 1, *\} \text{ is the restriction of } \rho \text{ to the variables indexed by } T, \text{ and } \rho_2 : \{x_i \}_{i \in \{1, \ldots, n\} \setminus T} \rightarrow \{0, 1, *\}, * \in T, \text{ is the restriction of } \rho \text{ to the variables not indexed by } T. \text{ We now have } G_1|_{\rho_1} \not\equiv 1 \text{ if and only if } G_1|_{\rho_1} \not\equiv 1. \text{ Since } G_1 \text{ is an OR circuit, } G_1|_{\rho_1} \not\equiv 1 \text{ if and only if } \rho_1 \text{ assigns all the variables indexed by } T \text{ to the values } 0 \text{ and } * \text{ only. Thus we in fact have } \rho_1 : \{x_i \}_{i \in T} \rightarrow \{0, *\}. \text{ Since } G \text{ is an AND of ORs circuit, every minterm of } G|_\rho \text{ makes } G_1 \text{ true. Hence for every minterm } \sigma \text{ of } G|_\rho, \text{ there exists a variable } x_i, \ i \in T, \text{ such that if } \sigma = 1, \text{ then } x_i = 1.