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In today’s lecture, we will start the proof of the stronger version of Hastad’s
Lemma stated in Lecture 4. We first explain some notation.

We will let min(C) denote the maximum possible length of a minterm of
the function computed by the circuit C. And given a Boolean function F' and
a random distribution p, we will let F|, denote the restriction of F' to those
variables that are assigned the value 1 by p.

Lemma 1 (Stronger Hastad Lemma) Let G = /\ G; be a Boolean circuit

i=1
of n wvariables with an AND gate at the top, wher; the G;s are circuits with
OR gates on top and of fan-in < t to these OR gates. Let F(xy,...,%,) be a
Boolean function on the same n variables, and let p be a random distribution in
Rp, p > 0. Then for every s > 0, we have Prob/min(G|,) > s | F|, =1] < o*,
where a = ypt and v =2/In¢ ~ 4.16, ¢ = (1 + v/5)/2 being the golden ratio.

Proof: We proceed by induction on w. If w =0, then G = 1 and the lemma is
clearly true.

Now assume the lemma, is true when the number of G;s is w — 1 or less. Let
G4 be the rightmost “OR gate.” (See Figure 1.) Then we have Prob[min(G|,) >
s | Fl|, = 1] < max{l, I}, where I = Prob[ min(G|,) >s | Fl,=1A Gi|, =1
] and IT = Prob[ min(G|,) >s | Fl,=1 A Gi|, #1].
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Figure 1: The Circuit G

We shall now examine I. Let F' = F' A G;. We observe that if G; = 1,
w w
then G|, = /\Gi|p = /\Gi|p. We have I = Prob[ min(G|,) > s | F|,

=1 =2
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1 A Gilp =1] = Prob[ min(G|,) > s | (FAG1)|, =1]. ThusIis the
probability that A, Gi|, has a minterm of size at least s given F'|, = 1. By
the indction hypothesis, we have I < ao?.

Now we examine II = Prob[ min(G|,) >s | F|, =1 A G1|, # 1]. Suppose
that the variables “going into” G have indices in a set T C {1,...,n}, where
|T| < t. Write p = p1 0 pa, where py : {x;}ier — {0, 1, *} is the restriction of p
to the variables indexed by T, and ps : {Zi}icq1,...np\7 = {0, 1, %}, x € T, is the
restriction of p to the variables not indexed by T'. We now have G1|, # 1 if and
only if G1|,, # 1. Since Gy is an OR circuit, Gi|, # 1 if and only if p; assigns
all the variables indexed by T to the values 0 and * only. Thus we in fact have
p1 : {zi}ier — {0,*}. Since G is an AND of ORs circuit, every minterm of G|,
makes G true. Hence for every minterm o of G|,, there exists a variable z;,
1 € T, such that if ¢ =1, then z; = 1.
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