Recent advances in Complexity CIS 6930/CIS 4930	September 12, 2002
Lecture 6	
Lacturar: Dr. Maara Sitharam	Scribe: Zia IIddin

In today's lecture, we will start the proof of the stronger version of Hastad's Lemma stated in Lecture 4. We first explain some notation.

We will let min(C) denote the maximum possible length of a minterm of the function computed by the circuit C. And given a Boolean function F and a random distribution ρ , we will let $F|_{\rho}$ denote the restriction of F to those variables that are assigned the value 1 by ρ .

Lemma 1 (Stronger Hastad Lemma) Let $G = \bigwedge_{i=1}^{w} G_i$ be a Boolean circuit of n variables with an AND gate at the top, where the G_i s are circuits with OR gates on top and of fan-in $\leq t$ to these OR gates. Let $F(x_1, \ldots, x_n)$ be a Boolean function on the same n variables, and let ρ be a random distribution in \mathcal{R}_p , p > 0. Then for every $s \geq 0$, we have $Prob[min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1] \leq \alpha^s$, where $\alpha = \gamma pt$ and $\gamma = 2/\ln \phi \approx 4.16$, $\phi = (1 + \sqrt{5})/2$ being the golden ratio.

Proof: We proceed by induction on w. If w = 0, then $G \equiv 1$ and the lemma is clearly true.

Now assume the lemma is true when the number of G_is is w-1 or less. Let G_1 be the rightmost "OR gate." (See Figure 1.) Then we have $\operatorname{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1] \leq \max\{I, II\}$, where $I = \operatorname{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1 \land G_1|_{\rho} \equiv 1$] and $II = \operatorname{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1 \land G_1|_{\rho} \not\equiv 1$].

Figure 1: The Circuit G

We shall now examine I. Let $F' = F \wedge G_1$. We observe that if $G_1 \equiv 1$, then $G|_{\rho} = \bigwedge_{i=1}^{w} G_i|_{\rho} = \bigwedge_{i=2}^{w} G_i|_{\rho}$. We have $I = \text{Prob}[\min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv$

 $1 \wedge G_1|_{\rho} \equiv 1$] = Prob[$min(G|_{\rho}) \geq s \mid (F \wedge G_1)|_{\rho} \equiv 1$]. Thus I is the probability that $\bigwedge_{i=2}^w G_i|_{\rho}$ has a minterm of size at least s given $F'|_{\rho} \equiv 1$. By the indction hypothesis, we have $I \leq \alpha^s$.

Now we examine II = Prob[$min(G|_{\rho}) \geq s \mid F|_{\rho} \equiv 1 \land G_{1}|_{\rho} \not\equiv 1$]. Suppose that the variables "going into" G_{1} have indices in a set $T \subset \{1,\ldots,n\}$, where $|T| \leq t$. Write $\rho = \rho_{1} \circ \rho_{2}$, where $\rho_{1}: \{x_{i}\}_{i \in T} \to \{0,1,*\}$ is the restriction of ρ to the variables indexed by T, and $\rho_{2}: \{x_{i}\}_{i \in \{1,\ldots,n\}\setminus T} \to \{0,1,*\}, * \in T$, is the restriction of ρ to the variables not indexed by T. We now have $G_{1}|_{\rho} \not\equiv 1$ if and only if $G_{1}|_{\rho_{1}} \not\equiv 1$. Since G_{1} is an OR circuit, $G_{1}|_{\rho} \not\equiv 1$ if and only if ρ_{1} assigns all the variables indexed by T to the values 0 and * only. Thus we in fact have $\rho_{1}: \{x_{i}\}_{i \in T} \to \{0,*\}$. Since G is an AND of ORs circuit, every minterm of $G|_{\rho}$ makes G_{1} true. Hence for every minterm σ of $G|_{\rho}$, there exists a variable x_{i} , $i \in T$, such that if $\sigma = 1$, then $x_{i} = 1$.