Lecture 5

Recent advances in Complexity CIS 6930/CIS 4930 September 10, 2002

Lecturer: Dr. Meera Sitharam Scribe: Zia Uddin

The Lecture 4 notes contain the proof, using Hastad’s Switching Lemma, of
the fact that the parity function PARITY cannot be computed by a depth d
circuit of “small” size < 2(1/192"’? with unbounded fan-in. That proof is in
the Boppana-Sipser paper in the Handbook of TCS. As noted by Andrew, there
is a mistake in the authors’ proof, which has been duly corrected in Andrew’s
write-up. Today we shall give a more intuitively appreciable proof of the above
fact, again using Hastad’s Lemma.

We begin with some definitions given last time. Recall that a restriction, p, is
a mapping from a set {1, ..., %, } of variables to the set {0, 1, %}. Here p(z;) =0
(resp. 1) means z; is set to 0 (resp. 1), while p(x;) = * means x; remains the
variable z; under the action of p. Fix 0 < p < 1. By a random restriction p
from Rp, we mean a restriction p that independently assigns to each variable
x; a value in {0,1,*} with the probabilities Prob[p(z;) = 0] = (1-p)/2 =
Prob[p(z;) = 1] and Prob[p(z;) =*] = p.

Given a function f(x1,...,2zy), we now define the induced function f|, by an
example: Let f(z1,%2,23,24,25) = THs 5 and suppose p(z1) = 1, p(z2) = *,
p(z3) = *, p(z4) = 1, and p(xs) = *. Then f|,(z2, z3,25) = THi 3.

Note that the induced circuit C|, computing f|, is obtained from the circuit
C computing the original function f by eliminating those gates of C' that become
determined as a result of p’s setting any of the variables to 0 or 1.

We now restate

Lemma 1 (Hastad’s Switching Lemma) Let G be an AND of ORs circuit
of bottom fan-in (i.e., fan-in of the ORs) < t. Let p be a random restriction
from Rp. Then for every s > 0, G|, can be written as an OR of ANDs circuit
of bottom fan-in < s with probability > 1 — o, where a is the unique positive

1+t ) 2 (1422 ) 11
root of( +a(1+p)) —( +a(1+p)) + 1.

Remark 1 By looking at =G, it is possible to convert an OR of ANDs circuit
into an AND of ORs circuit subject to the same restrictions: The proof of Has-
tad’s Lemma works just as well.

Remark 2 It can be shown that if p = o(1), then a = 2pt/In¢$, where
é = (1 ++/5)/2, the golden ratio.

We now state the theorem we shall prove today. Note that the statement is
slightly different from what is stated as Theorem 6 in the Lecture 4 notes. But
this difference is not important.



Theorem 2 For each n,k > 0, PARITY cannot be computed by a depth k
2(1/10)(k/(k—1))n1/(k—1).

circuit of size (total number of all gates)
Remark 3 This is an almost optimal lower bound since by a previous exercise,
there do exist circuits of depth d and size n2""'" that compute PARITY.

As a corollary to Theorem 2, we can prove

Exercise 1 Any polynomial size cicuit computing PARITY must have depth
> %. (As an aside, recall that by a previous exercise, the corresponding
upper bound result is: PARITY can be computed by O(n) size and O(logn)

depth circuits.)

Before proceeding to prove Theorem 2, we shall use Hastad’s Lemma to
prove the following

Theorem 3 PARITY cannot be computed by a depth k circuit containing <
207100 ™) gubcircuits all of depth > 2 and bottom fan-in < (1/10)nt/ (=1,

Proof: Note that when we speak of size in this proof, we do not include the
bottom level gates. And as for the bottom level gates, we are only interested in
their fan-in. Our proof proceeds by induction on the depth k.

For the basis of induction k& = 2, recall that in the process of proving Lu-
panov’s result in Lecture 3, we proved that each prime implicant for PARITY
must have all n of the variables. Consequently, any depth k = 2 circuit comput-
ing PARITY must have bottom fan-in > n. This verifies the induction basis.

Now assume, as the induction step, that Theorem 3 holds for all circuits of
depth < k — 1. Suppose for the sake of contradiction that there does exist a
PARITY-computing circuit C of depth k containing < 2(/10®"*™) qubeir-
cuits all of depth > 2 and bottom fan-in < ¢t = (1/10)n/*~1). We shall use a
random restriction and Hastad’s Lemma to contradict the induction step.

Let p = n~Y/(*=1_ Allow C to be acted upon by a random restriction
p from R,. By Hastad’s Lemma, for every s > 0, each depth 2 subcircuit
(which may be assumed to be an AND of ORs circuit by Remark 1) of C' can
be written as an OR of ANDs circuit of bottom fan-in < s with probabilty
>1—a’ Lett= (1/10)n*/*=1. Then pt = 1/10 and hence by Remark 2,
we have a = 2pt/In[(1 + v/5)/2] = {5In[(1 + v/5)/2]} ' < 1/2. Now choose
s = (1/10)n'/*=1) = ¢, Tt follows that with probability > 1 —a® > 0, we
can replace the depth 2 AND of ORs subcircuits with OR of ANDs subcir-
cuits and still have the bottom fan-in of C|, bounded by s = (1/10)n'/(k=1).
Since this replacement results in two adjacent levels of ORs which can be col-
lapsed to a single level, C|, is a circuit of depth £ — 1 with bottom fan-in
< s = (1/10)n'/k=1) However the size of C|, is the same as the size of C
since we do not take into account the bottom gates. Thus C|, is a depth k — 1
circuit containing < 2(1/10("*™V) quhcircuits all of depth > 2 and bottom
fan-in < (1/10)n!/*=1) which is obtained with a probability > 0.

Note that C|, is not a circuit of n vriables: Some of these variables are set
by p to be 0 or 1. So we must determine the number m of variables that are
assigned the value * by p. Then we will prove that C|, is a depth k — 1 circuit
containing < 2(/10m"*™®) qubcircuits all of depth > 2 and bottom fan-in
< (1/10)m!'/*#=2) | thereby contradicting the induction hypothesis.
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We will first prove the

Claim 1: The expected value of the number of variables assigned * by p is
n

n _r _ _
Zr(r)pr(l _p)n — n(k 2)/(k 1)_

=1
%roof of Claim 1: QObserve that if r of the n variables are assigned *, then
there are 2"~ " ways of assigning the reamining n — r variables a 0 or a 1. Since
Prob[p(z;) = 0] = (1 —p)/2 = Prob[p(z;) = 1] and Prob[p(z;) = %]
= p, it follows that the probability of assigning any r of the n variables a

1 _ n—r
x i8 (n) pr2n—r (Tp) . Now by the definition of expected value, the
r

n n—r
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expected number of variables assigned a * is E r(n> pr2nTr (Tp> =
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n~/ k=1 we have np = nn~V/ k-1 = p1-[1/;=1] = p(k=2)/(k=1)  Hence we

n
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r
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equality is certainly true for n» = 1. Suppose as the induction hypothesis
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Thus we have proved that the expected value of the number of variables
assigned * by p is n(k=2/(k=1) Let m = [nth=2/(k=1) |,

Now we prove the
Claim 2: The restriction p leaves m of the n variables free with a probability
>1/3.
Proof of Claim 2: It suffices to show that the sum of the probabilities for
assigning r of the varibles a *, with r ranging from m = [n(*=2/*=1| (the ex-
pected number of unfixed variables for our chosen p) to n, exceeds 1/3. Hence

n n—r
1_

we will prove by induction on n the inequality Z (:) pr2mr (Tp> =

r=m
n

Z (Z)pr(l —p)™ " >1/3. For n = 1, we have m = 1, and the inequality
r=m
holds. Let u = |(n — 1)(*=2)/(k=1)| "and assume the induction hypothesis, i.e.,
n—1

-1
Z (n )pr(l —p)" "1 >1/3. Note that u + 1 = m. Once again, using the
r

r=u
combinatorial fact introduced in the proof of Claim 1, we obtain the following:

£ (oo e 2 [() (oo

r=m

= zn: (Z:i)ﬂ(l—p)"” + Y (n;l)zf(l—p)n_r

<

3
=3
.
Il
3

=

I
}
MNM
S
S 3
[y
N———
N—— ’ﬁ‘]
’U_g t
=
' [
3 S
: N
‘ 7
1
‘ T
= [=
T+
|
Miiz
/N
S S
|
5 "
3
4 X
= _
' [
= S
ﬁ N
‘ 7
N =

ﬁ
I
3

~! (induction hypothesis and last term in binomial expansion)

Y

Lk B
-+

=3 e

= ——+ (since p = n~—1/(k=1))

n—1
n k-1

Sw
+3
v ]

(arithmetic)

> =, since n > 2 certainly implies (n + 2)/n(*~1D/(k=1) > 1,
Thus we have shown that p leaves m of the n variables free with a probability

exceeding 1/3.

QO | =l

To finish the proof, note that we have n = m®*=1/(=2) = And recall that
C|, is a depth k — 1 circuit containing < 2(1/10)(n*~) gubeircuits all of depth
> 2 and bottom fan-in < (1/10)n'/(*=1). Substituting m for n, we see that C|,

is a depth k— 1 circuit containing < 2(1/10(m" ™) guhcircuits all of depth > 2
and bottom fan-in < (1/10)m'/(**=2). However this contradicts the induction
hypothesis.

We can now prove that Theorem 3 implies Theorem 2:

Proof of Theorem 2: Suppose for the sake of contradiction that there is a
depth k circuit C of size 20/10®/* a0 Ghich computes PARITY. We
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may think of this circuit as a depth k + 1 circuit with bottom fan-in = 1. Let
p=1/10, s = (1/10)*k/k=Vp1/(k=1) "and let p be a random restriction from R,,.
This time, t = 1 and so a = 2pt/In[(1 +/5)/2] = {5In[(1 + v/5)/2]} ! < 1/2,
as in the proof of Theorem 3. By Hastad’s Lemma and the reasoning used
in the proof of Theorem 3, we know with nonzero probability that C|, is a
depth k circuit (because of the collapsing of the adjacent levels of ORs) of size
2(1/10) /= E=D (i ce size only decreases after the interchanging of gates;
we do not include the bottom level gates, so the new size is the number of
depth 3 or higher gates of previous circuit) and bottom fan-in s. We saw in
the proof of Theorem 2 that the expected number of variables assigned * by p
is m = np = n/10. Substituting n = 10m into 2(1/10) /IR E=D e oot
(1/10) B/ (=1 11/ (=D 1/ (k=1) - 51gl1/ =1 =(k/ =D 1/ (k=1) 51 /10)m M/ #= 1)
And subsituting m for n in s = (1/10)*/k=Un!/(k=1) gives a bottom fan in
of < (1/10)m*/(*=1)_ Tt follows that C|, is a depth k circuit (of m variables) of
size < 201/10mY ™Y 414 bottom fan-in < (1/10)m!/*=1) which cannot exist
by Theorem 3.

Note that in the proof of Theorem 3, the random restriction p is not constructed
explicitly but proved to exist with probability > 0. This leads to an

Open Problem 1: Can we prove Theorem 3 without using probabilistic argu-
ments?

Possibility 1: Produce an algorithm that explicitly constructs, from the de-
scription of C' in the proof of Theorem 3, the circuit C|, that contradicts the
induction hypothesis.

Possibility 2: Use an analytic (e.g., Fourier methods) or algebraic approach and
polynomial approximations. So far, we have used purely combinatorial methods
(finite sets, unions, intersections), which works since we dealt only with AND
OR gates. In fact, we need algebraic or analytic methods to deal with general
arithmetic circuits, as we will begin to see when we do the Razborov Smolensky
lower bound next.

The idea behind Possibility 2 is that bounded depth circuits composed of
OR and AND gates only are analogous to low-degree polynomials. The open
problem involves a proper formalization of this. For example, the AND of n
variables, i.e., z1 A ... A z,, with domain {0,1}" can be thought of as the
monomial 15 - - - x,, defined on the vertices of the unit n-cube. This is because
AND and the monomial agree on the vertices. I.e, this monomial interpolates
AND at these vertices. Thus if we informally identify AND with z; A ... A
Zn, then AND is a polynomial of degree n. Of course we can also use other
polynomials, e.g., (z1 A...A 2,)* to represent AND as well, but these cannot
have lower degree since AND depends on all n variables.

As for PARITY, we claim that we can similarly interpolate PARITY by a
polynomial of degree n on the vertices of the unit n-cube.

Infact, recall that to interpolate a univariate polynomial in n points, n de-
grees of freedom are necessary and sufficient — the n coeflicients of the polyno-
mial. The sufficiency is because any polynomial of degree n is a linear combi-
nation of the basis elements 1, x, ..., z", since they form an independent basis.
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None of them is a linear combination of the others, over a set of n distinct points
on a line.

We want to show that similarly the 2™ (multilinear) monomials z1 25 - - - 2,
1 < k < n form an independent basis for the space of functions over the vertices
of the cube {0,1}™.

Exercise: Here is one fallacious “proof” of this independence, i.e, that no such
monomial can be written as linear combinations of others. What is wrong about
this proof? Fix it. “If we imagine ordering these monomials first by length and
then lexicographically (i.e., z1, ---x1, < g, ---xg, if and only if in the first
index j where the monomials differ, we have 1; < 2;,) then clearly no monomial
is a combination of any of the previous ones.” Hint: This proof would imply that
the 2™ multilinear monomials form an independent basis for a space of functions
defined over any 2™ points in n dimensional space. How about if all 2" points
were on the same line? Or if all 2" points lay in some k& < n dimensional affine
subspace?

Let’s assume we have a proof of independence of the 2" multilinear mono-
mials over {0,1}". So there is a basis of 2" multilinear monomials which can
be used to interpolate on the 2™ vertices of the unit n-cube. Parity alternates
between 0 and 1 as one travels along the “diagonals” of the cube. Hence the
multilinear polynomial representing PARITY requires n “turning points,” which
means it must have degree n.

It may seem odd that PARITY and AND are both interpolated by polyno-
mials of the same degree even though PARITY is a more “complicated” function
than AND, and hence “ought” to be analogous to a polynomial of higher degree.
But this oddity is resolved if we note that:

(i) The polynomial analogous to AND has only one term while that anal-
ogous to PARITY has many terms. Besides we are looking at a particular
monomial basis.

(ii) We can approximate AND almost everywhere, i.e., on all except one
vertex of {0,1}" by the constant zero polynomial. This certainly is not the
case for PARITY. So if we are interested in approximating a circuit gate almost
everwhere instead of literally everywhere, then AND is analogous to a degree 0
polynomial while PARITY still requires a degree n polynomial to represent itself.

It is generally believed that the solution to Open Problem 1 will help towards
solving a second open problem whose “folklore statement” we give next. We
will see this problem in greater detail when we look at the randomness-hardness
trade-off later in the semester.

Open Problem 2: “Polylog-wise independent distributions fool any constant
depth polynomial size unbounded fan-in {—,V, A}-circuit C.”

Here the distributions are probability functions ¢ : {0,1}"™ — [0, 1] such that
> zefo,1}- 0(z) = 1. The phrase “t-wise independent” means: the distribution
is induced by n random variables taking values in {0,1} and “any set of ¢ of
the n variables is independent. So a uniform distribution over {0,1}" is a n-
wise independent distribution. And “polylog-wise” means t = log¥(n). “Fools
a circuit C” means “looks like the uniform distribution to the circuit C.” And
“looks like” means “[prObze{O,l}"C(x) = ].] ~ EzE{O,l}* C(SL')(S(.’L'),h where C(.’L’)
is the value of the circuit C on z, and [prob,cfo1}»C(z) = 1] = |[{z: C(z) =
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1}|/2"™.

Since t-wise independent distributions are a lot easier to generate than n-wise
independent or uniform distributions, they can mimic random number/string
generators used by constant depth, polynomial size, unbounded fan-in circuits.



