Lecture 4

Recent advances in Complexity CIS 6930/CIS 4930 September 5, 2002

Lecturer: Dr. Meera Sitharam Scribe: Andrew Lomonosov

Main result Parity has no small (< 27"/*/10 size) depth d circuits of unbounded
fan-in. Hastad (1987). Previous results of FSS - Furst, Saxe, Sipser, and also
Ajtai has showed it for small polysize (< n* for some k) depth circuits of bound
fan-in.

Exercise 1 recall that all symmetric functions have size < n, depth < logn
circuits. Now show 327"~ sized , depth < d (unbound fan-in) circuits for
parity.

Hint: partition the variables. Paritys,, Paritys,,...;U;S; = {1,...n}. See

Figure 1.
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Figure 1: Exercise hint

Intuitive structure of proof of main result.

1. (Known fact). There are no small depth 2 circuits for parity. Moreover,
any OR of ANDs circuit for parity has (bottom) AND-fan-in at least n.

2. Depth d circuits with small bottom fan-in can be converted to depth d—1
circuits with small bottom fan-in.

If at last level we could write AND-of-ORs as OR-of~ANDs, then we can
combine top OR with one directly above, reducing depth by 1.

See Figures 2 and 3 for an example of how to make conversion (without bottom
fan-in restriction).

Question: how to do this (conversion above) while keeping small bottom fan-in?
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Figure 2: Original circuit
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Figure 3: Decreasing depth/ increasing size of the original circuit

Let X = {x1,...,z,} be the input variables to a circuit C' computing a function
f- A restriction p is a mapping from X to {0,1,*} .

We interpret p as presetting the variables assigned 0 or 1 and leaving variable
those assigned later. Under p we may simplify C by eliminating gates whose
values become determined. Call this the induced circuit C|, computing the
induced function f|,.

In the probabilistic arguments to follows we will be selecting restrictions
from certain probability distributions. Fix 0 < p < 1. Let R, be the proba-
bility distribution on restrictions over X where each z; € X is independently
assigned a value in {0,1,*} so that Prob[p(z;) = %] = p and Prob[p(z;) = 0] =
Problp(z;) = 1] = (1 —p)/2.

The following series of results lead to the parity lower bound, starting from
Hastad’s switching lemma. The proof of these results were verbally described
in class. Here are they formally.

Lemma 1 Hastad’s switching lemma. Let f be a function {0,1}" — {0,1}
computed by an AND-of-ORs circuit (ORs have fan-in t). Let p be a random
restriction from R,. Then probability that f|, has a minterm of size greater
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than s is < a°, where a = ypt and v = 2/In ¢ ~ 4.16 for ¢ = (1 +/5)/2, the
golden ratio.

Lemma 2 Stronger lemma. Let f be a function {0,1}" — {0,1} computed
by an AND-of-ORs circuit (ORs have fan-in t). Let p be a random restriction
from Ry,. Let F be an arbitrary function. Then probability that (f|, has a
minterm of size greater than s provided that F|, = 1) is < o®, where oo = ypt
and v =2/In¢ ~ 4.16 for ¢ = (14 /5)/2, the golden ratio.

Definition 3 In the results below, fan-in is only restricted for gates at the input
level. Also S denotes number of gates of unbounded fan-in, i.e number of gates
that are not at the bottom level.

Theorem 4 For all p,d,0 < k < d—1 if f is a function {0,1}" — {0,1},
computable by a depth d circuit of size S with OR on top and of fan-in t, then
for a random p from R, probability that f|, cannot have a depth (d—k) circuit
of size S with OR on top and of fan-in t, this probability is less than S(ypt)?,
where v =~ 4.16.

Note: book’s version of this theorem is incorrect (they use different S).
Proof: Consider the random restriction p as being composed from k re-
strictions p = pip2...pr drawn from R,. Obtain the sequence of functions
fi,..., feq1 where fii1 = fi|,,. At each step of this sequence there is a col-
lection of OR-on-top of fan-in ¢ (or AND-on-top of fan-in ¢ if d — i is odd)
bottom-level subcircuits in the circuit for f; which may become AND-on-top
of fan-in ¢ (or OR-on-top of fan-in ¢) under p; and then merge with the gates
above them. If this successfully occurs for each subcircuit in every f; then fry;
has depth (d — k) circuit of size S with OR on top and of fan-in ¢. The proba-
bility that it fails at any particular subcircuit is at most (ypt)? by the Hastad
Switching Lemma. Hence the probability that it fails at any of the at most S
subcircuits encountered is bounded above by S(ypt)t. B

The following corollary is independently interesting as a type of Ramsey
Theorem.

Corollary 5 If f is a function {0,1}" — {0,1}, computable by a depth d circuit
of size S with OR on top and of fan-in t, where t > logS, then there is a
restriction p assigning at least n/3(10t)4~1 — ¢t stars such that f|, is a constant
function.

Proof: By the theorem above, if p = 1/10t and p is drawn from a R,a-1,
then the probability that f|, is not computable by a depth 1 circuit of size
S with OR on top and of fan-in t is at most S(ypt)! = Bt < (28)! where
B8 = v/10 < 0.42. Hence Prob[f|, is not computable by a depth 1 circuit of
size S with OR on top and of fan-in ¢ is < 0.84. Furthermore p is expected
to have np?~! stars. An easy calculation shows that Prob[p has fewer than
np?=1/3 stars ] < 0.15. Since the sum of these probabilities is less than 1, there
is a restriction p for which neither event occurs. Finally, since any nonconstant
function computable by a depth 1 circuit of size S with OR on top and of fan-in
t may be forced to 1 by setting at most ¢ inputs we may extend p by including
these t additional settings and guarantee that f|, is constant. H

Using the preceding corollary we can now obtain the desired lower bounds
for the parity function PARITY (21, ...,z,) = (Zz;)mod2.
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Theorem 6 For all n,d > 0, PARITY is not computable by a depth d circuit
of size S with OR on top and of fan-in logS , where S < 2(1/10)n/?,

Proof: If PARITY were computable by a depth d circuit of size S with
OR on top and of fan-in log S for S < 2(1/107"* then by the above corollary
there would be a restriction p assigning at least one star such that PARITY|,
is constant. This contradiction proves the theorem. H

Corollary 7 Polynomial-size parity circuits must have depth at least logn/(c+
loglogn) for some constant c.

The bound in the above theorem cannot be significantly improved as it is
quite close to the easily obtained upper bound.

Theorem 8 For all n and d, PARITY is computable by a depth d circuit of
size S with OR on top and of fan-in log S where S = n2n’?.
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