Lecture 14

Lecturer: Dr. Meera Sitharam
Scribe: Erwin Jansen

1 Introduction

Today we finished the lower bound proof for monotone functions.
Lemma 1. For every monotone circuit C, the number of negative test graphs for which $C \geq \hat{C}$ does not hold is at most size $(C) \cdot m^{2} \cdot\left(\frac{\binom{l}{2}}{k-1}\right)^{p} \cdot(k-1)^{n}$

Proof. Look at the approximations of \vee and \wedge gates and show that at each stage of the construction of \hat{C} fails. I.e. it gives another output than the original output of \vee or \wedge in C in at most $m^{2} \cdot\left(\frac{\binom{l}{2}}{k-1}\right)^{p} \cdot(k-1)^{n}$ negative test graphs.

We will start by looking at \vee gates. Consider the \vee gate with two inputs: $A=\vee_{i=1}^{r}\left\lceil X_{i}\right\rceil$ and $B=\vee_{i=1}^{s}\left\lceil Y_{i}\right\rceil$. From the previous lecture we know that the new approximator is obtained by performing ar most $2 m$ pluckings on $A \vee B$. Now we are going to look at how many negative test graphs are destroyed by each plucking. More specifically we will look at the following:

Let X_{1}, \ldots, X_{p} be the petals of a sunflower with center Z. What is the probability that $\lceil Z\rceil$ accepts a negative test graph, but none of the X_{1}, \ldots, X_{p} accept the same negative test graph.

This will only happen if and only iff the vertices of Z are assigned distinct colors (DC), but every petal X_{i} has two vertices with the same color. We now get the following
$\operatorname{Prob}\left[Z\right.$ is $D C$ and X_{1}, \ldots, X_{p} are not DC$] \leq \operatorname{Prob}\left[X_{1}, \ldots, X_{p}\right.$ are DC $\mid Z$ is DC $]$

$$
\begin{equation*}
=\prod_{i=1}^{p} \operatorname{Prob}\left[X_{i} \text { is not } \mathrm{DC} \mid Z \text { is DC }\right] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\leq \prod_{i=1}^{p} \operatorname{Prob}\left[X_{1}, \ldots, X_{p} \text { is not DC }\right] \tag{2}
\end{equation*}
$$

Now the first one is due to the definition of conditional probability, see figure 1. The second inequality holds due to the fact that all the individual events

If we would ask what the chance is that A would occur given that B has occured, we can see that it is similar to asking what the chance is that $A \wedge B$ occur.

Figure 1: $\operatorname{Prob}(A \wedge B)=\operatorname{Prob}(A \mid B)$
$\operatorname{Prob}\left[X_{i}\right.$ is not $\mathrm{DC} \mid Z$ is DC$]$ are independent of each other. The last inequality is left as an exercise. Now we have that $\operatorname{Prob}\left[X_{i}\right.$ is not DC $] \leq \frac{\binom{l}{2}}{k-1}$. This follows from the the fact that the probability that a fixed pair has the same color is $\frac{1}{k-1}$ and there are $\binom{l}{2}$ of these pairs. Now since we have p of these inequalities we have:

$$
\operatorname{Prob}\left[Z \text { is DC and } X_{1}, \ldots, X_{p} \text { are not } \mathrm{DC}\right] \leq\left(\frac{\binom{l}{2}}{k-1}\right)^{p}
$$

Plucking adds at most $\left(\frac{\binom{l}{2}}{k-1}\right)^{p}$ new graphs. There are at most $2 m$ pluckings, so the total of number of negative graphs violating the inequality is $2 m \cdot\left(\frac{\binom{l}{2}}{k-1}\right)^{p}$.

For the \wedge gates we have a similar reasoning with the observation that the replacement and throwing away stages do not introduce new violations. However we do have m^{2} pluckings instead of $2 m$.

Exercise

Exercise

Exercise 2. Look at proof in Book which shows that:
Task 1: Construction of small l,m,p-approximator for a small monotone circuit.

Lemma 1: Small l,m,p-approximators do not do a good job on positive and negative test graphs for clique ${ }_{n, k}$

Lemma 2a: l,m,p approximators do atleast as well as their corresponding monotone circuit on most positive test graphs

Lemma 2b: l,m,p approximators do at least as well as their corresponding monotone circuit on most negative test graphs
together imply the Theorem that clique ${ }_{n, k}$ requires monotone circuits of size at least $n^{\Omega(\sqrt{k})}$ for k at most $n^{\frac{1}{4}}$.

Does one need the condition that k is at most $n^{\frac{1}{4}}$? Are there any obvious improvements possible, if not, why not? Are there any alternatives possible, i.e, for larger k 's, you get a slightly worse (but still exponential) size lower bound?

