
Recent advances in Complexity CIS 6930/CIS 4930 October 8, 2002

Lecture 13
Lecturer: Dr. Meera Sitharam Scribe: Erwin Jansen

1 Introduction

In today’s lecture we continued with the proof that the cliquek,n function re-
quires a monotone circuit of size at least nΩ(

√
k). The cliquek,n function outputs

a one only when there exists a clique of size k.

Figure 1: Positive graph Figure 2: Negative graph

The idea behind the proof is that we want to show that the class of small
monotone functions does not contain the function clique. See figure 3. The class
of monotone functions is however very diffuse and it is hard to get a grasp on this
set. In order to get a bit of a grip on this class we are going to look at a dense
subset of this class. In our case this subset will consist of nice approximator
circuits. If there were a monotone circuit that computes cliquek,n, then you can
always find a small circuit, an approximator, in the neighborhood that does at
least as well as cliquek,n. Now we are going to show that these approximators
can’t do cliquek,n very well on a particular domain. For the domain we will
choose those graphs for which it is very hard to distinguish between a cliquek,n

or not. These graphs will be positive and negative test graphs:
Positive test

Definition 1 (Positive test graph). A positive test graph is a graph that
barely has clique’s, and will have only one k clique.

Negative test
Definition 2 (Negative test graph). A negative test graph is a graph that
has many (k− 1) clique’s but no k clique. This graph is constructed by coloring
n vertices with k − 1 colors. Every vertex is assigned a color with equal proba-
bility.Now we have n

k−1 vertices with the same color. After coloring we connect
all pairs of vertices with distinct colors.

13-1

Figure 3: Approximators and Clique Figure 4: Clique indicator

We can consider a positive test graph to be the minimal graph for which the
cliquek,n function will return a one. Negative test graphs on the other hand are
the maximal graphs for which the cliquek,n function will return a zero.

2 Constructing approximator circuit

The first thing we will do is get an idea of how we are going to construct these
approximator circuits. Approximator circuits are going to be constructed using
so called clique indicators. A clique indicator is a function that returns a 1 if it
has a clique on its inputs:

Clique Indica-
torDefinition 3 (Clique Indicator). A clique indicator dXe over the vertices

in X, is a function of
(
n
2

)
variables that is 1 if the associated graph contains a

clique on the vertices X and 0 otherwise.

Notice that we can write cliquek,n as an or of clique indicators. Every clique
indicator is of size k and we have

(
n
k

)
of these clique indicator. In other words,

our clique function is rather large.

Example 1 (Clique Indicator). If we look at figure 4 we see a negative
test graph with the proper encoding. Now d{2, 3, 4}e = 0, d{1, 2}e = 1 and
d{1, 2, 3}e = 1.

Based upon the clique indicator we can define what an approximator is. An
approximator is an OR of clique indicators that do not exceed a fixed size.

Approximator
Definition 4 (Approximator). An (l,m, p)-approximator, or simply approx-
imator is an or of clique indicators such that:

∨

1≤i≤m

dXie ∀1≤i≤m〈|Xi| ≤ l〉

We have not yet defined where the values m, p stand for, but we will see later
on that we can use these parameters to establish our proof of the lowerbound.
Now we are going to construct the approximator circuits by induction over the
monotone circuit C that is supposed to compute cliquen,k as follows:

Base case: An input variable is of the form xi,j where i, j are different vertices
(see also figure 4). But this is equivalent to d{i, j}e, hence every input
variable is a clique indicator.

Induction: Take an ∨,∧ gate in C and convert this into an approximator.

13-2

Since the induction step is not trivial we will look at in more detail. We will
first look at the ∨ gate and after that we will examine the construction of an ∧
gate

2.1 Approximating at an ∨ gate

Suppose we are converting an ∨ gate in our circuit C. Let A and B the func-
tions that feed into this ∨ gate. By the induction hypothesis these are both
approximators. Hence A = ∨r

i=1dXie and B = ∨s
i=1dYie, where both s, r ≤ m.

We could simply construct a big approximator of these two by taking an or.
We would obtain something like ∨i<r+s

i=0 dZie, where Z = {X1, ..., Xr, Y1, ..., Ys.
However this approximator could have the a size of at most r + s = 2m. Which
exceeds our restriction that we can have at most m distinct sets.

Clearly we need to cut down in the size of our approximator. In order to do
that we are going to replace several clique indicators from A and B with their
common part. To do this we will introduce the concept of a sunflower:

Sunflower
Definition 5 (Sunflower). A sunflower is a collection of distinct sets Z1, ..., Zp,
called petals such that the intersection Zi ∪Zj is the same for every pair of dis-
tinct indices i and j, i.e.:

∀1≤i≤p∀1≤j≤p∀1≤k≤p〈Zi ∪ Zj = Zi ∪ Zk〉
We call Zi ∪ Zj the center of the sunflower.

The reason for the name sunflower
comes from the visualization of the in-
tersection. If we look at the figure on
the right we see a sunflower of four
sets. It is not hard to imagine that the
more sets we have, the more the figure
will look like a sunflower.

Figure 5: A sunflower

If we have such a sunflower we can perform an operation called plucking.
Plucking a collection of sets Z0, ..., Zn is nothing more than replacing the sets
Z0, ..., Zn with their common center.

We are going to apply this idea to our approximators. We are going to pluck
the the vertex sets {X1, ..., Xr, Y1, ...Ys} until we cannot pluck it anymore. It
is easy to see that we can have at most 2m plucking operations. The following
lemma will be of use:

Lemma 6. Let L be a collection of sets each of cardinality at most l. If |L| >
(p− 1)l · l!, then the collection contains a sunflower with p petals

Excercise
Proof. The proof can be found in [1] and is left as a reading exercise.

Using this lemma we can finally get an idea of the value’s m and p. Setting
the value’s m = (p − 1)l · l!, we can assure that after the plucking procedure
we have at most m vertex sets. Later on we will relate the value’s m, p to n, k
of the clique function. After plucking we get the approximator we are looking
for:

∨
i≤i≤mdZie.

13-3

Figure 6: Two approximators Figure 7: Combined approximator

2.2 Approximating at an ∧ gate

Suppose we are converting an ∧ gate in our circuit C. Let A and B the functions
that feed into this ∧ gate. By the induction hypothesis these are both approxima-
tors. Hence A = ∨r

i=1dXie and B = ∨s
i=1dYie, where both s, r ≤ m. Converting

an and works by applying the following distributive law: ∨r
i=1∨s

j=1 (dXie∧dYje).
There is however a problem by applying this law. First of all dXie ∧ dYje is not
a clique indicator. If we look at figure 6 for example we could get a combined
clique indicator of figure 7, which adds a lot of edges!. Notice that this is a very
coarse approximator.

Another problem is that we can have as many as m2 terms!. To overcome
these problems we are going to apply the following steps.

Replacement: We replace all the clique approximators dXie∧dYje by dXi∪Yje.
This can introduce sets that are bigger than l.

Throwing away: We throw away all the indicators who have a size of the set
|Xi ∪ Yj | > l. This is good in the sense that this operation is likely to
throw away those indicators that were bad approximators to begin with.
If we look at figure 6 once more and assume that these sets are disjoint
then the resulting union is very large. The approximator in figure 7 is a
poor approximator anyway.

Plucking: If we put two or’s together we could obtain a set as large as m2. To
deal with this double or, we are going to perform a plucking operation on
the remaining indicators.

Applying these steps assures that we end up with an approximator of the
proper size.

3 Proving the first lemma

Lemma 7. Every approximator circuit either is identically 0 or outputs 1 on
at least: (

1−
(

l
2

)

k − 1

)
· (k − 1)n

of the negative test graphs.

Proof. Let Ĉ be the approximator circuit. If Ĉ is identically 0 then the first part
of the lemma holds. Now the case where one of the indicators turns on. In other
words Ĉ ≥ dX1e(x)). A negative test graph is rejected by the clique indicator
dX1e if and only if dX1e = 0. An output of 0 on dX1e means that at least two

13-4

Here n denote all the vertices in the
graph and k is the clique on this
graph. All the l+1 vertices are within
the clique k

Figure 8: l + 1 in k in n

vertices on X1 don’t have an edge. That will happen only if they are colored
the same. The probability that a fixed pair has the same color is 1

k−1 and there

are
(

l
2

)
of these pairs. Now the probability that dX1e = 1 is ≥ (1−(l

2))
k−1 . We have

(k − 1)n possible colorings of the graph hence there are (k − 1)n negative test
graphs. Therefor we conclude that the number of negative test graphs for which

dX1e = 1 is at least
(

1− (l
2)

k−1

)
· (k − 1)n

Lemma 8. For every monotone circuit C, the number of positive test graphs
for which the inequality C ≤ Ĉ does not hold is at most size(C) ·m2 · (n−l−1

k−l−1

)
.

Proof. Let A = ∨r
i=1dXie and B = ∨r

i=1dYie be two approximators. Now when
we find an approximator for an ∨ we only do plucking. When we are plucking we
are replacing a large clique indicator dXie by a small clique indicator dZie. This
procedure can only increase the number of accepted graphs. So it can only go
wrong with an ∧ gate. The replacement procedure will keep the output ∧̂ ≥ ∧
as we have seen before in figure 6 and 7. We have seen that plucking does not
create any problems either. The only step where it can go wrong is the throwing
away stage, where we throw away those clique indicators dXi ∪ Yje for which
|Xi ∪ Yi| ≥ l + 1. This is only a problem if the clique indicator we are throwing
away output a value of 1. So the l+1 (or more) vertices must all be in the clique,
as depicted in figure 8. Now the number of graphs such that we are throwing
away these l − 1 vertices is

(
n−l−1
k−l−1

)
. This can happen at most size(C) times if

all the gates in C are ∧ gates. It is left as an exercise to prove where the value
m2 stems from.

exercise
Exercise 1. Extends the proof to include the value m2.

References

[1] P. Erdos and R. Rado. Intersection theorems for systems of sets. Journal
London Math Society, 35:85–90, 1960.

13-5

