Recent advances in Complexity CIS 6930/CIS 4930

Lecture 20

October 31, 2002

Lecturer: Dr. Meera Sitharam Scribe: Hongyu Guo

1 Hardness vs. Randomness

We first define hardness. We say a function h is hard if it is hard to find a
good approximation with any functions in a certain complexity class C. More
precisely

Vg € C, Prob;[g(z) = h(z)] <6,

where z € {0,1}" and § may depend on n, like 7 or 7=

We want to use h to create a pseudo random generator G, whose output is a
set of pseudo random strings that look like random to functions in C, meaning

Vg € C,|Prob,[g(x) = 1] — Prob,[g(Gr(y)) = 1]| < ¢’

That is, the pseudo random generator can fool all the functions in C.

2 Derandomization

Definition 1 Monte Carlo randomized computation M takes x € {0,1}" and
a random string y € {0,1}™ as input and outputs 0 or 1, and

z €S = Proby[M(z)=1]> % +¢, and

¢ 5= Prob,[M(z)=0]> 1 +c

where € > 0 is independent of |x|.

Sets S, or Boolean functions xs(z) =1if s € S and xs(z) =0if z ¢ S, for
which such and M polynomial in |z| and |y| exists, constitute a complexity class
BPP (Bounded error Probabilistic Polynomial). These algorithms are always
fast but probably correct.

It is still not known if NP C BPP or BPP C N P. However, it is the general
belief that BPP = P.

Definition 2 Las Vegas randomized computation M takes x € {0,1}" and a
random string y € {0,1}™ as input and outputs 0 or 1, and

(1) Proby[M(z) = xs(z)] =1, and

(2) Proby[Mtakestime < n¥] > 1 + ¢.

Sets S for such an M exists constitute complexity class ZPP (Zero error
Probably Polynomial). These algorithms are always correct but probably fast.

20-1

Exercise 1 Show ZPP C BPP.

We can use the pseudorandom generator for three applications:
1. Derandomization of a single randomized algorithm A

For a given single randomized algorithm A with bounded error € running in
DTIME(T (n)), if there exists a pseudo random generator G4 : {0,1}™ —
{0,1}™ such that
(c1)(pseudorandomness)

(Prob[A(z) = 1] - Prob[A(G(y)) = 1] <3 <&,

(c2) (size of seeds)
m < log(T'(n)),

(c3) (efficiency)
Running time G satisfies
2™ - runtime(G) < T'(n).

We can use G4 to derandomized the algorithm A. We can simply exhaust y
so that the computation is deterministic.

Note without the efficiency constraint, we can always find trivial derandom-
izations of any algorithms.

2. Derandomization of randomized algorithms in a complexity class
c
VA € C, 3G 4 such that conditions c1, c¢2 and ¢3 hold.
For example, to show P = BPP, we need to show 2™ - runtime(G) <
polya(n).
Another example, to show BPP C DTIM E(n'ogn), we need T'(n) = poly 4(logn).
One more example, to show BPP C DTIME(2"™), where 0 < € < 1, we
need T'(n) = 2.

3. Cryptography
(c4)

dG¢o, VA € C, condition cl holds, and the runtime of G¢ has to be poly-
nomial in m.

Notice the condition here is stronger than that in 2, — derandomization
for a complexity class. In derandomization of a complexity class, it suffices to
find one (different) pseudo random generator for each algorithm A, while in
cryptography application, we need one single pseudo random generator that
can cheat all the algorithms in the class.

There is another version of weaker requirement: we find a one-way function
G. Computing G(y) is easy while computing G~!(y) is hard. This means that
the adversory is not able to decode.

Exercise 2 Show that if A cannot tell the difference between Go(y) and random
strings, then it cannot decode G¢(y). Or in other words, if ¢/ holds for some
G¢o,YA € C, then A cannot compute G&l.

20-2

