Recent advances in Complexity CIS 6930/CIS 4930

Lecture 19

October 29, 2002

Lecturer: Dr. Meera Sitharam Scribe: Hongyu Guo

Erwin’s Talk on Natural Proofs (Part II)

In the last lecture, we introduced the main theorem. We are going to prove
it in this lecture.

Theorem 1 There is no lower bound proof which is P/poly-natural against

P/poly, unless H(G}y,) < P for every pseudo-random generator Gy, : {0,1}F —
{0,1}2% in P/poly.

Proof Idea: We will use proof by contradiction. We assume that if there is a
lower bound proof which is P/poly-natural against P /poly, then we show that
we can construct a polynomial algorithm to discriminate the output of a pseudo
random generator Gy, : {0,1}* — {0,1}?* against the true random 2k bit
strings.

We do this in two steps. First we construct a mechanism that can distin-
guish a pseudo random function (i.e, a particular collection of strings of length
2™) from a true random function ( a random string of length 2™), and in step
2 we label the pseudo random functions with 2k bit pseudo random strings
and we label true random functions with 2k bit true random strings and using
the mechanism in step 1, we can distinguish the 2k bit pseudo random strings
from the 2k bit true random strings in polynomial time. This contradicts the
assumption, which is not proved but is common belief, that the hardness of all
the polynomial time pseudo random generators is at least exponential.

Proof: For the sake of contradiction, supose that such a lower bound proof exists
and C,, is the accociated P/poly-natural combinatorial property. Let C;; C C),
satisfy the constructivity and largeness conditions. W.l.0.g. we may assume from
the very beginning that C}; = C,,.

Let Gy : {0,1}* — {0,1}2* be a polynomial time computable pseudo ran-
dom generator, and € > 0 be an arbitrary constant. Set n = [k€].

Step 1. We use Gy, : {0,1}* — {0, 1}2* for constructing a pseudo random func-
tion generator f : {0,1}* — F, in the following way: Let Go, G : {0,1}% —
{0,1}* be the maps that take the first and the last k bits of G, respectively. For
each z € {0,1}*, it is mapped by f to ¢ = f(z) € F,,. And each y € {0,1}" is
mapped by ¢ = f(z) to ¢(y) = f(z)(y) € {0,1}. We define the map f by giving
a rule of assigning a function ¢ € F,, for each z € {0, 1}* and we define ¢ by giv-
ing a rule of assigning a value in {0,1} to each y € {0,1}". In order to define ¢,
which is f(z), we first define an auxiliary map GA : {0,1}" x {0,1}* — {0,1}*

19-1



such that GA(y,x) = Gy, 0 Gy, , 0--- 0 Gy, (x). Or we can write the indexed
or parameterized version of definition as, for each y € {0,1}" (y is an index or
parameter), Gy : {0,1}* — {0,1}* by G, = Gy, 0Gy, _, 0---0Gy,, where y; =
0 or 1 is the ¢ —th bit of y from the left. Finally we define ¢(y) = f(z)(y) to be
the first bit of GA(y, z) = Gy(z).

Note that f(x)(y) is computable by poly-size circuits, hence (from the def-
inition of a natural proof against P/poly) the function f(z) € F, is not in C,
for any fixed € {0,1}* and any suffciently large k. In other words, C, has
empty intersection with {f(z)|z € {0,1}*} and this disjointness implies that C,
provides a statistical test for f(z), with

|P[Cn(fn) = 1] = P[Cu(f(x)) = 1]| > 2790

This is because P[Cy(f(z)) = 1] = 0 and the largeness condition P[Cy(fr) =
1] > 29" Note that this test is computable by circuits of size 20(").

So far you have a way of distinguishing pseudorandom functions from true
random functions. Now convert this to strings.

Step 2. We use the result in step 1 to construct a statistical test for strings.
We construct a full binary tree T of height n. Each left edge is labled 0 and
each right edge is labled 1. Each leaf represents an n-bit string in {0,1}" with
the sequence of lables on the path from the root of the tree to the leaf. Gy =
Gy, 0Gy,_, o---0Gy, is also represented by the path from the root to the leaf
y. We lable the nodes with 1,2,3,...,2"! in such a way that if v; is a son of v;
then ¢ < j. Let T; be the union of subtrees of T' made by {v1,...,v;} along with
all leaves. For a leaf y of T let v;(y) be the root of the subtree in T; containing
y. Let Giy = Gy, 0---0Gy _p(i,y)41, Where h(i,y) is the distance between v;(y)
and y. G; 4 is also represented by the path from v;(y) to y.

Finally define the random collection f; ,, by letting f; »(y) be the fist bit of
Giy(Zy;(y)), Where z, are taken from {0,1}* uniformly and independently for
all roots v of trees from T;.

Notice that basically when i increases, the size of the random collection
decreases. The size of the random collection of f; ,, is 22" ~9*. The size of the
random collection at the root fan_1 . is the smallest, which is 2k,

We denote fo,, as any random function f, and we know fon_q, is f(z).
Because all the intermedium terms cancel each other, except the first and the
last term, and using the result in step 1, we have

St [P[Cu(fin) = 1] = P[Cr(fis1,n) = 1]]
> | S0 PlCu(fim) = 1] = P[Cu(fir1n) = 1]]
= |P[Cu(fa) = 1] = P[Cw(f(x)) = 1]]
> 2—O(n)

There must exist a term |P[Cp(fi,n) = 1] = P[Cn(fit1,n) = 1]| > 12700
which is the same as |P[Cp(fi,n) = 1] = P[Cr(fix1,n) = 1]| > 2790,

T;+1 is the union of subtrees. Suppose the roots of these subtrees are v; 1
and 7,72, ...,7m. Denote these subtrees by their roots, R,,,,, Ry, Rry, ..., Ry, .

Tiy1 = R'Ui+1 U{quM RTq}’
where M = {1,2,...,m}. Let v',v"” be the two sons of v;y;. Then we know
T; is the union of R], R!/, and R,,,R,,, ..., R, .

19-2



T; = Ry U Ry U{quM qu}-

In T;41 and T, all other subtrees are the same except T;4; has R
T; has R and R).

The collection f;+1 can be expressed as the union

fi+1 = Uw”i+1 1TrysTrg s Trm
where Xy, ., Try, Try, ..., Tr,, are a set of fixed assignment of k-bit strings placed
at the roots vjy1,71,72, ..., Tm-

Similarly, the collection f; can be expressed as the union

Tyt 5X 115 3 Lpg 5y Lpyy,
fi = Uwu/,zvu,wrl 1WErgseee sy, fz ! ’ °
We obtained from the previous argument that
|P[Ca(fisn) = 1] = P[Cu(fis1,n) = 1] > 2790

The probability space for P[C,,(fit1.n) = 1] is {0,1}(™+D¥ and the proba-
bility space for P[C,,(fi.n) = 1] is {0, 1}{™+2)*¥_ The above inequality translates
to

vip: While

Tv;y1:%r15TrgssTrm
fi+1 ]

1 Z C (fzv’ sZ oyt 5T rq 3 Trg -3 Ty, )
2(m+2)k Tyt 5Tyt 5 Tpg s Ty seensTppy NI
1 E C (fl'v,-_H s5Lrq sz27"'7zT‘m)
2(m+1)k Ty;yq3Try TrgsesTry, n\Ji+1l,n

> 2-0(n),

This is equivalent to o . o o T
Z%Ewrl,ww,...,wrm{% Zwvz,zvu C"(fi,:bh e Tm)_2l’“ El‘i+1 C”(fl-l‘iTle’ e '")}
> 2—O(n)'

If the mean of 2™ terms is > 279(") then there must exit one term that is
> 2-9(")_ Namely there exists a fixed set of assignment of ., , Zp,, ..., T, such
that . o .

7% Dz Onlfin 0TI — e 3 (il ™)
> 2-0(n),

This is a probability argument that we can carefully choose a fixed set z,
for all roots r1,72,...,7, of subtrees in T;y; other than v;y; so that the bias
2-9(n) ig preserved.
|Paysayn [Cafig " 52y = 1] = By,
> 2-0(n),

This is the bias preservation lemma and we have just proved it.

The probability space for Py, ., [Cp(fi g " *r%r20%my = 1] is 2 k-bit

i,n

Ty, 3Trq 9 ZrgseesTry,
[Cn(fz'—l—l-:—ri e ):1”

fwu,-ﬂ Ty 7w7‘27"'7$1‘m) _

strings placed at 2, and z,. The probability space for P, | [Crn(fisiin
1] is k-bit strings placed at z.,,,.

Given all other z, fixed, the collection of functions in f; is produced by plac-
ing random strings z of length k at v’ and v" while the collection of functions in
fi+1 is produced by placing random strings x of length k at v; ;. The colleciton
of functions in f;;; can be also viewed as procuded by placing Go(z) at v' and
placing G1(z) at v". So f; is produced by the concatenation of two k bit random
strings while f;+1 is produced by the output of the pseudo random generator
G, which expands k bit random strings to 2k bit pseudo randoms strings. From
the inequality we just proved, we can distinguish between G, ,, and (xh, ).

Thus, H(G}) < 20 < 20(°) | As € is arbitrary, the result follows. |

19-3



