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1 Erwin’s talk on Natural Proofs (Part I)

Our goal is to show that there is no natural proof for the statement P/poly #
NP unless an unlikely cryptographical assumption holds.

First we give some notations and definitions. We denote by F,, the set of
Boolean functions in n variables. f, is a randomly chosen function from Fj,.
Formally, by a combinatorial property of Boolean functions we mean a set of
Boolean functions {C,, C F,, | n € w}. Thus, a Boolean function f, possesses
property Cy, iff fn € Cp. (Alternatively, we will sometimes find it convenient
to use function notation: C,(f,) =1if f, € Cp, and Cp(fn) =01if f, & Cy.)

Definition 1 A combinatorial property C,, is natural if it contains a subset
C} with the following two conditions:

e Constructivity: The predicate f, € C} is in P. Thus, C} is computable
in time which is polynomial in the truth table of f,;

e Largeness: |C| > 279 . |F,|.

Definition 2 A combinatorial property C,, is useful against P/poly if it sat-
isfies:

o Usefulness: The circuit size of any sequence of functions fy, fo, .y fn, -,
where f,, € Cy,, is super-polymonial, ie., for any constant k, for sufficiently
large n, the circuit size of f, is greater than nk.

A proof that some function does not have polynomial-sized circuits is natural
against P/poly if the proof contains, more or less explicity, the definition of a
natural combinatorial property C,, which is useful against P/poly.

It is easy and useful to extend the definition of natural proof to a more
general, parameterized version.

Definition 3 Let T’ and A be complexity classes. Call a combinatorial property
Cpn T — natural with desity 6, if it contains C}; C C,, with the following two
conditions:

e Constructivity: The predicate f, €’ C* is computable in T (C is a set
of truth-tables with 2™ bits);

o Largeness: |Ck| > 6, - |Fy|.
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Definition 4 A combinatorial property C,, is useful against A if it satisfies:

o Usefulness: For any sequence of functions f,, where the event f, € C,
happens infinitely often, {fn} ¢ A.

A lower bound proof that some explicit function is not in A is called T -
natural against A with desity 6, if it states a I-natural property C, which is
useful against A with desity d,.

The ”default” settings of our parameters is I' = P,A = P/poly, and é,, =
2-9() a5 in the initial definition. The main result implies the negative state-
ment that, under the pseudo-randomness assumption, no proof with these pa-
rameters can show that SAT does not have polynomial-sized circuits.

Example 1 AC° lower bounds for parity: AC®-natural

C,, is the property that there does not exist a restriction of the variables with
the appropriate number of unassigned variables which forces f, to be a constant
function. Hastad Lemma says that C,(f,) = 1 implies that {f,} ¢ AC°. In
other words, that C, is useful against AC®. We show that C, is a natural
property. In fact, we can choose C}; = Cp,.

C? has constructivity. C}: is in AC°. Suppose k is the number of unassigned
variables. Given the truth table for f, as input, we compute C;;(fr) as follows.
List all (Z) 2n—k = 90(n) restrictions of n — k variables. For each one there is a
circuit of depth 2 and size 2° which outpusts a 1 iff that restriction does not
leave [, a constant function. Output the AND of all these circuits. The resulting
circuit has depth 8 and is polynomial-sized in 2™.

A simple counting argument shows C}, has the largeness condition. First we
count the size of C%, the complement set of C%. Let p = n—k. We first consider a
fized set of variables, say x1,%2, ..., Zp. For a fived assignment of these variables,
e.g.,x1=0,20 =0,...,2, =0, there are 2-2@"=2""") functions which are set to
constant. Now consider all possible assignment for these fixed set of variables,
there are at most 2P -2-22"=2""") functions are set to constant. Note there are
redundant count here and that’s why we say ”at most”. (Later we need better
approzimations to get better bound.) There are (Z) sets of p variables out of n

variables. There are at most (n) 20 . 2.2@"=2""") functions are set to constant
by any assignments to p variables.

|Cx| < (Z) 9p .9 .9(2"-2"77)

<P 2ptl . 9("=2"T)

— P92 2" Pl

The fraction
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> 201T for large n and small p)
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Exercise 1 What do the functions with property C,, in Example 1 look like?

Natural proofs for lower bounds are almost self-defeating. The idea is that a
natural proof that some function f is not in P/poly has an associated algorithm.
But just as the proof must distinguish f from a pseudo-random function in
P/poly, the associated algorithm must be able to tell the difference between the
two. Thus, the algorithm can be used to break a pseudo-random generator. This
is self-defeating in the sense that a natural proof that hardness exists would have
as an automatic by-product an algorithm to solve a "hard” problem.

For a pseudo-random generator Gy, : {0, 1}¥ — {0,1}2* define its hardness
H(GYy) as the minimal S for which there exists a circuit C of size < S such that

[P[C(Gr(x) =1] -P[C(y) =1]| =

|+~

Here, x is taken at random from {0,1}*, and y is taken at random from
{0,1}2.

Intuitively, the hardness of a pseudo-random generator is the smallest circuit
size which the pseudo-random generator is not able to fool.

Theorem 1 There is no lower bound proof which is P/poly-natural against

P/poly, unless H(Gy) < DL for every pseudo-random generator Gy, : {0,1}F —
{0,1}2% in P/poly.
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