Recent advances in Complexity CIS 6930/CIS 4930

October 22, 2002

Lecture 17

Lecturer: Dr. Meera Sitharam Scribe: Hongyu Guo

1 Erwin's talk on Natural Proofs (Part I)

Our goal is to show that there is no natural proof for the statement $P/poly \neq NP$ unless an unlikely cryptographical assumption holds.

First we give some notations and definitions. We denote by F_n the set of Boolean functions in n variables. f_n is a randomly chosen function from F_n . Formally, by a combinatorial property of Boolean functions we mean a set of Boolean functions $\{C_n \subseteq F_n \mid n \in \omega\}$. Thus, a Boolean function f_n possesses property C_n if f $f_n \in C_n$. (Alternatively, we will sometimes find it convenient to use function notation: $C_n(f_n) = 1$ if $f_n \in C_n$, and $C_n(f_n) = 0$ if $f_n \notin C_n$.)

Definition 1 A combinatorial property C_n is **natural** if it contains a subset C_n^* with the following two conditions:

- Constructivity: The predicate $f_n \in {}^?$ C_n^* is in P. Thus, C_n^* is computable in time which is polynomial in the truth table of f_n ;
- *Largeness*: $|C_n^*| \ge 2^{-O(n)} \cdot |F_n|$.

Definition 2 A combinatorial property C_n is useful against P/poly if it satisfies:

• Usefulness: The circuit size of any sequence of functions $f_1, f_2, ..., f_n, ...,$ where $f_n \in C_n$, is super-polymonial, ie., for any constant k, for sufficiently large n, the circuit size of f_n is greater than n^k .

A proof that some function does not have polynomial-sized circuits is *natural* against P/poly if the proof contains, more or less explicity, the definition of a natural combinatorial property C_n which is useful against P/poly.

It is easy and useful to extend the definition of natural proof to a more general, parameterized version.

Definition 3 Let Γ and Λ be complexity classes. Call a combinatorial property C_n Γ – natural with desity δ_n if it contains $C_n^* \subseteq C_n$ with the following two conditions:

- Constructivity: The predicate $f_n \in {}^? C_n^*$ is computable in Γ (C_n^* is a set of truth-tables with 2^n bits);
- Largeness: $|C_n^*| \ge \delta_n \cdot |F_n|$.

Definition 4 A combinatorial property C_n is **useful against** Λ if it satisfies:

• Usefulness: For any sequence of functions f_n , where the event $f_n \in C_n$ happens infinitely often, $\{f_n\} \notin \Lambda$.

A lower bound proof that some explicit function is not in Λ is called Γ -natural against Λ with desity δ_n if it states a Γ -natural property C_n which is useful against Λ with desity δ_n .

The "default" settings of our parameters is $\Gamma = P, \Lambda = P/poly$, and $\delta_n = 2^{-O(n)}$, as in the initial definition. The main result implies the negative statement that, under the pseudo-randomness assumption, no proof with these parameters can show that SAT does not have polynomial-sized circuits.

Example 1 AC^0 lower bounds for parity: AC^0 -natural

 C_n is the property that there does not exist a restriction of the variables with the appropriate number of unassigned variables which forces f_n to be a constant function. Hastad Lemma says that $C_n(f_n) = 1$ implies that $\{f_n\} \notin AC^0$. In other words, that C_n is useful against AC^0 . We show that C_n is a natural property. In fact, we can choose $C_n^* = C_n$. C_n^* has constructivity. C_n^* is in AC^0 . Suppose k is the number of unassigned

 C_n^* has constructivity. C_n^* is in AC^0 . Suppose k is the number of unassigned variables. Given the truth table for f_n as input, we compute $C_n^*(f_n)$ as follows. List all $\binom{n}{k}2^{n-k}=2^{O(n)}$ restrictions of n-k variables. For each one there is a circuit of depth 2 and size $2^{O(n)}$ which outputs a 1 iff that restriction does not leave f_n a constant function. Output the AND of all these circuits. The resulting circuit has depth 3 and is polynomial-sized in 2^n .

A simple counting argument shows C_n^* has the largeness condition. First we count the size of \bar{C}_n^* , the complement set of C_n^* . Let p=n-k. We first consider a fixed set of variables, say $x_1, x_2, ..., x_p$. For a fixed assignment of these variables, e.g., $x_1=0, x_2=0, ..., x_p=0$, there are $2 \cdot 2^{(2^n-2^{n-p})}$ functions which are set to constant. Now consider all possible assignment for these fixed set of variables, there are at most $2^p \cdot 2 \cdot 2^{(2^n-2^{n-p})}$ functions are set to constant. Note there are redundant count here and that's why we say "at most". (Later we need better approximations to get better bound.) There are $\binom{n}{p}$ sets of p variables out of p variables. There are at most $\binom{n}{p} 2^p \cdot 2 \cdot 2^{(2^n-2^{n-p})}$ functions are set to constant by any assignments to p variables.

$$|\bar{C}_n^*| \le \binom{n}{p} 2^p \cdot 2 \cdot 2^{(2^n - 2^{n-p})}$$

$$\le n^p \cdot 2^{p+1} \cdot 2^{(2^n - 2^{n-p})}$$

$$= n^p 2^{2^n - 2^{n-p} + p + 1}$$

The fraction
$$\frac{|C_n^*|}{|F_n|} = 1 - \frac{\bar{C}_n^*}{|F_n|} = 1 - \frac{n^p 2^{2^n - 2^n - p} + p + 1}{2^{2^n}} = 1 - n^p 2^{-2^n - p} + p + 1 \ge \frac{1}{2^{O(n)}} \text{ (for large } n \text{ and small } p)$$

Exercise 1 What do the functions with property C_n in Example 1 look like?

Natural proofs for lower bounds are almost self-defeating. The idea is that a natural proof that some function f is not in P/poly has an associated algorithm. But just as the proof must distinguish f from a pseudo-random function in P/poly, the associated algorithm must be able to tell the difference between the two. Thus, the algorithm can be used to break a pseudo-random generator. This is self-defeating in the sense that a natural proof that hardness exists would have as an automatic by-product an algorithm to solve a "hard" problem.

For a pseudo-random generator $G_k : \{0,1\}^k \longrightarrow \{0,1\}^{2k}$ define its hardness $H(G_k)$ as the minimal S for which there exists a circuit C of size $\leq S$ such that

$$|\mathbf{P}[C(G_k(\mathbf{x}) = 1] - \mathbf{P}[C(\mathbf{y}) = 1]| \ge \frac{1}{S}$$

Here, **x** is taken at random from $\{0,1\}^k$, and **y** is taken at random from $\{0,1\}^{2k}$.

Intuitively, the hardness of a pseudo-random generator is the smallest circuit size which the pseudo-random generator is not able to fool.

Theorem 1 There is no lower bound proof which is P/poly-natural against P/poly, unless $H(G_k) \leq 2^{k^{O(1)}}$ for every pseudo-random generator $G_k : \{0,1\}^k \longrightarrow \{0,1\}^{2k}$ in P/poly.