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1 Introduction

Today we continued with the proof of a lower bound for the monotone circuit
depth of the boolean function stcon. We want to show a depth lower bound for

stcon by using the following:

e D(Rstcon) = d(stcon), (and D(Msicon) = dm(stcon)). ie. the (mono-
tone) circuit depth of stcon is equivalent to the protocol depth of Rstcon

(Mgtcon).

e A communication protocol for Mg .on can be converted to one for Ryorg

with the same depth.

e We establish a lower bound for D(Ry,,). Particulary we will show a lower
bound of Q(log!logw). This will transfer to a lower bound for D(M;con)

of log? n if we take w = I = n.

First we recall,
FACT 1.

(Zia proved) Circuit depth is equal to the communication complexity.

d(f) = D(Ry)

FACT 2. Monotone circuit depth is equal to the corresponding monotone

communication depth.
dm (f) = D(My)
Zia didn’t prove this but the proof is exactly the same.

Exercise 1 Show that D(Rjfori) < ©(logllogw)

Exercise

Exercise

Exercise 2 Show that this implies a formula size! lower bound for stcon of

Q(nlOg n) — 210g2 n

Now we will continue by investigating the lower bound for communication
complexity of Ryori. Let us first give a definition of a protocol that is (a,1)-

correct for Ryorg:
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Definition 1 A (a,l) approzimation protocol P for Ryor, on strings of length
[ is an protocol that is correct on some subset S C X UY such that if x,y € S,
then P is correct and |S| is at least an a fraction of X UY.

We are going to use this definition to lower the depth (the amount of bits
communicated) of the protocol. By trading depth for accuracy we can eventually
show that a correct protocol must have a certain a minimum depth. In order
to use this proof strategy we will introduce two lemmas. One lemma tells us
that we can sacrifice depth for accuracy. Potentially the depth lower bound
strategy would be to assume to the contrary that there is a small depth circuit
computing the function, apply this lemma repeatedly thereby decreasing depth
of the circuit down to 0, while still reasonably well approximating the function,
which would result in a contradiction.

However the lemma results in a decay of accuracy at such a high rate that
no useful approximation of the function is possible once the depth gets down to
0. Hence this strategy alone is not enough.

Now, we use another lemma, which was quite novel at the time of discovery
and quite different from the lower bound techniques seen so far. This lemma,
tells us that we can increase or amplify the accuracy if we decrease the size of
the inputs (or decrease the size of the domain in a particular way).

Lemma 1 A (a,l) protocol P of depth ¢ for Rgori can be converted into a
(§,1)-protocol P' of depth (c —1)

Notice that we can interpret « as a parameter that defines the size of the
subset of our domain that will still give a correct output.

Exercise 3 Proof this lemma. Assume w.l.o.g. that Alice sends the first bit in
P. Now for P' Alice doesn’t send this bit, but Bob & Alice will assume that this
bit is something (what?) and proceed using (¢ — 1) bits. This guarantees that P’
is correct on § factors (why?).

The other lemma is a key lemma, novel at the time of discovery, which is also
called the accuracy amplification lemma: it tells us we can decrease the chance
of mistakes when we decrease the size of our input:

Lemma 2 (Amplification Lemma) If o > % for a large enough constant \

then a (a,l) protocol P of depth c-bits can be converted to a (@, |£]) protocol

of the same depth.

Note: Lemma 1, Lemma 2 and the definition of (a,!) protocol can be stated
directly in terms of monotone circuit depth for st-con.
The proof uses the following claim:

Claim 3 Consider an n x n 0-1 matriz. Let m be the number of 1s in it, and
m; be the number of 1s in the i-th row. Denote by o = m/ny the fraction of 1-
entries in the matriz and by a; = m;/n the fraction of the 1-entries in the i-the
row. Then either (a) there is some row i with a; > \/a/2 or (b) the number of

rows for that a; > /2 is at least \/a/2 - n.

LA circuit whose underlying graph is a tree
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Proof: (Of Claim) Intuitively, the claim says that either one of the rows is
”very dense” or there are a lot of rows that are ”pretty dense.” Consider Y i ; ;.
Ononehand, 7" |, o; =Y., m;/n = m/n = a-n. On the other hand, suppose
both (a) and (b) do not hold. This means that for all rows a; < v/a/2 and that
for less than \/a/2 - n rows @ > a/2. Therefore,

n

Zai < (Wa/2-n)-\/a/2+n-a/2=an.

i=1

A contradiction. [}

Proof: (of Lemma 2) Let S be the set corresponding to the (a,!) protocol.
Consider a matrix whose rows and columns correspond to string s in /2 and
whose (u,v) entry contains 1 if the string u o v is in S and 0 otherwise. Note
that by the assumptions on S the density of 1s in the matrix is at least a.
Applying the claim to this matrix, we get that it satisfies either (a) or (b). For
each of the two cases we construct the desired ¢-bit (v/a/2,1/2) protocol. In
case (a) there exists a row, corresponding to some string u, whose density is at
least v/a/2. The new protocol works as follows: on input z,y € ¥!/2 Alice and
Bob use the original ¢-bit protocol on the length- [ string v o z and u oy (and
subtract 1/2 from the output). Because the same string u is concatenated to
both z and y, then the output of the protocol is guaranteed to be in the second
half of the string. The protocol succeeds whenever the entries corresponding to
z and y (in row u) contain 1. The fraction of strings with this property is at
least \/a/2 > \/a/2, as needed.

In case (b) we need to do something else: Let S’ be the set of all rows with
density at least a/2. We will find two function f,g : $/2 — £¥/2 and a set S"
and a set S"” C S’ such that the following properties hold:

l.forallz € S",zo f(z) € S,

2. forally e S",yog(y) €9,

3. for all z,y € S”,thestringsf(x) and g(y) are different in all coordinates,
and

4. S" contains /a/2, of the strings in %!/2.

Assuming that such functions exist, the new protocol works as follows: on
input z,y € X2 Alice and Bob use the original ¢-bit protocol on the length-
strings zo f(x) and yog(y) (each player can modify its own input). By property
(3), for all z and y in S” the output of the protocol is guaranteed to be in
the first half of the string, and therefore the protocol succeeds. By property (4)
(contained with (1) and (2)), this is a (1/(a/2,1/2) protocol.

It remains to prove the existence of such f, g, and S”. Consider 1/2 subsets
A; of ¥ where each A; is of size w/2. If we guarantee that f(z) is a string in
A=A; x---x Ay and g(y) is a string in B = A; x--- X (A)I/Q, then property
(3) immediately holds. The idea is to choose each of the A;s at random and to
show that this happens with non-zero probability. To simplify the analysis we
choose the A;s as follows: We first choose at random w/2 strings v?,--- ,uv/2
each of length 1/2. Then we define A4; to include the i-th letter in each of these
w/2 strings and extend it into a set of size w/2 randomly. (Note that this indeed
gives random and independent A;s.) Now, fix z € S’. We wish to compute the
probability that it has an extension f(z) € A such that z o f(z) € S. It is
enough to show that with high probability one of the vectors v; is such an
extension. This is because the probability that none of the vectors is good is
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smaller than (1 —a/2)%/2 < e=*%/4, Therefore, the probability that either A or
the corresponding B (that also consists of 1 /2 sets each of size w/2) are not good
is at most 2e—**/4, In other words, for every z € S’ a fraction of 1 — 2e— /4
of the partitions (A, B) is good. Hence, there is a partition that is good for
1 — 2e~>®/% of the elements of S’. Let S be this set of elements. The fraction
of elements in S” is 1 — 2e=%/* . /(a/2), which is at least \/a/2, as long as
a > A/w (for some constant A). |

Theorem 4 Depth of any protocol for Ryory
D(Rygork) > Q(logllogw)

Proof:  First notice that D(Ryorr) = D(1,1). Surely D(1,1) > D(a,l). Sup-

pose we take a = 2w+,3 First we apply lemma 1 logw times, resulting in
@ = smgwer7s- From this we conclude that the depth: D(Qw(ll/s) 0 Rrork) >

D(ﬁil)(Rfork)‘FQ(lOg w) now we apply lemma 2: D(—a75,1) > D(5-075 5)-
Then we repeat the procedure. Apply lemma 1 logw times, and then apply
lemma 2. Lemma 1 is in the inter loop iterating logw times and Lemma 2 is in
the outer loop iterating logl times. |

Note: While this proof uses communication complexity as a tool, in fact, we
could do the whole thing directly using circuit depth. It is clear that the notion of
(a, 1) correctness etc.. holds equally well for circuits as for protocols. So today’s
results for Rs,qt could directly be stated as a lower bound on circuit depth for
Ryork- In fact, stated thus, particularly the accurac

The only result where some work needs to be done to state directly in terms
of circuit depth is the (previous lecture’s) conversion of the communication
protocol of Mcorn into one for Ryor. To state or “decode” this reduction into
a conversion of a circuit for stcon into one for Ry, we have to use the original
result (done in Zia’s lecture) for the conversion of a communication protocol
into a circuit.
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