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Today Zia finished part 3 of his talk.

Definition 1 (Depth Complexity). For a function f, the depth complexity
d(f) is the minimum depth of a circuit computing f. The depth of a circuit C
is denoted by d(C).

Definition 2. For a boolean function f : {0,1}" — {0,1}, let X = f (1) (i.e.
the set of all z’s such that f(z) = 1) andY = f~(0). Let Ry C X xY x{1,...,n}
consist of all triples (x,y,1) such that z; # y;.

Notice that there is always an ¢ such that (z,y,%) satisfies the relation Ry
since f(z) =1 and f(y) =0, and so x # y.

Definition 3 (Communication Problem). The communication problem for
Ry is the following: Alice is given x € X, Bob is given y € Y and their task is
to find some i € {1,...,n} such that (z,y,i) € Ry.

The definition of a protocol as was given in the previous lecture remains
unchanged. Based upon these definitions we can define the communication com-
plexity as follows:

Definition 4 (Communication Complexity). A protocol P computes Ry if
for every input (z,y) € X xY = f~1(1) x f71(0), the protocol reaches a leaf
labeled by some i € {1,...,n} such that (z,y,i) € Ry. The deterministic com-
munication complezity of Ry denoted D(Ry), is the minimum cost of P over all
protocols P that compute Ry.

Definition 5 (Monochromatic Rectangle). The set Ax B C X xY =
F Y1) x f~1(0) is an Rs-monochromatic rectangle if there exists ani € {1,...,n}
such that for every (z,y) € A x B, we have (2,y,i) € Ry.

Proposition 6. Any depth t protocol that computes the relation Ry induces a
partition X XY = f=1(1)x f=1(0) into at most 2¢ Rg-monochromatic rectangles.

Proof. The same as the proof for functions given in the previous lecture, mutatis
mutandis 0

Lemma 7. For every circuit C for f, there is a corresponding protocol P for Ry
such that the depth of P is at most d(C), i.e., at most d(C) bits are exchanged
during the run of P
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Proof. Given a circuit C computing f, the idea of the protocol P for Ry is the
following: Alice knows z € f~!(1) whereas Bob knows y € f~1(0) . Alice and
Bob traverse the nodes of C, starting from the output node, and they continue
toward the input nodes in such a way as to maintain an invariant, namely that
the function g computed by the current node satisfies g(z) = 1 and g(y) = 0.
We will now show that Alice (who only knows x) and Bob (who only knows y)
can indeed traverse C in a way that maintains the above invariant.

Since x € X = f71(1) and y € Y = f~1(0), the invariant is true at the
output node of C. Now suppose that the current node reached by Alice and Bob
is an V gate computing a function g, and the invariant is true at this V gate, i.e.,
that g(x) = 1 and g(y) = 0. Let g; and g2 be the functions corresponding to the
nodes of C' entering the current V node. Then g = g1 V g». Since g(y) = 0, we
have g1 (y) = ¢g2(y). And since g(z) = 1, either g;(x) = 1 or g2(x) = 1 (or both).
Alice, who knows z and g1 and go (since she obviously knows C), sends a single
bit to Bob indicating for which i € {1,2} the function g;(z) = 1. In the case
where both are 1 she chooses g1. They then both proceed to the corresponding
node, where the invariant clearly holds.

Symmetrically, if the current node is an A gate computing a function g such
that g(xz) = 1 and g(y) = 0, and g; and g, are the functions corresponding to the
nodes entering the current A node, then g = g1 A g2, and so g1 (z) = g2(z) =1,
while either ¢g1(y) = 0 or g2(y) = 0 (or both). This time Bob sends a single bit
indicating for which i € {1, 2} the function g;(y) = 0, and the both proceed to
the corresponding node.

Now suppose Alice and Bob have reached an input node of C'. Assuming
f is a function of the variables z1, ..., z,, this input node is labeled with z; or
—z; for some i € {1,...,n}. We claim that both players know that 7 is a correct
output, i.e., that (z,y,i) € Rs. To see this, let g be the function computed by
this input node. If the node is labeled z; than by the invariant, we have g(z) = 1
an d g(y) = 0. But g(y) = y;. Hence z; # y;; and so (z,y,4) € Ry. Similarly,
if the input node is labeled —z;, then by the invariant, g(z) = 1 and g(y) = 0
once again. But this time g(z) = —z; and g(y) = —y;, and we hence z; = 0 and
y; = 1. So in this case we have z; # y; as well, and hence (z,y,i) € Ry. O

Lemma 8. For every protocol P for Ry, there is a corresponding circuit C' for
f such that d(C) is the depth of P, i.e. the communication complexity P

Proof. Given a protocol P for Ry, we will convert this binary tree P into a circuit
C as follows: Each internal node in which Alice speaks (i.e., a node labeled by a
function with domain X) is labeled by V and each internal node in which Bob
speaks is labeled by A. As for the leaves of P, by proposition 6, each leaf is an
Rj-monochromatic rectangle A x B with which an output ¢ is associated. Take
any x € A and let x; = 1. Then since for all y € B, the value i is a legal output
on (z,y) for P, we must have y; = = for all y € B. This in turn implies x; = v
for every x € A. Therefore either:

1. vweAvy€B<z'i =1A Yi = 0)
2. szAvy€B<xi =0A Yi = ]-)

In the first case we label the leaf by z; whereas in the second case we label the
leaf by —z;.

Clearly the depth of C' equals the depth of P. It remains to prove that C'
computes f. We claim that for every node of C, the function g corresponding
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to that node satisfies:
V.eaVaen(9(z) = 1A g(2') = 0)

where A x B are the inputs that reach the corresponding node of P. This
immediately implies that the function computed by the output node of C (i.e.,
the function computed by C)is 1forallz€ X = f !(1) andOforall z € Y =
f71(0). Hence C computes f.

The claim is proved by induction, starting from the input nodes of C' and
moving toward the output node of C. The claim is true for the input nodes
because of the way in which these input nodes were labeled. Now consider an
internal node w of V' computing a function g such that the claim is true for its
two children computing the functions g; and g2 respectively4. Let A x B be the
inputs reaching this node w in P. Assume without loss of generality, that Alice
speaks in this node. (The case for Bob is similar). Tat means w is labeled by Vv
in C,i.e., g=g1 Vg In P, since Alice speaks at w, this entails a partitioning
of A into A; and A,, where the inputs in A; travel to the left subtree of P
and those in A, travel to the right subtree. By the induction hypothesis, for all
y € B we have ¢1(y) = g2(y) = 0, and for all x € A; we have g;(x) = 1, while
for all z € Az, we have go(x) = 1. Hence for all y € B, g(y=91(y) V g2(y) = 0,
and for all z € A = A; U Ay, we have g(z) = g1(x) V g2(z) = 1. O

Theorem 9. For ever f:{0,1}" = {0,1}, we have d(f) = D(Ry).

Proof. Applying lemma, 7 to the circuit C* with minimal depth that compute f,
we see that there exists a protocol P for Ry such that the depth of P < d(C*) =
d(f). Hence D(Ry) < d(f). Apply lemma 8 to the protocol P* with minimal
depth for Ry, we see that there exists a circuit C for f such that d(C) = depth
of P* = D(Ry). Hence d(f) < D(Ry). O
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