Recent advances in Complexity CIS 6930/CIS 4930

Lecture 11

October 1, 2002

Lecturer: Dr. Meera Sitharam Scribe: Erwin Jansen

1 Introduction

This lecture was split up in two parts. During the first an overview was given
how to prove a circuit size lower bound independent of depth. The second part
was a talk given by Zia on communication complexity and circuit depth.

2 Monotone Circuits

In order to prove a lower bound on circuit size independent of depth we will re-
strict ourselves to monotone circuits. A monotone circuit by definition computes
a monotone boolean function. Before we explain what a monotone function is
we will first describe what a dominating vector is:

Definition 1 (Dominating Vector). Given two vectors U and 0 we say that
¥ dominates W written as U = W if:

Vivi > wy)

Using this definition we can define what a monotone boolean function is.
We call a boolean function monotone whenever it gives a one for an input X it
gives a one for every input dominating X. Formally:

Definition 2 (Monotone Function). Let X,Y € {0,1}* and | X| = |Y|. Now
a function f:{0,1}* — {0, 1} is called a monotone function if:

Vyex (F(X) =1—f(Y)=1)

There are many non-trivial monotone functions that are interesting for a
complexity theorist to investigate:

Example 1 (Monotone Functions). Here we give two examples of mono-
tone boolean functions, one in P and one in N P. For both examples we assume
that the input variables are the possible edges in a graph. A one in the input
represents the existence of an edge.

e Bipartite matching function: Consider a graph with a bipartite matching.
The addition of another edge will leave the matching intact. This problem
can be transformed into finding a mazimum flow in a graph and hence the
problem is in P.

11-1

Dominating
Vector

Monotone
Function

o The clique function: Consider a graph with a clique of size k. Now adding
an edge to this graph will still contain a clique of size k. This problem is
in NP.

A monotone circuit is a circuit that only consists of or and and gates. A
monotone circuit computes a monotone function, since both a Ab and a V b are
monotone functions. (Notice that only —a is a non-monotone operation!). Vice
versa any monotone function can be computed by a monotone circuit. This does
not imply that we cannot compute the same function with a circuit that is not
monotone, i.e. contains an —a gate somewhere.

Exercise 1. Show that any monotone function has at least one monotone cir-
cuit.

Now we are going to look at the lower bound of the size of a monotone circuit
for a monotone function without any restrictions of depth. So the first problem
we will look at is this:

Problem 1 (Bound for monotone circuit). What is the circuit size lower
bound on a monotone circuit for a monotone function without any restrictions
on depth.

If we could show an exponential lower bound and if we can show that non
monotone circuits for monotone functions can be converted to monotone circuits
with only a polynomial blow up in size then we would have proven that P # N P!

Obviously there is a catch somewhere. It has been shown that a simulation
like this does not exist. In other words, there are monotone functions which have
a small non-monotone circuit but require a big monotone circuit. It turns out
that for the bipartite matching function that is in P it holds that:

Problem 2 (Matching has huge circuit). A monotone circuit for bipartite
matching is exponential in size.

Showing that there is a lower bound for arbitrary monotone functions does
not really help us in proving whether P = NP or not.

2.1 Slice functions

Despite the huge gap between monotone and general circuit complexity there
is a special class of functions for which the two complexities are polynomially
related. The class of functions are called slice functions. A slice function is a
function that gives a specific output when the number of ones is above or below
a certain threshold. However if the amount of ones in the input equals the
threshold then the function is arbitrary. Formally:

Definition 3 (Slice Function). A slice function is a function that has the
following characteristic:

0 if SN <k,
f(x) = < arbitrary if Zﬁo z; =k,
1 PN i > k.

11-2

Excercise

Slice Function

It sounds as though the use of slice functions are limited, but it turns out
there are some slice functions that are in N P.Circuits for monotone slice func-
tions can be simulated with polynomial blowup by monotone circuits[?]. You
can prove P # NP if you started out with a monotone slice function and proved
an exponential monotone circuit size lower bound.

2.2 Proving the problems

Up until now we have given proofs that are called natural. Natural proofs follow
a certain structure that has been formalized in [?]. If a proof has this structure
then it cannot be used to prove P # N P. Unfortunately this means that we
cannot build upon the techniques used so far.

The proof we will present is not going to be a natural proof technique. The
reason for this is that we are using a special property of the function, namely
its monotonicity Here we give the global outline of what we are going to prove
in the upcoming lecture:

Theorem 4. For k < ni the monotone circuit size required to compute the
cliquen i function is at least nUVE)

Proof-idea

1. Avoid dealing with all monotone circuits, but only those “nice” ones that
are likely to compute cliquey, j.

2. Show that any monotone circuit computing clique, , can be approximated
by another nice monotone approzimator circuit without a blow up in size.

3. Show that the nice monotone approximator circuit for clique, ; has to be
big.

We will examine the performance of our approximator circuits over a subdo-
main of inputs that capture the essence of what is hard to distinguish between
a clique or no clique: the sub-domain of our approximation circuit is going to
consist of the positive and the negative test graphs.

Definition 5 (Positive test graph). A positive test graph is a graph that
barely has clique’s: more precisely it has only one k cligue and no other edges.

Definition 6 (Negative test graph). A negative test graph is a graph that
has many (k — 1) cliqgue’s but no k clique. In fact, it is obtained by coloring a
graph of n vertices randomly with k — 1 colors so that exactly n/k — 1 vertices
has the same color, and putting edges between all pairs of vertices that have
different colors.

The first goal we set for ourselves will be to proof the following claim:

Claim 7. Let C be a monotone circuit for clique, ; we can find an approxzima-
tion C such that C < C holds on most positive test graphs (C) and vice versa
on negative test graphs.

After we have proven this claim we will prove:

Claim 8. Show that every approzimator either outputs 0 on most positive test
graphs or outputs 1 on most negative test graphs

11-3

Positive test

Negative test

3 Part 2 — Zia’s talk on communication com-

plexity technique for proving circuit depth lower

bounds

The talk is divided into three parts. In this lecture only the first two parts where
discussed:

Part 1: Introduction and definition of the communication complexity of a func-

tion. An upper and lower bound for communication complexity will be
established.

Part 2: An algebraic way of arriving at a lower bound for communication com-
plexity.

Part 3: Define the relationship between the communication complexity of f
and the minimum depth of a circuit computing f

The last part is discussed in the next lecture.

3.1 Introduction

Suppose X, Y, Z are arbitrary finite sets and f : X xY — Z a function. Suppose
there are two players: Alice and Bob, who wish to evaluate f(z,y) for some
input x € X and y € Y. We will assume that Alice and Bob both have unlimited
computational power, since we are only interested in communication complexity.

Now the problem is that Alice only knows z and Bob only knows y. Hence to
evaluate f(z,y) they must communicate with each other. In other words they
have to send bits to each other until the value of f(z,y) can be determined. This
communication will be carried out according to some fixed protocol P which is
defined as follows:

Definition 9 (Protocol). A protocol P over domain X XY with range Z is
a binary tree with the following properties:

1. P depends only on f

2. P must determine at each stage whether the communication may stop, and
if so, what the value f(z,y) is

3. If the communication is not to stop, then P must specify who speaks next,
i.e. which player sends a bit of communication next, and what the player
says. This information must depend solely on the bits communicated so
far during the run of the protocols

Based upon the protocol we can define what the communication complexity
is:

Definition 10 (Communication Complexity). For a function f : X xY —
Z, the (deterministic) communication complexity of f, denoted by D(f), is the
minimum cost of P, over all protocols P that compute f

Lemma 11. For every function f : X x Y — Z, we have D(f) < log, | X| +
log, |Z|

11-4

Protocol

Communication
Complexity

Proof. Alice could send all her input to Bob. This requires log,, | X | bits, using an
appropriate encoding. Then Bob can compute f(x,y) using his unlimited com-
putational power. Then Bob can send the answer back to Alice, which requires
log, |Z| more bits. O

Lemma 12. For every function f : X xY — Z, we have D(f) > log, |Range(f)]|.

Proof. Any protocol P computing f must have at least | Range(f)| leaves. Hence
the depth of P must be at least log, |Range(f)|. O

The careful reader must have noticed by now that this lower bound is rather
useless for boolean functions f : X x Y — {0,1} since by lemma 12 we have
have D(f) > 1. We will now try to raise this lowerbound

3.2 Towards a higher lowerbound

Definition 13 (Reachability). Let P be a protocol and let v be a node of P.
The set R, is the set of inputs (x,y) that reach node v.

As one can see Ryoot = X X Y.

Lemma 14. If L is the set of leaves of a protocol P, then {R;}icL s a partition
of X xY.

Proof. No input (z,y) can reach two different leaves of P since from any internal
node, (z,y) must take the left or the right subtree, not both. Thus the R;’s are
mutally disjoint. Evidently |J,c, B € X xY and X xY C ;¢ R since any
input will traverse P to reach some leaf [and therefor will be in R;. |

Definition 15 (Rectangle). A (combinatoral) rectangle in X xY is a subset
RC X xY suchthat R=AX B for some ACX and BCY

Lemma 16. For every protocol P and node v of P, the set R, is a rectangle.

Proof. We will prove by induction on the depth of v that R, is a rectangle. If
v is the root then we have already seen that R, = X x Y, which is a rectangle.
Otherwise, let w be the parent of v. Assume without los of generality that v is
the left child of w, and that in w Alice speaks, i.e. w is labeled with a function
ay : X — {0.1}. The R, = Ry N {(z,y) | aw(z) = 0}. By the induction
hypothesis, Ry, = Ay X By, for some A, C X and B, CY. Thus R, = (4, %
By) U ({7}, (2)=0) X By, which is a rectangle since Ay N{z},, (z)=0 € X. O

Definition 17 (Monochromatic set). A subset R C X x Y, is called f-
monochromatic if the function f is fixed on R.

Lemma 18. Any protocol P for a function f induces a partition of X XY into
f-monochromatic rectangles. The number of these rectangles is the number of
leaves of f

Proof. By lemma 14, {R; }icr, is a partition of X xY, where L is the set of leaves
of P. By lemma 16, each { R };c1, is a rectangle. Each R; is monochromatic since
if (z,y) € R; then f(z,y) is the element of Z that labels the leaf [, of course the
number of these rectangles {R; }icr is clearly L. O

Corollary 19. If any partion of X x Y into f-monochromatic rectangles re-
quires at least t rectangles, then D(f) > log,t

11-5

Reachability

Rectangle

Monochromatic
set

Proof. By lemma 18, any protocol for f must have at least ¢ leaves. Hence the
depth of such a protocol is at least log, ¢ O

This corollary gives a strategy for proving lower bounds on the communica-
tion complexity of a function f. We simply prove lower bounds on the number
of rectangles in any partition of X x Y into f-monocromatic rectangles.

Definition 20 (Associated Matrix). For every f : X xY — Z, the associ-
ated matriz My is the matriz of dimensions |X| x |Y|, where the rows of My
are indezxed by the elements of X, the columns by the elements of Y, and the
(z,y) entry of My is f(z,y). By rank(f) we mean the linear rank of My over
R, i.e., the number of linear independent rows of My over R.

Lemma 21. For any function f : X xY — {0,1}, we have:
D(f) = log, rank(f)

Proof. Let P be a protocol for f and let L; be the subset of the set of leaves
L of P in which the leaves are labeled 1. For each leaf | € L, define a matrix
My, by My (z,y) =1 for (z,y) € Ry and My (z,y) =0 for (z,y) & R;. Observe
that for every (z,y) for which f(z,y) = 0, the (z,y) entry is 0 in a single
matrix My. For every (z,y) for which f(z,y) = 1, the (z,y) entry is 1 in a
single matrix M. Hence My = },.; M;. From linear algebra, we know that
rank(My) < 3y, rank(M;). For each [€ Ly, we have rank(M;) = 1. The is
because the 1’s of M; are “markers” for those entries (z,y) of M; that end up
in Ry, which is a l-rectangle, i.e., a monochromatic rectangle whose elements
have 1 as their f-value. It follws that the nonzero rows of M; are identical, and
so M; has exactly one linearly independent row. We now have:

rank(f) = rank(M; < Z rank(M;) = Z 1=|L] < |L]
leL; leLy

Hence by lemma 18 and corollary 19, D(f) > log, |L| > log, rank(f). O
Corollary 22. For any function f : X x Y — {0,1}, we have:
D(f) 2 logy(2rank(f) — 1)

Proof. Note that the proof of lemma 21 actually gives a lower bound on |L4|,
the number of 1-rectangles, rather than on |L|. We can get a lower bound on
|Lo|, the number of O-rectangles as follows: By switching the role of 1 and 0, we
can look at M_y, and the proof of lemma 21 gives a lower bound on |L| for
M_¢, which is a lower bound on |Lo| for My. Let J be the all-1 matrix. Then
My = J — M-y we have rank(J) = 1 and rank(—M-;) = rank(M-y), again
from linear algebra. So rank(My) < rank(J) + rank(—M-;). We now have

|L| = |La] + [Lo| = 1)
i+) 1= ()
lel, l€Lg

Z rank(M;) + Z rank(Mlﬂf) > (3)
leL, leLg
rank(My) + rank(M-g) > 4)
rank(My) + rank(Mg) — 1 (5)
Hence we have log, |L| > logy(2rank(My) — 1). O

11-6

Associated
Matrix

Exercise 2. Alice and Bob each hold an n-bit string, z,y € {0,1}"™. The equal- Exercise
ity function EQ(z,y), is defined to be 1. if x = y and 0 otherwise. Prove that
D(EQ) =N + 1.

11-7

