Recent advances in Complexity CIS 6930/CIS 4930

November 7, 2002

Lecture 22

Lecturer: Dr. Meera Sitharam Scribe: Hongyu Guo

Two corollaries follow from forward direction of the main theorem from Lecture 21 and the standard use of pseudo random generator for derandomization of a randomized algorithms A.

Corollary 1 If EXPTIME cannot be approximated by polynomial size circuits, then $BPP \subseteq \bigcap_{\epsilon>0} DTIME(2^{n^{\epsilon}})$.

Exercise 1 Strenghen the antecedent of the above corollary enough so that consequence is " $BPP \subset P$ ".

Corollary 2 $RAC^0 \subseteq \bigcup_c DSPACE((logn)^c) \subseteq \bigcup_c DTIME(2^{log^cn}).$

Proof. (\Leftarrow is left out.) (1) \Longrightarrow (2) is easy using Yao's XOR lemma.

Exercise 2 Yao's XOR lemma implies

 $(1) \Longrightarrow (2)$:

Let s(t) be any function such that $l \leq s(l) \leq 2^l$. If \exists a function in EXPTIME that cannot be approximated by circuits of size s(l) (in the weak sense), then for some c > 0, \exists another function in EXPTIME whose hardness $H_{f'}(l) \geq s(l^c)$. (This is strong non-approximation ability.)

 $(2) \Longrightarrow (3)$:

There are two subparts of the proof here (two lemmas). The first subpart is the onstruction of pseudo random generator $G: l \longrightarrow s(l^c)$, where $l^c = n$, using a hard function f, by first constructing a $(logn, l^{1/2})$ design on $\{1, ..., l\}$, (Here $m = l^{1/2}$ and k = logn) and show the pseudo random generator safisfies condition c1. The second subpart is to show such a design exists. For $x \in \{0, 1\}^l$,

$$G(x) = f(z_1), ..., f(x_n),$$

where z_i is te restriction of x to the indices in S_i .

Example 1 x = 01110101

$$l = 8, S_i = \{1, 3, 5\}$$

 $z_i = 010.$

Subpart 1 If G is based on a $(logn, l^{1/2})$ design, then it is a pseudo random generator satisfying the bias requirement in the statement of the theorem. This is Lemma 3 stated in Lecture 21.

Subpart 2 $(logn, l^{1/2})$ design exists and can be constructed in $DTIME(2^l)$, where $n = s(l^c)$. This will be Lemma 4 stated in the next lecture.

Aside Sitharam'93 has a 2 line proof of subpart 1 using Fourier transforms of Abelian groups showing relations between pseudorandom generators and learning algorithms of sampling.

Proof of Subpart 1 Proof by contradiction. Assume such a pseudorandom generator G based on the $(logn, l^{1/2})$ design does not satisfy condition c1.

.