Recent advances in Complexity CIS 6930/CIS 4930

November 5, 2002

Lecture 21

Lecturer: Dr. Meera Sitharam Scribe: Hongyu Guo

Our main goal is to prove Nisan-Wigderson theorem (1988), which relates hardness to pseudorandomness.

Theorem 1 (Nisan and Wigderson, 1988)

For every s, where $l \leq s(l) \leq 2^l$, the following are equivalent:

- (1) For some c > 0, \exists some function f_n in EXPTIME that cannot be approximated by circuits of size $s(l^c)$.
- (2) For some c > 0, $\exists a \ f_n \ in \ EXPTIME \ with \ hardness \ s(l^c)$.
- (3) For some c > 0, \exists a $DTIME(2^l)$ pseudorandom generator $G: l \longrightarrow s(l^c)$, such that \forall circuit C of size $s(l^c) = n$,

$$|P[C(y) = 1] - P[C(G(x)) = 1]| \le \frac{1}{s(l^c)},$$

(21.1)

where y is uniformly distributed on $\{0,1\}^n$ and x is uniformly distributed on $\{0,1\}^l$.

Corollary

 $RAC^0 \subseteq DSPACE(poly/log(n)) \subseteq DTIME(2^{poly/log(n)}) = DTIME(n^{poly/log(n)}) \subseteq constant depth polynomiae size circuits,$

where RAC^0 is Randomized AC^0 , or randomized constant depth polynomial size circuits. A circuit C in RAC^0 takes I as regular input and x as random inputs. If $I \in S$, then C(I,x)=1 with probability $\geq \frac{1}{2}+\epsilon$ and if $I \notin S$, then C(I,x)=0 with probability $\geq \frac{1}{2}+\epsilon$.

Note to find 1 bit that looks random to circuit of size $s(m^c)$ we can simply take the output of f. It is a problem to come up with lots of bits. To get a pseudo random generator from f to satisfy condition c1 we need the XOR Lemma. First we give some definitions.

Definition 1 Given a Boolean function $f_n: \{0,1\}^n \longrightarrow \{0,1\}$, we say f_n is (γ,s) hard if for any circuit of size s

$$|P[C(x) = f(x)] - \frac{1}{2}| < \frac{\gamma}{2}$$

$$|P[C(x) \neq f(x)]| \ge \frac{1}{2} - \frac{\gamma}{2}$$

where $0 < \gamma < 1$.

Definition 2 We say that f cannot be approximated by circuit of size s(n) if for some constant k, all large enough n and circuits C_n of size s(n):

$$Prob[C_n(x) \neq f(x)] > \frac{1}{n^k}$$

where x is chosen uniformly in $\{0,1\}$.

Definition 3 Let $f: \{0,1\}^n \longrightarrow \{0,1\}$ be a Boolean function uniformly defined and let f_m be restrictions of f to strings of length m. The hardness of f at m $H_f(m)$ is the maximum integer h_m such that f is $(1/h_m, h_m)$ - hard.

Notice this is pretty much the same as the hardness definition given in Erwin's talk.

Lemma 2 (Hardness amplification, Yao's XOR Lemma)

Let $f_1, ..., f_k$ be all (γ, s) hard. Then for any $\mu > 0$ the function $f(x_1, ..., x_k) = \sum_{i=1}^k f_i(x_i) mod 2$ is $(\gamma + \mu, \mu^2 (1 - \gamma)^2 s)$ -hard, where x_i 's are all strings.

Idea The output of G is a sequence of bits, where each bit is $f(x_i)$, where x_i is a small seed. We want to choose x_i 's such that the x_i 's are not highly correlated. Intuitively, choose x_i, x_j in the set such that $|x_i \cap x_j|$ is small.

Definition 4 A collection $\{S_1,...,S_n\}$ of sets where $S_i \subseteq \{1,...,l\}$ is called a (k,m) design, if $\forall i$,

- (1) $|S_i| = m$, (each x_i does not have too many 1's)
- (2) $\forall i \neq j | S_i \cap S_j | \leq k$.

Our pseudo random generator G takes a seed x of length l. The x_i 's are chosen as a (k,m) design on the set of 1-bits of x. $G(x) = f(x_1)f(x_2)...f(x_n)$. Recall $n = s(l^c)$ in the statement of the theorem.

Lemma 3 Let m, n, l be integers. $f: \{0, 1\}^m \longrightarrow \{0, 1\}$. $H_f(m) \ge n^2$ and let A be a Boolean $n \times l$ matrix which is a (logn, m) design. Then $G: \{0, 1\}^l \longrightarrow \{0, 1\}^n$ given as above is a pseudo random generator satisfying (21.1) in the statement of the main theorem.