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1 Proofs with LOGSPACE Statistical Tests

In the last lecture we briefly introduced the classification of LOGSPACE sta-
tistical tests given by Sivakumar (2001). We now look at some examples.

1.1 Chernoff-Hoeffding Lemma/Bound

Problem 1 Given m sets Ay, As,... ,Am C{1,...,n}, the goal is to compute
a set Q such that max;A; = ||A; N Q| — |A; \ Q|| is minimized.

A randomized algorithm that obtains a @) that is a good approximation to the
desired @ is as follows: It picks each element of {1,2,...,n} with probability
1/2. to get Q.

The proof of correctness (that uses the C-H bound) shows that when @ is picked
according to this rule, then for some C > 0, Vi P[A; > Cy/|Ai|logm] < 1/(2m).
This means that the probability that the algorithms fails to give a good approx-
imation is bounded above by 1/(2m). In other words there is an n bit string
whose randomness is tested by some statistical test during this proof. The sta-
tistical test can be thought of as an algorithm that either accepts or rejects a
string depending on the outcome of the test. The proof that the random string
passes this test is the C-H bound. Next we describe the statistical test.

Think of the statistical test as a Turing Machine with the following tapes:
1. Input Tape: It holds n random bits ¢1,¢2,... ,qn- ¢; = 1 iff i € Q.

2. Active tape: Has sets Aj,..., A, and the values C?|A|logm. Note that
the contents of the tape are independent of the input itself and depend
only on the input length.

3. Index tape: Contain i € {1,... ,m}.

4. Work tape: Integer variables j,a,b that will take values in the interval
(0,...,n). a will count |A; N Q| and b will count |4; Q.

The algorithm is as follows:
Initialize a and b to zero.
for j =1tondo
if j € A; then
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thena=a+b
elseb=b+1
end if
end if
end for

if (a — b)? < C?|A;|logm
then accept
else reject

The statistical test we described is a LOGSPACE computation. It is this
test that a random string has to pass in order for the C-H bound to go through.
Now that we have a LOGSPACE statistical test we need to give a pseudoran-
dom generator that fools this test (and in fact any LOGSPACE test).

Theorem 1 3 constants A > 0, B > 0, such that Ve > 0 given a LOGSPACE
machine/algorithm /statistical test M and t > A(logn®") + log(1/€)) it is pos-
sible to construct a sample space (set of pseudorandom strings + distribution)
S C {0,1}" such that |S| = (n/e)°") so that for any value I on M’s index
tapes, |Prcqoyen (M(I) accepts r) — Pres(M(I) accepts 1))| < €.

The C-H bound proves that when ¢ € {0,1}" is chosen uniformly at ran-
dom Vi, then D(i) rejects with probability at most 1/(2m). Applying the pseu-
dorandom construction we get sample space (n/e)¢ = (n + m)°(M) (taking
€ = 1/(2m)), for some fixed constant C. If ¢ is chosen according to S then
Vi D(i) rejects with probability < (1/(2m) + €) = 1/m. Thus probability D(7)
rejects for some i is < ¥(1/m) < 1. The probability that D(¢) accepts for all ¢
is strictly greater than zero. This means that 3 atleast 1 pseudorandom string
g € S such that D(7) accepts for every i.

1.2 Johnson-Lindenstrauss Lemma

This J-L lemma is frquently applied to problems in combinatorial geometry.
Typically problems get exponentially complex with increase in dimensions, i.e.,
complexity is O(n?). So we would like to try to reduce a problem instance
into one with fewer dimensions while preserving the geometric invariant. The
following problem serves as an example.

Problem 2 Given n points uy,... ,u, € R¢ (where d is large) we want ® :
R4 — R* (k << d) such that for each i,j,1 <i<j<mn, (1—e)|lu;—u;||? <
(1@ (us) — @(uy)||?

One proposed solution is to project the given vectors into a random k— dimen-
sional subspace and it can be shown that with high probabilty the test is passed.
However, it is hard to show that the test € LOGSPACE. So we need to convert
to an equivalent lemma whose statistical test € LOGSPACE. Such a conver-
tion is given in Achlioptus (2001). ® is constructed by taking a k X d matrix
(call it Ag) such that the rows of the matrix are the basis of the k— dimensional
subspace desired and whose entries € {—1,+1}. Now we have ®(u;) = Asu;.
The statistical test takes this random matrix entries as input (with u;s on the
advice tape) and tests the statement. In this case we have a LOGSPACE test.
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2 Physics, Information and Computation

In the remainder of this lecture and the next lecture we will study the rela-
tionship between physics, information and computation. We begin by giving an
introduction to Kolmogorov complexity.

2.1 Kolmogorov Complexity

Suppose that we want to measure the amount of information contained in a fi-
nite binary string. Consider, for example, the string 111...1, where the number
of 1s is 10, 000. Intuitively, this string contains little information.
Observation: The following program outputs the string:

for i =1 to 10,000

print 1

Likewise, consider the number 7 = 3.1415..., which is an infinite sequence
of digits. There is also a short program that computes the consecutive digits of
7. These observations motivate the following definition.

Definition 1 The amount of information in a finite string is the size of the
shortest program that without additional data, computes the string and termi-
nates.

It appears that the amount of information in a string depends on the program-
ming language used. However it has been proved that all reasonable choices of
programming languages lead to the quantification of information that is invari-
ant up to an additive constant.This quantity is called the Kolmogorov Complex-
ity of the string. Some strings such as those in the examples above have shorter
descriptions than themselves and are said to be compressible.

2.2 Information Theory

A parallel development was the study of information theory and coding by Shan-
non, which we briefly review.

Suppose we want to assign a quantity of information to an ensemble of possible
messages. All messages in the ensemble being equally probable, this quantity is
the number of bits needed to count all possibilities. Note that in this case we
ignore the meaning of the message itself. Rather the interest lies in communi-
cateing a message between a sender and a receiver. Further we assume that the
set of all possible messages is known to both the sender and the receiver. The
set of messages from which the selection takes place is called an ensemble. We
will only consisder countable ensembles.

Definition 2 The entropy of a random variable X with outcomes in an ensem-
ble S and all messages in the ensemble equally likely is the quantity H(X) =
logd(S), where d(S) is the cardinality of S.

By choosing a particular message ‘a’ from S, we remove the entropy from X by
the assignment X = a and produce or transmit information I = logd(S) by our
selection of a. Expressing in bits, [I' = logd(S)].

Note that if we have K independent variables X7, Xs,..., X} each can take
n; values i = 1,2,...,k the number of combinations possible is nins,...ng
and the entropy (when the messages are equally likely) is H(X1, Xa,... ,Xj) =
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logni + logns + . .. + logny, = logn.

What is the entropy when the messages occur with given probabilities?

Definition 3 The entropy of a random variable X with given probabilities P(X =
a;) = p; is H(X) = —Zp;logp;.

If we want to encode a sequence 1% ...T,, £; € N, call zyzs...x, the
source sequence and y1ys ...y, with y; = E(x;) the code sequence. A code is
uniquely decodable if for each source sequence of finite length, the code sequence
corresponding to that source sequence is different from the code sequence cor-
responding to any other source sequence. A code is a prefix code if the set of
code words is prefiz free, i.e., no code used is a prefix of another code word.
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