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1 Derandomizing Specific Classes of Algorithms

Lots of randomized algorithms can be seen as “algorithmizing” a probabilistic
existence proof, i.e., one gets a randomized algorithm that with high probabil-
ity constructs the combinatorial object whose existence the probabilistic proof
establishes. In other words the proof serves as “proof of correctness” of the al-
gorithm (although, usually the proof precedes the algorithm). For specific types
of such randomized algorithms (i.e., randomized algorithms in whose analysis
a particular type of probabilistic existence proof appears), we give a general
method of derandomizing them.

1.1 General Overview

Suppose that it is desired to compute f(z) given z (f(x) could be Boolean-
valued for example when we are trying to recognize whether z belongs in a set).
A randomized algorithm M takes as inputs z and a additionally a string y of m
random bits. It outputs f(z) exactly (or approximately) with high probability.
The proof of correctness of M will at some point make use of the fact that it
gets truly random bits. If we plug truly random bits into a statistical test, it
behaves in a certain way and that behavior establishes that M works (with high
probability).

Idea: Extract a statistical test out of this segment of the proof. Then establish
complexity of this statistical test. Let us say it is C. We can claim that any
psuedorandom generator G that fools computations in class C' will derandomize
M. Note that C has nothing to do with anything in the algorithm. It only has
to do with the portion of the proof of correctness of the algorithm that says the
use of truly random bits results in a certain output with high probability.

The class of randomized algorithms we will look at are those whose proofs
of correctness embed a statistical test that can be computed in LOGSPACE
since there is a very good psuedorandom generator for LOGSPACE. Recall
that LOGSPACE C P. Also many of the common problems known to be in P
also lie in LOGSPACE. Another interesting thing to note is that LOGSPACE
can be thought of as the set of very efficiently parallelizable computations in P
(with good speedup), since parallel time (circuit depth) is generally equated to
sequential space.
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1.2 Proofs with LOGSPACE Statistical Tests

Sivakumar (2001) observed that many existing algorithms randomized algo-
rithms employ LOGSPACE statistical tests. From the ideas presented above
and this observation it follows that a pseudorandom generator that fools compu-
tations in LOGSPACE will suffice to derandomize many existing algorithms.
He classified these randomized algorithms into 3 classes as follows.

Algorithms whose correctness is based on

1. Chernoff-Hoeffding Lemma/Bound.
2. Semidefinite relaxation bound.
3. Johnson-Lindenstrass Lemma.

An example of the problem of the first type is the set descrepancy problem
also known as the lattice approximation problem. The two versions of the prob-
lem follow.

Version 1: Given m sets A;, As,... ,Apn C{1,...,n}, the goal is to compute
a set @ such that maz;A; = ||4; N Q| — |A4; Q|| is minimized.

Version 2: Given m vectors ay,... ,a, € R" with ||a;||c < 1fori=1,...m
and a vector p, the goal is to find a vector ¢ € {0,1}™ such that maz;| < a;,p >
— < a;,q > | is minimized.

Exercise 1 How are these two versions of the problem related? Hint: Show that
version 1 is a special case of version 2. I.e, reduce version 1 to version 2.

A related problem is the shortest vector problem for lattices. Given an arbi-
trary basis for R™, uy, us, ..., %,. What is the length of the shortest vector in
the lattice that is an integer linear combination of the basis vectors? In other
words minimize Y \;u;. This is the first problem known to have the following
property: if its worst case is hard then its average case is hard. Such a result is
important to applications like cryptography, where it is not sufficent that the
worst cases are hard for the adversary to break, but rather that the average case
is hard for the adversary to break.
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