Recent advances in Complexity CIS 6930/CIS 4930 November 19, 2002

Lecture 25

Lecturer: Dr. Meera Sitharam Scribe: Srijit Kamath

1 Construction of Efficient Extractors

Our goal is to contruct effcient extractors that convert weakly random strings
to strongly random ones.

It is known that Vn, k, e, 3(k,€) extractor EXT : {0,1}* x {0,1}t — {0,1}™
where t = O(logn/e),m =k +t — 2log(1/e) — O(1).

Conjecture: EXT is computable in time polynomial in n.

The best known extractor is due to Trevisan. The parameters are:

o k=n%M m =k t=0(ogn)
e any k,m = k'~ t = O(log®n/logk)

1.1 Simulation of RP computations

First we explain how to deterministically simulate RP computations using ex-
tractors.

Definition 1 A language Z € RP if there exists a deterministic polynomial
time machine M that takes 2 inputs, z (to be decided in Z or not) and a random
string y, |y| < |2|*, and

z € Z = on atleast 1/2 fraction of strings y, M says “yes”.

z2¢ Z= ondaly, M says “no”.

Exercise 1 Show that 1/2 can be replaced by any constant > 0 to achieve same
acceptance probability by running M sufficiently often.

While designing a pseudorandom generator we need to keep in mind that:
(i) It should run in reasonable time and (ii) It’s use results in accurate output.
Previously we ran the input exhaustively on all random seeds to guarantee ac-
curacy. We will not do that now.

Our simulation for RP computations proceeds as follows. Given X on {0,1}",

a weakly random source, get a single element x. From z generate deterministi-
cally yi,95,... ,y;oly(n), strings € {0,1}™, then run M on each y'. We accept

25-1

if M accepts on atleast one y; (in case of BPP do what M does on majority of
y;s). Clearly the simulation takes polynomial time.

Fact 1 The above simulation is a a—accurate deterministic polynomial time
simulation of RP if for every set W C {0,1}™, |W| >2™/2, P[3i:y;, € W] >
1—a.

Note that if & = 0 we have a fully accurate simulation.

Proof. If the original RP algorithm M accepted for > 1/2 of the possible
y € {0,1}™, let us call this set of ys as W. By the assumption (in Fact 1) on the
extractor, atleast one of the outputs of extractor (with probability 1 —a) € W,
and by the simulation rule we accept. If the original RP algorithm M does not
accept any one of the ys € {0,1}™ our simulation will not accept either since
the y;3 € {0,1} as well. |

Intuitively the extractor outputs a set of strings with the property that if
we took any large enough subset we will find one output of extractor in it. The
yis in Fact 1 are outputs of a ‘disperser’ which is a weaker form of an extractor.

Definition 2 A function DISP : {0,1}" x {0,1}} — {0,1}™ is a (k,€) dis-
perser if for every subset W C {0,1}™, |W| > €2™ and for every random
variable X of min entropy > k, P[DISP(X,U;) € W] > 0.

This means that for any enough subset of the output set the disperser has
non- zero probability of finding something in that set.

Exercise 2 Prove that a (k,€) extractor is a (k,€) disperser.

Fact 2 For the BPP simulation we actually need the extractor property.

1.2 Extractors for Derandomization

Recall that in the analysis of NW generator G, we assumed that

IPIC() = 1] - PIC(G(@) = 1] > T

We created a circuit D' that computes the function f (from which G was con-
structed) such that size(D') ~ size(C), provided f € EXPTIME. The anal-
ysis continued by showing that it can not be that both f is hard and size(C)
is small. Key observations for constructing an extractor EXT from the NW
generator are the following.

e The circuit D' takes C as a subroutine inside it. In other words if C is
fixed, D' depends only on f (the additional O(n?) size or time comes from
computation of f on strings of logn bits). So G can be thought of as being
parameterized by f. No matter what f is, G proceeds in the same manner
using the general construction. Call this circuit D}. The construction of
D' works for any C as a blackbox subroutine. Note that the fact that C
belonged to a certain complexity class was eventually used. Here we will
not use it as we are considering an arbitrary statistical test instead of C.

25-2

e Construction of G works for any f as blackbox. Size(D') beyond size(C)
and runtime of G depend on f € EXPTIME.

e The number of fs that have small circuits is small. Of the 22" fs only i
have polynomial size circuits.

Idea: Define our extractor EXTnw(X,U;) = Gf(x), where X is defined
over the truth tables of boolean functions f of logn variables; Note that the size
of the table is n which is what we want. Think of U; as a uniform distribution
over seeds of ¢ bits, i.e, the seeds = that are input into the pseudorandom gen-
erator Gy. .

To show that this extractor is a (k, €) extractor we begin by assuming that it
is not one. That means 3 a statistical test T such that |[P[T(EXTyw(X,U;)) =
1] = P[T'(U,,) = 1]| > €. The first probability is over X and Uy, while the second
is over U,,,. Now look at how many strings x (values of random variable X) are
“bad”. Using the first probability over U; alone, the same inequality holds for
such z i.e., | Py, [T(EXTNw(z,Uy)) = 1] — P[T(Up) = 1]| > €.

Every such bad z can be interpreted as the truth table of a function f that
can be computed by a circuit of size O(m?) with access to an oracle (subroutine)
for T. For this fixed T, there are only 0(2’”2)circuits of that type. Therefore
the number of bad zs (for T) is bounded by O(2™"). From this we can con-
tradict the original assumption that 7' distinguished the output of EXT from
U,, within e. However there is a catch. Now the NW analysis only gets a D’
approximating f (this analysis is sufficient to contradict NW result’s strong as-
sumption about f being non approximable by small circuits). This only means
that bad zs are within a certain distance of truth tables f computable by small
circuits. There could be lots of such bad zs. So our proof will not go through
as is. (Note however, that a stronger pseudorandom generator by Impagliazzo
and Wigderson which starts from a somewhat weaker assumption that f is just
not computable by smaller circuits. Their analysis therefore has to be stronger,
and therefore constructs a circuit that exactly computes f — thus if we use their
pseudorandom generator, the above proof idea does go through; the problem is
that the stronger pseudorandom generator of IW is not as clean in structure, nor
as efficient to compute as the weaker NW pseudorandom generator, so we would
like to stick with the NW generator if we can, in constructing our extractor.).

The solution is to modify EXTnw as follows on input = (value of random
variable X). EX Tw first encodes z into a codeword ' from a code (minimum
distance code) that has a good “spread”. By this we mean that for any Hamming
ball of a certain radius (r) there are at most k(r) codewords inside it. So the
number of bad zs that get associated with any one of the functions that gets
computed quickly by the circuit (constructed in the NW analysis) is still small
and the argument goes through.

1.3 Uses of Extractors

1. Extractors are used in BPP/RP simulations using weak random sources,
as we have seen above.

25-3

2. Extractors can be viewed immediately as Expander graphs (and supercon-
centrator graphs). Expander graphs can in turn be used as follows: First
note that the probabilistic method for proving existence of certain com-
binatorial objects often translates to a randomized algorithm for finding
this object (or computing its properties)(Chapter 5/6 of Raghavan and
Motwani’s book).

(i) Deterministic (probability/accuracy) amplification of *general* proba-
bilistic algorithms (Chapter 5/6 of Raghavan and Motwani’s book) can be
achieved by a combination of: (a) the probabilistic method for establishing
existence of expanders (with certain easily computable/constructible local
properties), and (b) showing rapidly mixing properties of random walks
on expanders.

(ii) Using this idea of amplification, expanders give so called “oblivious
sample sets” i.e, a set of sample points from which one can obtain various
properties of an arbitrary real-valued function (from some class) over a fi-
nite domain, in particular the function’s expected value. These can be used
for derandomizing randomized approximation/learning algorithms.(In this
context, note that 3 papers by Sitharam in the reading list on sampling
and derandomized learning all rely on construction of oblivious sample
sets, not using extractors, but using hardness-based pseudorandom gener-
ators).

(iii) As another application of deterministic amplification, existence and
explicit /efficient constructions of expanders can be used show nonapprox-
imability of NP — hard problems (unless P = N P) either by proving “gap
preserving” reductions to known nonapproximable problems (see Papdim-
itriou’s complexity book), or through direct deterministic amplifications of
probabilistically checkable proof verifiers for NP (Result by Zuckermann
95).

(iv) Explicit/efficient constructions of expander graphs can be used to
constructivize probabilistic proofs of existence and derandomize the corre-
sponding algorithms that rely on properties of random graphs (expanders
embody their “randomness” properties).

3. Extractors are used to show an unexpected connection between the power
of randomness and the seemingly unrelated question of Time vs. Space.
An extractor construction from 95 (Saks, Srinivasan, Zhou) proved the
following conjecture of Sipser from 88. “If P # RP, then there is some
a > 0 such that for any function ¢, all problems in DTIME(t) have
algorithms that require only space of O(t'~%) for infinitely many inputs.”

4. Recall we used the NW pseudorandom generator to build an extractor
(Trevisan’s result presented in class). In fact, it is even easier to build
pseudorandom generators that fool certain classes of algorithms, starting
from extractors. (I.e, get rid of the weak random source, retain only the
random seed as input, and on the other hand, only require the output to
pass statistical tests in a particular complexity class).

25-4

