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1 Extractors

1.1 Motivation

The Nisan-Wigderson theorem draws a relationship between hardness and ran-
domness. It shows that it is possible to use a hard function f to develop a good
psuedorandom generator G (and vice versa). The construction of G does not
rely on the fact that f is hard. It only relies on the complexity upper bound
of f (and that too, only to establish the efficiency of computing G). However,
the fact that G is a good psuedorandom generator that results in a bias defined
in (3) of Nisan-Wigderson theorem relies on the hardness of approximating f
using circuit C'. The question now is whether it is possible to develop good
pseudorandom generators without attaching any hardness assumptions and for
any arbitrary test C. For instance we asgk if it is possible to come up with an
extractor Ext such that

|P[C(y) = 1] = P[C(Ezt(z)) = 1]| <

| =

)

for all C, for some constant €, as opposed to a rhs that is related to the size of
the circuit C.

It turns out that this type of bias is sufficient for determininstic simulations
of BPP to settle Pvs.BPP. — we will see this type of simulation soon. In fact,
we will see that this type of deterministic simulation is a little different from the
simulation (i.e, in the proof of the corrolaries of the NW generator, and in the
introductory lecture to pseudorandomness). That simulation uses the entire set
of a pseudorandom generator’s outputs for all possible seeds, which necessitates
that the (fully random) seeds need to be small, in order for the deterministic
simulation to be efficient.

In the case of the simulation using extractors, we can also allow the input
to the extractor Ext to be not necessarily a “small” random seed, but instead,
longer strings obtained from a “weak random source.” to be defined below.
Good extractors could thus result in derandomization results such as P = BPP
without any complexity theoretic hardness assumptions.

1.2 Preliminaries

We begin by making a few definitions.
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Definition 1 A distribution D over {0,1}" is said to have min entropy atleast
k if

D()| <

< o Vo € {0,1}"

Here is an alternative definition of min entropy.

Definition 2 A random variable X of range {0,1}" has min entropy atleast k
if it holds that

1
Vz € {0,1}",P[X =z] < 5
Exercise 1 Any distribution D of min entropy > k can be written as a convex
combination D = 5" AsUs, where S C {0,1}", S| =2%,3"As =1,0< A5 < 1,
Us is the uniform distribution over S and the summation is carried out over all
such susets S.

Intuitively a string picked from a distribution over {0,1}™ with min entropy > k
contains (or encodes) k bits of ‘true randomness’. A good example is D = Ug =
{0,1}*1"=*_ This is a subcube of {0, 1}". The existence of k true random bits is
obvious in this case, but is not so for many other min entropy > k distributions.
We would like to ‘extract’ k true bits of randomness from any such distribution.
In other words we would like to convert a (potentially) weak random source to
a strong random source. That this is always possible has not been proven and
remains a conjecture.

Definition 3 Two random variables X,Y taking values in {0,1}" are € — close
if
vT:{0,1}" — {0,1}}/P(T(X)=1) - P(T(Y) =1)| <,
i.e., if
maz:o,1}» —{o,1}| P(T(X) =1) = P(T(Y) = 1)| <

Exercise 2 Show that this is equivalent to showing that

ve{0,1}n

Next we restate the above definitions as applicable to distributions. Note that
one can think of these concepts in terms of random variables or distributions,
whichever is more convenient. Understanding both may help in developing a
better intuition.

Definition 4 Two distributions D, F are € — close if

maxrr:{o,1}» —{0,1} Z D(z) - Z F(y)

z|T(z)=1 y|T(y)=1

N | =

Y. D) - F)|<e
ve{0,1}»

23-2



Definition 5 A (k,€) extractor is a function EXT : {0,1}F x {0,1}} —
{0,1}™ if for every random variable X of min entropy > k, it holds that
EXT(X,U;) is € — close to Uy,, where Uy and U, are uniform distributions
over {0,1}! and {0,1}™ respectively.

What it means is that an extractor has the property that if X is drawn from a
source of min entropy > k and if the other input to the extractor is drawn from
a uniform distribution over {0, 1} then the output is uniformly distributed over
{0,1}™.
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