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Recall that we had split the proof of (2)=(3) of the main theorem into two
subparts (Lecture 22). In this lecture we present proofs of these subparts.

Exercise 1 Show that subparts 1 and 2 imply (2)=(3) of the main theorem.

1 Proof of Subpart 1

Lemma 1 Let m,n,l be integers. Let f : {0,1}™ — {0,1}, H;(m) > n?,
and let A be a Boolean n x | matriz which is a (logn,m) design. Then G :
{0,1} — {0,1}" defined from A as G(z) = f(z1),...,f(zn) is a pseudo
random generator satisfying

[P[C(y) =1] = PIC(G(2)) = 1]| <

7

S|

for all circuits C of size n.

Proof. Before presenting the proof note that in the main theorem we will apply
the lemma for I = m? and n = s(I°).

The proof involves a series of bias preservations. The idea is to decompose
an event into a bunch of events. If the bias holds for the original event, it also
holds for atleast one event in the union. Assume that G does not satisfy the
given condition, i.e.,

IPIC() = 1] - PIC(G@) = 1] > -

In other words the circuit C is able to distinguish between y and G(z). We will
arrive at a contradiction that f could not have assumed the hardness property
as G was constructed from f. It is first shown that 3i such that C' can predict
f(z;) from f(z1),..., f(z;—1). Since z; is uncorrelated to 1, %2, ... ,T;i—1, it
follows that C' could not have got information about z; from those. So f(z;)
has been independently computed from scratch contradicting the fact that f is
hard. The details of the proof follow.

Define E; to be a distribution on {0,1}", such that Eq is uniform over
{0,1},, E, is the distribution G(z), where z is uniform over {0, 1} and in gen-
eral E; is obtained by choosing f(z1),..., f(z;), where z is uniform and the
remaining bits are uniform over {0,1}"~**1. Observe that the definitions of Ey
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and FE, are consistent with Ey = E;, i = 0 and E,, = E;, i = n. Also define
P; = P[C(z) = 1] where z is chosen from F;. We have Py — P, = ) .,[Pi_1 — P}].
This is a telescoping sum (refer to Henry’s notes for more on this) and clearly
Ji such that |P,—; — P;| > 1/n?, i.e., C distinguishes well between two types
of strings; strings having ¢ — 1 bits defined from applying f on the design and
the rest random (E;_1) and those having 7 bits defined from applying f on the
design and the rest random (E;).

Using this we build a circuit D that predicts f(z;) from f(z1),..., f{z;_1)-
D takes as inputs the first ¢ — 1 bits, z1,29,...,2;_1, of a string z in E; 1,
ie., f(z1),...,f(z;—1) for some z € {0,1}. It will output a bit z;, which is a
good approximation of f(z;). D is a probabilistic circuit (at start) that chooses
n—1i+ 1 random bits r;,... ,r,, computes C(21,... ,2i—1,Ti,--- ,Tn), and if the
output is 1 it predicts z; = r; and if the output is 0 it predicts z; = 7;. Using the
same proof as Yao’ s XOR lemma, P[D(z1,22,...,2i—1) = f(z;)]—1/2 > 1/n2.
This bias is true for the probability taken over the collection of r;,... ,r, and
the z;, ... , zp. We can now claim that 3{r;,... ,r,} (fixed values for the random
bits) such that the prediction works with the bias. Note that once r;, ... ,r, are
fixed the circuit is no longer probabilistic. However it still works with the same
bias when the probability is taken over zi,...,2;_1. Also note that D has the
same size as C. This completes the first part of what we are trying to do: pre-
diction of f(z;) from f(z1),..., f(zi—1).

Next we show that the prediction has not used f(z1),...,f(x;), since x;
is unrelated to zj,...,z; 1, and so the prediction comes down to computing
f(z;) directly from z. In order to do this we construct a circuit that uses D to
compute f(z;) from z, while still preserving the size. Call this new circuit D’.

In constructing D’ we make use of the fact that the restrictions z1,... ,z;_1
have a certain relationship to the restriction x;. Each shares at most logn bits
of x with z;. Without loss assume that z; = x!,22,... ,z™, the first m bits of
z. Since z; does not depend on the other bits of x, we can rewrite the prob-
ability that D predicts z; correctly as P[D(z1,22,... ,2i-1) = 2| (where z is
chosen as random) over all possible choices of the bits z™*!, ... 2! of the same
probability over the distribution where only x1,... ,z,, are chosen at random
ie, Bi_ygi,. 02 =U Ef:"lf;’l"':.’.c”wm, where the union is over all possible choices
Cmigly--- ¢ of x™TL 0 ol

Applying the bias preservation property note that there exists some element
of this union, i.e., some choice of z™+1, ... 2!, such that the bias on the prob-
ability is preserved. Once these [ — m bits are fixed, the probability is over the
remaining m bits. Now 21, ... ,2;—1, each depend only on logn of the bits in x;.
This allows D' to incorporate the computation of f on logn bits for each z;.
Recall that f is assumed by the Theorem to be computable in exponential time.
There are 2/°9" = n such values of f for each z; that can actually be tabulated
within D’. Each of these sets of values requires O(n) space and there are O(n)
of such z; resulting in a O(n?) additional size to the circuit D’ (besides the
size of the circuit C). The f(z;)s obtained can now be fed into a copy of D
in D' to give z; as output. We have constructed the required circuit D', which
contradicts hardness of f at m. |
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2 Proof of Subpart 2

Lemma 2 For all integers n,m,logn < m < n, I(logn, m) design that can be
constructed by an algorithm in DPACE(logn).

Proof. The design has n rows of subsets of {0,1,...,l} of size m with inter-
sections of size logn. Without loss, assume that m is a prime power. Also let
I =m2. If m is not a prime power pick the smallest power of 2 greater than m.
Note that this doubles m at most. Consider numbers in {0,1,...,1} as pairs of
elements in GF(m), i.e., construct subsets of {< a,b > |a,b € GF(m)}. Given a
polynomial ¢ on GF(m), define a set S; = {< a,¢(a) > |a € GF(m)}. We take
sets of this form and ¢ varies over polynomials of degree at most logn. Now the
following facts can be verified:

(1) The size of each set is exactly m.
(2) Any two sets intersect in at most logn points.

(3) There are atleast n different sets (the number of polynomials over GF'(m)
of degree at most logn is m!°9"*1 > n),

Note that the sets can be effectively constructed using simple arithmetic in
GF(m). Since m has length of O(logn) bits, everything can be computed in
O(logn) space. |
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