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Hongyu’s Talk on Quantum Computing
1 The Model of Quantum Computing

Notions and Definitions

Hilbert space We discuss quantum mechanics in the context of Hilbert space
over a complex field. A Hilbert space H is a linear space (can be infinite dimen-
sional) with an inner product defined. The space is complete w.r.t. the norm
induced by the inner product. By complete we mean every Cauchy sequence of
points in H has a limit in H. In the context of quantum computing, usually we
need only finite dimensional spaces.

Hermitian Operator A Hermitian Operator A in a Hilbert space is a linear
transformation, such that V¥, ® € H,(A¥)* - & = ¥ - (AP). Or alternatively,
A = At where At is the Hermitian conjugate of A. In a finite dimensional space,
an operator is represented by a matrix. The Hermitian conjugate of matrix A
is defined as the complex conjugate of the tranpose of A, namely At = (A4')*.
We know that Hermitian operators have real eigenvalues.

Unitary Operator A unitary operator U in a Hilbert space H is a linear
transformation that preserves the length of the vector, namely V¥ € H, ||U¥|| =
|[®]]. Or equivalently, U~! = U*.

Dirac Notation Use a ket |¥ > to denote a vector in the Hilbert space. Bra
< ®| denotes a vector in the dual space. A bra-ket denotes the inner product:
< ®|¥ >. A ket-bra |¥ >< ®| is an operator. Notice that I = >, |k >< k|
is an identity operator, where {|k >} is a set of complete basis. This is a very
useful property.

With the notions and definitions introduced above, we state (a subset of)
the axioms of quantum mechanics:

Axiom 1 The state of a physical system is represented by a vector |¥ >
,where < ¥|¥ >=1, in a Hilbert space over complex field C.

Axiom 2 Physical quantities (observables) are represented by Hermitian oper-
ators in the Hilbert space.

Axiom 3 Let F be the Hermitian operator representing observable F'. (@), >
,m=1,2,...1is a set of orthonormal eigenvectors of F' with A,,,n = 1,2, ... being
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the corresponding eigenvalues. If the system is in state ¥ >= ) c,|®, >,
then in the measurement, the probability F' gets value A, is |c,|?.

Axiom 4 The time evolution of the state is described by the Shrodinger equa-
tion:

0
ih= ¥ >= Ho|¥
zh6t| >= Hp|T >,

where Hy is the Hamiltonian operator.

The state at time ¢,|¥(¢) >, is the result of applying a unitary operator
on the initial state, |¥(¢t) >= U(¢)|¥(0) >. There is always an inverse for a
unitary operator U. So quantum computing is reversible while classical circuit
logic computing is not reversible. We compute a A b, then we are not able to
recover a and b from the result a A b.

Example 1 Spin %

_ h _ h _ h
S = 50z, Sy = 30y, S, = 50z,

01 0 —i 1 0 ) )
whereaz—[l 0]’0'”_[1' 0 :|,Uw—[0 _1],arePaulzmatm—
ces.

They all have eigenvalues 1 and -1.

Qubit and Tensor Product

We use ”qubit” to denote quantum bit. To represent 1 qubit, we can use a
system with two eigenstates, |0 > and |1 >. The state space is C2. To represent
n qubits, we use n such systems and the state space is the tensor product
C?’®---®C%.

A state in this space can be written as

[ >=3 o Cornan Tl T >,
where |z1,...,2n >= |71 > @+ ® |z, >, and 30, lczy,....zn|? = 1. This is
a superposition of all 2™ states. By applying an operator on |¥ >, we actually
operate on all the 2™ strings at the same time. The strategy of quantum comput-
ing is then to take advantage of superposition, which enables us to calculate the
value of a funciton at all 2" integers simultaneously, while avoiding premature
measurements which destroy the superposition.
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