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Hongyu’s Talk on Quantum Computing
1 The Model of Quantum Computing

Notions and Definitions

Hilbert space We discuss quantum mechanics in the context of Hilbert space
over a complex field. A Hilbert space H is a linear space (can be infinite dimen-
sional) with an inner product defined. The space is complete w.r.t. the norm
induced by the inner product. By complete we mean every Cauchy sequence of
points in H has a limit in H. In the context of quantum computing, usually we
need only finite dimensional spaces.

Hermitian Operator A Hermitian Operator A in a Hilbert space is a linear
transformation, such that V¥, ® € H,(A¥)* - & = ¥ - (AP). Or alternatively,
A = At where At is the Hermitian conjugate of A. In a finite dimensional space,
an operator is represented by a matrix. The Hermitian conjugate of matrix A
is defined as the complex conjugate of the tranpose of A, namely At = (A4')*.
We know that Hermitian operators have real eigenvalues.

Unitary Operator A unitary operator U in a Hilbert space H is a linear
transformation that preserves the length of the vector, namely V¥ € H, ||U¥|| =
|[®]]. Or equivalently, U~! = U*.

Dirac Notation Use a ket |¥ > to denote a vector in the Hilbert space. Bra
< ®| denotes a vector in the dual space. A bra-ket denotes the inner product:
< ®|¥ >. A ket-bra |¥ >< ®| is an operator. Notice that I = >, |k >< k|
is an identity operator, where {|k >} is a set of complete basis. This is a very
useful property.

With the notions and definitions introduced above, we state (a subset of)
the axioms of quantum mechanics:

Axiom 1 The state of a physical system is represented by a vector |¥ >
,where < ¥|¥ >=1, in a Hilbert space over complex field C.

Axiom 2 Physical quantities (observables) are represented by Hermitian oper-
ators in the Hilbert space.

Axiom 3 Let F be the Hermitian operator representing observable F'. (@), >
,m=1,2,...1is a set of orthonormal eigenvectors of F' with A,,,n = 1,2, ... being
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the corresponding eigenvalues. If the system is in state ¥ >= ) c,|®, >,
then in the measurement, the probability F' gets value A, is |c,|?.

Axiom 4 The time evolution of the state is described by the Shrodinger equa-
tion:

0
ih—|U >= Hy|T
maﬂ >= Hp|T >,

where Hj is the Hamiltonian operator.

The state at time ¢,|¥(¢) >, is the result of applying a unitary operator
on the initial state, |¥(¢) >= U(¢)|¥(0) >. There is always an inverse for a
unitary operator U. So quantum computing is reversible while classical circuit
logic computing is not reversible. We compute a A b, then we are not able to
recover a and b from the result a A b.

Example 1 Spin 1

_ h _ bk _ h
Sy = 50z, Sy = 50y, S, = 50z,

01 0 —i 1 0 ) )
where o, = [ 10 ], Oy = [ i 0 ], Oz = [ N ], are Pauli matri-
ces.

They all have eigenvalues 1 and -1.

Qubit and Tensor Product

We use "qubit” to denote quantum bit. To represent 1 qubit, we can use a
system with two eigenstates, |0 > and |1 >. The state space is C?. To represent
n qubits, we use n such systems and the state space is the tensor product
C’®---®C2.

A state in this space can be written as

¥ >= Ezl’___’zn Catyoresgn | L1y ooy T >,
where |21, ..., 2 >= |21 > ®- - ®@ |xn >, and Y, |cay,...2.]> = 1. This is
a superposition of all 2" states. By applying an operator on |¥ >, we actually
operate on all the 2™ strings at the same time. The strategy of quantum comput-
ing is then to take advantage of superposition, which enables us to calculate the
value of a funciton at all 2" integers simultaneously, while avoiding premature
measurements which destroy the superposition.

2 Quantum Algorithms

Deutsch-Jozsa Algorithm

There are two classes of functions f : {0,1}" — {0,1}. Functions in one
class are constant functions while in the second class are balanced: exactly 2" ~!
vectors map to 0 and exactly 27! vectors map to 1. Given a function, find out
what class the function is in. In the classical computation, we have to evaluate
f on at least 2 vectors and at most 27! + 1 vectors.

This is the quantum algorithm (Deutsch-Jozsa):

Step 1: Randomize the initial setting by applying Hadamard transformation
H to each of the first n qubits:
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2" —1

1
0,-,0>10> = 5 dli>l0>.
=0

Step 2: Evaluate the function and store the result:

2" —1 2" —1

RN

Since the 2" states are in superpositoin, we have in some sense computed f
simultaneously on all lof the states with one call of the function.

Step 3: Apply the unitary operator U = o, to the last qubit, obtaining

2" —1 2" —1

o ZIJ>If - WZW 1)/D|£(5) >

Step 4: Again evaluate the function and add the result into the last qubit:

2" —1

2n/2 Z i > (D)DFG) > - 2"/2 Z li > (-1)fDjo > .

This step has teh effect of disentangling teh last qubit from the first n qubits.
Step 5: Apply H a second time to the first n qubits:

2" -1 on_1 on_1
2n/2 Z i > (1) > — Z u> 10> 3" (-1)wi(-1)/0).
j=0

Now suppose that f is a constant function. Then the summation over j
produces zero for u # 0 and 2" for u = 0. Hence, a measurement of the first n
qubits gives u = 0 with probability one. If f is a balance function and v = 0,
then the summation over j is zero and a measurement over the first n qubits
gives some u # 0 with probability one. It follows that the measurement at Step
5 distingushes between the classes with certainty, completing the algorithm.

Grover’s Algorithm

The problem is to find the needle in the haystack. There are N = 2" numbers.
There is a black box function f. There is one or zero number in the N numbers
that make f take the value 1. We are to find this number.

Step 1: Initial n qubits to 0 and the last qubit to |x >= (|0 > —|1 >)/V2.
Step 2: Randomize the n input "domian” qubits, so that

N-1
10,..,0> [x> = > aplk>[x>=|¥ > |x >,
k=0
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where a; = 1/\/N

Step 3: Perform steps a and b, m = mv/N /4 — 1/2 times:
a. Compute the value of f via a unitary map Uy and add it to the last qubit
to obtain the phase factor (—1)7(*):

N-1
[T > [chi> = |8>Uplx>= > aglk > (=1)T x> .
k=0

We denote this transformation as T'.

b. Apply the ”diffusion” operator D = —I 4+ 2.J/N to the n domain qubits,
where J is the all-ones matrix. It is easy to check that D is orthogonal and
hence unitary.

N-1 N-1
S aplk > ()P > = ST allk> x>
k=0 k=0

Step 4: Measure the domain qubits and determine a state k. This is not a
unitary operation, and superposition is lost after the measurement.

Step 5: Evaluate f(k). If f(k) = 1, quit. Otherwise go to Step 1.
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