Recent advances in Complexity CIS 6930/CIS 4930

Lecture 1

Lecturer: Dr. Meera Sitharam

August 27th, 2002

Scribe: Andrew Lomonosov

Schedule and instructions

The following schedule has been agreed upon.

Week Topic Theme Student Presentation | Designated Scribe
Aug 27 Circuit Size (Lower Bounds) P vs NP None Andrew
Sep 3 Circuit Size (Lower Bounds) P vs NP None Andrew
Sep 10 Circuit Size (Lower Bounds) P vs NP None Zia
Sep 17 Circuit Depth (Lower Bounds) P vs NP Zia Zia
Sep 24 Circuit Depth (Lower Bounds) P vs NP None Zia
Oct 1 Circuit Depth (Lower Bounds) P vs NP None Erwin
Oct 8 Proof Complexity NP vs Co-NP Erwin Erwin
Oct 15 Proof Complexity NP vs Co-NP None Erwin
Oct 22 Pseudorandomness P vs BPP None Henry
Nov 5 Derandomization P vs BPP None Henry
Nov 12 Sampling P vs BPP None Srijit
Nov 19 Physics Information Computation Alt. models Henry Henry
Nov 26 (1/2) Quantum Computation Alt. models Srijit Srijit
Dec 3 Biogeometric Models of Computation | Alt. models None Srijit
Dec 10 (1/2) | Biogeometric Models of Computation | Alt. models Andrew Andrew

Deadlines for scribes: notes are due by the end of Thursday, and should be
in Dr. Sitharam’s mailbox on Friday morning. Coordinate by email with Dr.
Sitharam on Friday morning, so that any corrections can be communicated to
you over the weekend.

Deadlines for speakers: you should meet Dr. Sitharam on Monday, 3PM, 2
weeks before your talk to obtain papers and again next Monday to discuss your
presentation.

Deadlines for turning in HW exercises: by 3 wks after day assigned.

What is this course about?

Complexity, Information, Randomness

Problem - no formal definitions exist for these three notions. Also, no (even
informal) relationship between Complexity and Randomness is known.

Complexity of functions/sequences/processes

1-1

Example 1 Consider growth of a tree leaf (self-similar fractals e.g). It can be
represented as states si,S2,S3,... of a leaf at moments of time 1,2,3,.... This
process P of leaf growth can be described by some program A. Intuitively one
measure of complexity of P is the length of A (originally known as Kolmogorov
complexity).

Functions f that we consider in this course, map countably infinite set of
finite structures (input Z) into another countably infinite set of finite structures
(output O).

E.g f could be from Z = {0,1}* (i.e the set of all binary numbers) to
O ={0,1}*, or notationally, f : {0,1}* — {0,1}*, or f could be from Z = the
set of graphs to O = {0,1}, or f could be from Z C N — N etc.

Usually such functions f can be converted into similar functions f': N - N
by using bijections h and g, see Figure 1. Hence we can think of function f as a
sequence of processes unfolding in time f(1), f(2),.... But we have to be careful
about complexity of such conversions (since properties of f’ would depend on
properties of f AND of h as well). In general, studying complexity of f' helps in
studying complexity of f provided we control complexities of h and g (vice-versa
htg7h).

Countably infinite f Countably infinite
set of finite e set of finite
structures structures
h g
f1

Figure 1: Standardizing functions

Example 2 To show the existence of bijections such as h and g in this figure
1: how can we map T = N3 to O = N? Answer - use diagonalization. Figure
2 illustrates diagonalization for mapping from T = N? to O = N (N3 to N is
similar). Here we use bijection h mentioned above, where h(1,0) = 1,h(0,1) =
2,h(0,2) = 3,h(1,1) = 4,h(2,0) = 5.... Thus we can just take f'(z) = z and
now f'(h(z)) = f(x). Note that this mapping h is very simple, it takes only a
constant number of arithmetic gates to compute h.

When we talk about complexity, we need to answer following question - Com-
plezity in terms of what?. There are three components to it.

e First component is input parameters. If we have a function f, f(Z) - O
then complexity is in terms of the parameters of the input.

e Second component is model of computation (see below).

e Third component is robust resource/model parameter.

Example 3 Consider a process of sorting n numbers that you have studied in
your Algorithms class. The function f takes a sequence of numbers and maps it
to another sequence of numbers. The standard input parameter is length of the

1-2

1 2 3 4 5

Figure 2: Diagonalization

input (or number of bits in the minimum representation of input). The standard
model of computation that you have seen is Turing Machine (TM)/Random
Access Machine (RAM) or the regular computer. The resource is time (required
to complete execution).

Model of computation
Another possible model of computations is circuits (Shannon, 1948). In this
case resource parameter is size of the circuit. Circuit is constructed from circuit
bases - for example logical gates V, A, = or basis/primitive functions +,-,*,/.
For example, following function f : N3 = N, f(z1,22,%3) = 22332 + 35372
can be implemented by this circuit in Figure 3.

2X3 X, +3X2X 4

2
2X1X, 3X2X,

e
2X5 |
X2/ X5X 5
' |
]
Xy X X3

Figure 3: A circuit

One possible parameter of a circuit is it size, i.e number of basic gates.
Another possible parameter is the depth of the circuit, i.e longest distance from
root to a leaf, this parameter will be examined in greater detail in Lecture 2.

Circuit depth is related to
Communication complexity

defined as follows. There is a function f: {0,1}" — {0,1}. There are say 2
people who communicate with each other by exchanging bits. Communication

1-3

complexity of a function is how many bits need to be exchanged in order to
compute f (the two people have unbounded computational resources).

f

y
00 01 10 11
x 0Oy 0 1 0 O
011 0o 1 O
10,0 0 1 0
111 1 1 1

It is conjectured that communication complexity C(f) > O(logrank(f)),
where rank(f) is rank of matrix corresponding to f. Clearly C(f) < O(min(|z/, |y|),
i.e log(number of rows/columns of matrix corresponding to f), since one player
can simply send all her bits to 2"? player who computes f).

Turns out that circuit depth is highly related to communication complexity.
A few lectures will be spent on it.

Now we will properly define

Intrinsic complexity and complexity lower bounds

For a function f : Z — O, there might be several algorithms that compute
f. For example algorithm A; might take O(n?) RAM time to compute f. But
a different algorithm A’ might take only O(nlogn) time. Which time should
be defined as complexity of f then? This requires defining intrinsic complexity
of f, which is the time complexity of the fastest algorithm for computing f.

Thus intrinsic complexity is sandwiched between times that are not sufficient
for computing f (a lower bound of f - i.e there is no algorithm that computes
f in this time) and times that are sufficient (an upper bound of f - i.e there is
an algorithm that computes f in this time). See Figure 4.

f
O(log log n) O(n)
No algorithms Thereisat least
exist one algorithm

Figure 4: Intrinsic complexity

Proving lower bounds is difficult (need to show that there does not exist
a faster algorithm). The process of proving good lower bounds needs proving
good upper bounds too, i.e finding efficient algorithms and simulations. Typical
example for lower bound proof needing upper bounds occurs when we are trying
to prove a lower bound of f in model A. And there is another model B, such
that it is easier to think about f in B than in A, so we can establish lower
bound for f in B. But now complexity of the function h that transforms A
into B comes into play. If we don’t know how long h takes, but only have an
inefficient (very large) upper bound on A then we will end up with inefficient
(very small) lower bound on f. Hence in order to improve lower bound of f we
need to improve upper bound on h.

The FIRST MAJOR THEME OF THIS CLASS - i.e, THE QUES-
TION OF P VS NP is a lower bound problem (listed in the clay math.

1-4

institutes top problems of the century, since we show that there are some prob-
lems in NP (all NP-complete problems for example) that cannot be solved in
deterministic polynomial time. One particular approach to this theme involves
proving circuit size and depth lower bounds, that we will examine in subsequent
lectures.

THE SECOND THEME OF THIS CLASS IS NP VS CO-NP is
also a lower bound question. This requires the notion of
Proof complexity

Consider a CLIQUE problem {(G, k) : 3 a clique of size at least k in graph
G}. If someone were to give us a possible solution (or a witness) of CLIQUE (i.e a
subgraph A of size at least k), then this solution would be easy to verify - simply
check whether all vertices of A are connected. The class of problems for which
such verification is easy is called NP-problems. For a class of complementing
problems no easy verification is obvious. Consider for example a CO-CLIQUE
problem, i.e given a graph G determine that G does not contain any cliques of
size at least k. No obvious witness is apparent.

There are
Other major uses of lower bounds, besides the separation of complex-
ity classes such as P and NP or NP vs. co-NP.

1. The first use is for algorithm design. Any algorithm designer seeking to
optimize her/his algorithm will effectively go through the motions of a
lower bound proof, if somewhat informally: for example, once a candidate
algorithm has been designed, the designer will act as ones own adversary
who claims there is a better (less complex) algorithm; then beat the ad-
versary by convincing oneself that for any supposedly better algorithm,
there would be some input on which this algorithm would make a mistake.

2. The second use arises in the quantum/Biogeometric models of computa-
tion that will be studied as the FINAL THEME in this class. Note that
the intrinsic complexity of f is a jump step point, i.e for shorter times
f cannot be implemented at all and for any longer time f could be im-
plemented, and there are no intermediate states. Studying the smallest
change § that is needed to transform circuit that cannot compute f into
the one that can compute f, requires knowing a formal lower bound proof
for f. Such intrinsic knowledge is essential in biotech and molecular en-
gineering and modeling of biological phenomena (theory of evolution by
jerks and creeps). Open question discussed towards the end of the class -
how can Nature solve problems much faster than our currently standard
computational models can?

3. Another use for lower bounds arises in cryptography THIS USE WAS
NOT MENTIONED IN CLASS.

Complexity lower bound proofs are needed to establish the hardness of
breaking a code or security protocol. Le, the cryptographic application. A
complexity lower bound proof is needed to GUARANTEE that a malicious
adversary would need at least a supercomputer running for 2 weeks to
break your code.

4. Last use of proving lower bounds on complexity, i.e establishing hardness,
is for connecting complexity and randomness (this is THIRD THEME
OF CLASS i.e pseudorandomness, derandomization etc. See below).

1-5

Pseudorandomness and Derandomization

As we have mentioned above the third theme of this class is “Is random-
ization necessary for computation”, i.e PvsZPP or PvsBPP. Until VERY
recently the algorithm for testing primality of integers (i.e solving PRIMES
problem) was a randomized polytime algorithm (so-called Las Vegas algorithm)
which randomly sampled potential factors to establish composition of a num-
ber, thus putting PRIMES in class ZPP (ZPP = RP N Co — RP, definition
should be familiar to people who were in Theory of Computations class). Re-
cently derandomized polynomial time algorithm for PRIMES was constructed
(see http://www.cse.iitk.ac.in/news/primality.html), thus placing PRIMES in
P.

1-6

