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Figure 1: (left) Wellconstrained System; middle left: underconstrained system; middle right: overconstrained
system; (right) consistently overconstrained system

1 Rigidity

Geometric constraint systems have been studied in the context of variational constraint solving in CAD for
nearly 2 decades. [65, 40, 64, 50, 34, 36, 39, 48, 13, 60, 31, 5, 49, 61, 17, 62, 63] [6, 11, 28, 29, 20, 21, 1]
[23, 26, 27, 25] [30, 19, 25, 14, 15, 43, 3, 4] [44, 7, 42, 47, 2, 45, 46] [18, 37, 41, 52]. For recent reviews of the
extensive literature on geometric constraint solving more elaborate descriptions and examples for the definitions
below, see, e.g, [23, 33, 12, 53].

1.1 Definitions

A geometric constraint system consists of a finite set of primitive geometric objects such as points, lines, planes,
conics etc. and a finite set of geometric constraints between them such as distance, angle, incidence etc. The
constraints can usually be written as algebraic equations and inequalities whose variables are the coordinates
of the participating geometric objects. For example, a distance constraint of d between two points (x1, y1) and
(x2, y2) in 2D is written as (x2 − x1)

2 + (y2 − y1)
2 = d2. In this case the distance d is the parameter associated

with the constraint. Most of the constraint solvers so far deal with 2D constraint systems. With the exception
of work [22, 24, 26, 27], [25], [18, 38, 37, 41, 51, 58, 56, 57], related to the FRONTIER geometric constraint
solver [52], to the best of our knowledge, work on stand-alone 3D geometric constraint solvers is relatively sparse
[7, 42].

A solution or realization of a geometric constraint system is the (set of) real zero(es) of the corresponding
algebraic system. In other words, the solution is a class of valid instantiations of (the position, orientation and
any other parameters of) the geometric elements such that all constraints are satisfied. Here, it is understood
that such a solution is in a particular geometry, for example the Euclidean plane, the sphere, or Euclidean 3 di-
mensional space. A constraint system can be classified as overconstrained, wellconstrained, or underconstrained.
Well-constrained systems have a finite, albeit potentially very large number of rigid solutions; i.e., solutions that
cannot be infinitesimally flexed to give another nearby solution: the solution space (modulo rigid body transfor-
mations such as rotations and translations) consists of isolated points - it is zero-dimensional. Underconstrained
systems have infinitely many solutions; their solution space is not zero-dimensional. Overconstrained systems
do not have a solution unless they are consistently overconstrained. In that case, they could be embedded within
overall underconstrained systems, see Figure 1. Systems that are not underconstrained are called rigid systems.

A geometric constraint graph G = (V, E, w) corresponding to geometric constraint system is a weighted
graph with vertex set (representing geometric objects) V and edge set (representing constraints) E; w(v) is the
weight of vertex v and w(e) is the weight of edge e, corresponding to the number of degrees of freedom available
to an object represented by v and number of degrees of freedom (dofs) removed by a constraint represented by
e respectively. See Figure 2.

A subgraph A ⊆ G that satisfies

∑

e∈A

w(e) + D ≥
∑

v∈A

w(v) (1)

is called dense, where D is a dimension-dependent constant, to be described below. Function d(A) =
∑

e∈A w(e)−
∑

v∈A w(v) is called density of a graph A.

The constant D is typically
(

d+1
2

)

where d is the dimension. The constant D captures the degrees of freedom
of a rigid body in d dimensions. For 2D contexts and Euclidean geometry, we expect D = 3 and for spatial
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Figure 2: 3D constraint system drawn on 2D canvas with 7 point objects (p1 - p7) and 6 fixed length line
segment objects (between point pi and pi+1); 4 distance constraints (equal distances); 12 incidence constraints
where 2 linesegments are incident at each of the points p1 -p7; and 5 equal angle constraints between adjacent
linesegments. The corresponding graph has 7 vertices of weight 3 (points) and 6 vertices of weight 6(fixed length
linesegments); edges of weight 3 (an incidence constraint between 2 points remove the 3 degrees of freedom of
one of the points) and edges of weight 1 (a distance constraint between 2 points remove 1 degree of freedom
from one of the points; an angle constraint between 2 line segments removes 1 degree of freedom from one of
the lines). Solution (right)

contexts D = 6, in general. If we expect the rigid body to be fixed with respect to a global coordinate system,
then D = 0. A trivial subgraph is single vertex (in 2D) and a vertex or edge (in 3D).

Next we give purely combinatorial properties related to density that are used to detect generic algebraic
properties. A dense, nontrivial graph with density strictly greater than −D is called dof-overconstrained.
A graph that is dense and all of whose subgraphs (including itself) have density at most −D is called dof-
wellconstrained. A graph G is called dof-well-overconstrained if it satisfies the following: G is dense, G has
atleast one overconstrained subgraph, and has the property that on replacing all overconstrained subgraphs
by dof-wellconstrained subgraphs (in any manner), G remains dense. Intuitively, this definition is used to
prevent some overconstrained subgraphs with high density from skewing the classification of the entire graph.
In particular, an extreme example could be a graph that has 2 subgraphs that are severely overconstrained,
but with no constraints between them. By this definition, such a graph would not be well-overconstrained and
would be correctly classified as underconstrained. A graph that is wellconstrained or well-overconstrained is
called dof-cluster. A nontrivial dense graph is minimal if it has no nontrvial dense proper subgraph. All minimal
dense subgraphs are dof-clusters but the converse is not the case. A graph that is not a dof-cluster is said to be
underconstrained. If a dense graph is not minimal, it could in fact be an underconstrained graph: as pointed
out, the density of the graph could be the result of embedding a subgraph of density greater than −D.

Next we discuss how the graph theoretic properties degree of freedom (dof) analysis relate to corresponding
properties of the corresponding constraint system. For this, we need to introduce the notion of genericity.
Informally, a constraint system is generically rigid if it is rigid (does not flex or has only finitely many non-
congruent, isolated solutions) for most of choices of coefficients of the system. More formally we use the notion
of genericity of e.g, [8]. A property is said to hold generically for polynomials f1, . . . , fn if there is a nonzero
polynomial P in the coefficients of the fi such that this property holds for all f1, . . . , fn for which P does not
vanish.

Thus the constraint system E is generically rigid if there is a nonzero polynomial P in the coefficients of
the equations of E - or the parameters of the constraint system - such that E is solvable when P does not
vanish. For example, if E consists of distance constraints, the parameters are the distances. Even if E has
no overt parameters, i.e, if E is made up of constraints such as incidences or tangencies or perpendicularity or
parallelism, E in fact has hidden parameters capturing the extent of incidence, tangency, etc., which we consider
to be the parameters of E. Examples are shown in Figure 3.
Laman’s Theorem: [35]
A graph (V, E) is rigid in 2D iff ∀E ′ ∈ E s.t.
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Figure 3: (left) not rigid, not generic rigid; (middle left) not rigid, generic rigid; (middle right) rigid, not generic
rigid; (right) rigid, generic rigid

Figure 4: 3D constraint system with “bananas” type [16] generic constraint dependence not detectable by a
simple dof count: the distance between p1 and p10 is independently determined by the left and right half-
moon clusters. It is however well-overconstrained and consistently constrained for the given set of distances:
corresponding DR-plan has single root

1. |E′| = 2|V ′| − 3;
2. |F | ≤ 2|V (F )| − 3 for all non-empty subsets F of E ′

In 2 dimensions, according to Laman’s theorem, if all geometric objects are points and all constraints are
distance constraints between these points then any minimal dense cluster represents a generically rigid system.

1.2 Bananas and Hinge Problem

In general, however, while generically rigid system always gives a cluster, the converse is not always the case.
In fact, there are wellconstrained, dense clusters whose corresponding systems are not generically rigid and
are in fact generically not rigid due to the presence of generic constraint dependences. See Figure 4 with 3D
points and distance constraints, which illustrates the so-called “bananas” problem of [16], which generalizes to
the so-called “hinge” problem [9, 10]. To date, there is no known, tractable, combinatorial characterization of
generic rigidity of systems for 3 or higher dimensions even when only points and distances are involved [66], [16],
although several conjectures exist. There are no known general combinatorial characterizations of 2D rigidity,
when other constraints besides distances (such as angles) are involved. For constraint systems with angle and
incidence constraints, but no distances such a characterization is given in [59]. For 3D points and distances, the
notion of module-rigid clusters in [58] (an extension of dof-rigid clusters defined above) deals with all aspects of
the bananas and hinge problems, i.e., it correctly characterizes generic rigidity in all known cases. Currently,
no counterexamples are known - of module-rigid constraint graphs that are not generically rigid.
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Figure 5: (left) explicit angle cycle; (right) implicit angle cycle

1.3 Angle Constraints System Conjecture

Point: point p ∈ R2, is represented as (x, y).
Angle Constraint: the angle constraint between 2 ordered pairs of points, (P1i, P2i) and (P1j , P2j), satisfies that

cos θ =
(P1i,P2i)•(P1j ,P2j)
|(P1i,P2i)||(P1j ,P2j )| =

(x2i−x1i)(x2j−x1j)+(y2i−y1i)(y2j−y1j)√
(x2i−x1i)2+(y2i−y1i)2

√
(x2j−x1j)2+(y2j−y1j)2

.

Geometric Angle Constraint System: a geometric system in which the objects are finite points and the constraints
are finite angle constraints.
Explicit Angle Cycle: In one angle constraint system, if there is an angle cycle in its corresponding angle graph,
we say this angle constraint system has an angle cycle. See Figure 5.
Implicit Angle Cycle: In one angle constraint system, for an angle cycle consists of assigned angles θ1 . . . θs and
unassigned angles γ1 . . . γt, s, t ≥ 0, in its corresponding angle graph, if there exists θi 6∈ Sγj

for j = 1 . . . t, Sγj

is the minimal 4 dof subgraph containts γj , we say this angle constraint system has an implicit angle cycle. See
Figure 5.

Conjecture: (implicit) angle cycles are only sources of hidden dependences not detectable by standard dof
analysis for a geometric angle constraint system.

1.4 Problems:

Here are the questions we mentioned in class. For G in 2D,

1. if underconstrained and not rigid, give all maximal rigid subgraphs

2. find minimum size of rigid subgraphs

3. if underconstrained and not over-underconstrained, a) give a complet set of edges s.t. anyone can be added
that will not make it overconstrained. b) continue this process until it is wellconstrained [32]

4. if well-overconstrained a) give a complete set of edge s.t. anyone can be removed that will not make it
underconstrained. b) continue this process until it is wellconstrained

2 Decomposition-Recombination Plan

Formally, a dof-DR-plan of a constraint graph G is a directed acyclic graph (dag) whose nodes represent dof-
clusters in G, and edges represent containment. The leaves or sinks of the dag are all the vertices (primitive
dof-clusters) of G. The roots or sources are a complete set of the maximal dof-clusters of G. For well or well-
overconstrained graphs, the DR-plans have a single source. There could be many DR-plans for G. See Figures
6, 2, 4.

2.1 Overconstraints

First, each dof-cluster C in the DR-plan should be accompanied by a tractable representation of a complete list
of reducible overconstraint sets directly associated with C. I.e., sets of constraints that do not lie entirely within
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Figure 6: 2D constraint graph G1 and DR-plan; all vertices have weight 2 and edges weight 1

any child cluster of C and can be removed without affecting the dof-rigidity of C. The DR-planner should
additionally admit an efficient method of removing overconstraints by making the appropriate changes to the
DR-plan.

2.2 Optimality

The size of a cluster in a DR-plan is its fan-in or number of its children (it represents the size of the corresponding
subsystem, once its children are solved). Since the algebraic-numeric solvers take time exponential in the size
of the subsystems they solve, and the number of solutions is also typically exponential, minimizing the size
of a DR-plan is essential to the ESM method presented here. An optimal DR-plan is one that minimizes the
maximum fan-in.

It is shown in [38], [37], that the problem of finding the optimal DR-plan of even a 2D distance constraint
graph is NP-hard, and approximability results are shown only in special cases. Nonapproximability results are
not known.

One measure used in lieu of absolute optimality is based on the fact that most DR-planners make adhoc
choices during computation (say the order in which vertices are considered) and we can ask how well (close to
optimal) the best computation path of such a DR-planner would perform (on the worst case input). We call
this the best-choice approximation factor of the DR-planner.

A more satisfactory measure of optimality is based on the following alternative property. A tractable DR-
plan for systematic navigation should ensure that each cluster C should be accompanied by a a small set of
its children Ci that form an optimal covering set of maximal clusters properly contained in C. A covering set
of clusters is one whose union contains all geometric elements within C. The size of C is simply the size of
this optimal covering set. The optimality here refers not to the size of the covering set, but to any suitable
combinatorial measure of the algebraic complexity of the active constraint system for solving C, given the
solutions of the child clusters in the covering set. This leads to the notion of completeness of DR-plans, given
below.

2.3 Completeness

Any method that chooses an optimal covering set for a cluster C requires as input a generalized complete
decomposition of C into maximal proper subclusters, formally defined as follows. The decomposition of any
cluster C falls into one of 2 types. A Type 1 cluster C has exactly 2 child clusters, which intersect on a
nontrivial subgraph, and their union covers all the geometric elements in C. A Type 2 cluster C has a set of
child clusters Ci with the following property. The union of Ci’s covers all the geometric elements in C; any pair
of Ci’s intersect on at most a trivial subgraph; and every Ci is a proper maximal subcluster of C, i.e., there is no
proper subcluster of C that strictly contains Ci. Completeness is also needed for detecting implicit constraint
dependences and for more accurate, module-rigid DR-planners.

5



2.4 Complexity

Another basic property of a DR-plan is its width i.e, number of clusters in the DR-plan to be small, preferably
linear in the size of G: this reflects the complexity of the planning process and affects the complexity of the
solving process that is based on the DR-plan. Clearly, this property competes with completeness.

Other desirable properties of DR-planners not mentioned above include systematic correction of undercon-
strained systems, and amenability to efficient updates of geometric primitives or constraints.

2.5 Problems

Here are the problems from Solidworks. (We showed the its software in class)

• Given S, get the solutions as close as possible to desired solutions

• Detecting the overconstrained system besides distance

• Knowing some operations are harder than others in solving and some constraints are more likely to be
changed, how to solve the system to minimize the cost.

• Find the relationship between solution space and dof

• Change / rewriting the decomposition to minimize the minimal subsystem and preserve the set of solutions.

• a) Preoptimization of the system
b) a good way to describe underconstrained solution space

3 Applications of Geometric Constraints Solving

3.1 Mechanical computer Aided Design

Solidworks’ software is a commecial product using geometric constraints solving.

3.2 Enumeration of Self-Assembly Pathways for Symmetric macromolecular Struc-

tures

We consider the problem of explicitly enumerating and counting the assembly pathways by which an icosahedral
viral shell forms from identical constituent protein monomers, see Figure 7. This poorly understood assembly
process is a remarkable example of symmetric macromolecular self-assembly occuring in nature and possesses
many features that are desirable while engineering self-assembly at the nanoscale.

The papers [55, 54] give the new model of that employs a static geometric constraint graph to represent the
driving (weak) forces that cause a viral shell to assemble and hold it together, see Figure 8. The model was
developed to answer focused questions about the structural properties of the most probable types of successful
assembly pathways. Specifically, the model reduces the study of pathway types and their probabilities to the
study of the orbits of the automorphism group of the underlying geometric constraint graph, acting on the set
of pathways. Dr. Meera Sitharam gives a randomized algorithm to compute one measure of the probability of
these pathways by faithfully sampling them.

The input to the algorithm is shown in Figure 9, the implementaion results are shown in Figures 10, 11
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