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1 Problem Categories

2 Five Questions

1. Given graph G, characterize d for which (G, d) has a realization.
Here d are constraints, for example distance constraints.

2. Given graph G and constraints d, provide a realization.

3. Given grpah G, generically classify it into two categories:

• It has �nite number of realizations.

� One realization

� Many realizations

• It has in�nite number of realizations.

4. Given G, generically characterize the realization space.

5. Given nongeneric G, with �xed or restricted d, answer question 3
and 4. Give the classi�cation and description of its realization space.

3 Working on these Five Questions

3.1 Question 1

Problem: G is a complete distance graph, �nd {d : (G, d) has a realization in Rkspace}.
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Theorem: Cayley-Menger conditions are the necessary and su�cient
conditions that (G, d) has a realization in Rkspace.

3.2 Question 4

Question 1 and 4 are equivalent in the sense that if we understand
one of them, we understand the other.

3.3 Question 3

3.3.1 Laman's theorem: A graph G generically has only �nitely
many solutions i� the following two conditions hold:

1. ∀subgraph S ⊆ G, 2 |VS | − |ES | ≥ 3

2. 2 |VG| − |EG| = 3

3.3.1.1 General Laman theorem: A graph G = (V,E) generically has
at most �nitely many solutions i� ∃subgraph G′ = (V,E′) with E′ ⊆ E
such that

1. ∀subgraph S ⊆ G′, 2 |VS | − |ES | ≥ 3

2. 2 |VG′ | − |EG′ | = 3

3.3.1.2 De�nition of Generic

Embedding: can be understanded in the following three ways:

• (x1y1x2y2 · · ·xnyn) ⊆ R2n

• dḠ ⊆ R|VḠ|

• R2n�E2

Given (G, d) o/w dG

{(x1y1x2y2 · · ·xnyn) : (xv − xw)2 + (yv − yw)2 = d2
vw ∀(v, w) ∈ E(G)�E2}

↔
dḠ = {(xa − xb)2 + (ya − yb)2, · · · (a, b) /∈ E(G), : (xv − xw)2 + (yv − yw)2 =
d2

vw ∀(v, w) ∈ E(G)}

There is one to one map between these two sets.

Typical embedding: An embedding Q of G is generic if
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∃a small enough neighborhood of (dQ,G), dQ,G±ξ, all realization of (G, dQ,G±ξ) are rigid ⇔
Q is rigid.

Alternately, One can de�ne a small enough neighborhood of Q itself,
Require all corresponding realization to be ri�d for their correspond-
ing distance values.

3.3.1.3 Rigidity of Graph:

Def1: A Graph is rigid ∃a generic embedding that is rigid.

Def2: A Graph is rigid if all generic embeddings are rigid.

These two de�nitions turn out to be equivalent and we will give the
proof in the following notes.

Def3: A Graph is globally rigid if it is rigid &

∀generic embedding Q with distances dG,Q, Q is the unique generic realization of (G, dG,Q)

Def4: An embedding Q of G is rigid if

∃ a small enough R2n − neighborhood Qξ, such that for ∀Q′ ∈
Qξ, Q′ is a realization of (G, dQ,G) ⇔ Q′ is a rigid motion of Q.

Def5: An embedding Q of G is generic if

∃ a small enough R2n−neighborhood Qξ, such that ∀Q′ ∈ Qξ, Q′ is rigid ⇔
Q is rigid.

Question: Given a particular embedding Q ∈ R2n of G, Decide

1. is Q generic?

2. is Q rigid?
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3.3.1.4 Laman's theorem Proof

Laman's-theorem Given graph G = (V,E), G is generically rigid in 2[k] di-
mensions ⇔ [⇒] ∃G′ = (V,E′), E′ ⊆ E such that

1. ∀S ⊆ G′, 2 |VS | − |ES | ≥ 3 [k |VS | − |ES | ≥
(

k + 1
2

)
]

2. 2 |V | − |E′| = 3 [k |V | − |E′| =
(

k + 1
2

)
]

• ⇒Proof:

Def: Rigidity Matrix RP,G of an embedding P in Rkof a graph G = (V,E) is

p1 p2 k︸︷︷︸ pi p|v|

e1

e2
. . .

...
ei 0 0 0 (pi − pj) 0

· · ·


ei = (vi − vj)

Fact1: Consider the vector

 u1

...
u|V |

 ui ∈ Rk, s.t RP,GU = 0 it means

u1 · · ·u|V | s.t ∀i, j (vi, vj) ∈ E < (pi − pj)(ui − uj) >= 0

The set of independent U's with this property is a basis for the tangent space
of the variety ∀(vi, vj) ∈ E ‖qi − qj‖ − ‖pi − pj‖ = 0 at the point p ∈ Rk|V |

Fact2: row rank of RP,G = k |V | − rank of SP,G

Lemma1: P is generic then P is rigid⇔RP,G has rank k |V | −
(

k + 1
2

)

Proof:

⇐True, Full rank then rigid
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⇒if RP,G has rank <k |V | −
(

k + 1
2

)
then if P is rigid ⇒

P is not generic.

Lemma2: if P is generic embedding of G = (V,E) & RP,G has (k |v|−
(

k + 1
2

)
rank then

Laman's theorem for general dimensions k must hold.

Laman's theorem ⇒for general k dimensions follows from lemma1,
lemma2 and de�nition of generic rigidity of G

• ⇐ Proof

Laman's theorem ⇐only for 2dimensions, starting from a graph G =
(V,E) for which the RHS holds, laman showed

1. G has �Henneberg� construction

2. if G has a henneberg construction, then it has a generic and rigid embed-
ding.

Laman's theorem ⇐: If a graph G = (V,E) satis�es Laman condition,
then ∃a generic rigid embedding P ∈ R2|V | of G

Lemma1: If G satis�es Laman condition 1, then graph G has a Henneberg
construction

Observation1: If graph G has a henneberg construction, then the abstract
underlying matroid underlying G is �1-extendible�

Lemma2: If G satis�es the Laman condition 1 and the abstract rigidity ma-
troid underlying G is �1-extendible� then the edges in G are generically
independent

Observation2: If G satis�es both Laman conditions, then G has a generic rigid
embedding.

Matroid:

Def1: Matroid M : �nite set (E, I), & I ⊆ Power(E) &

1. φ ∈ I
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2. S ∈ I then ∀Q ⊆ S, Q ∈ I

3. S(not maximal) ∈ I, then ∃u /∈ S, ∀v ∈ S, s.t (S�v ∪ {u}) ∈ I

(3' If S1, S2 ∈ I, |S1| < |S2| then ∃an element u ∈ S2�S1, s.t S1 ∪{u} ∈ I)

Examples:

1. Let E be a set of vectors in Rm or Fm(any �eld), Let I be the set of all
linearly independent subset of E, claim (E, I) is a matroid.

2. G = (V,E), MG = (E, I), I = {any subset of edge that does not have a cycle}

3. Fano plane E = {p1 · · · p7}, I = set of all subsets of points that are not collinear

Facts: All maximal1 independent sets have the same number elements called
rank(M) in them

Def2: Matroid M : �nite set E & a closure <>: Power(E) → Power(E)

1. Q ⊆< Q >

2. << Q >>=< Q >

3. If Q1 ⊆ Q2 then < Q1 >⊆< Q2 >

4. If s, t ∈ E� < T > then s ∈< T ∪ {t} >⇔ t ∈< T ∪ {s} >

Examples:

1. fano plane, E = {p1 · · · p7},< p1 >= p1

for k ≥ 2, if p1 · · · p7 lie on a line, then < p1 · · · p7 > are all points on this line

if p1 · · · p7 donot lie on any line, then < p1 · · · p7 > are all points

2. a�ne dependent matroid

E = {p1 · · · p7} ∈ Rm, < p1 · · · p7 >=all points in the a�ne span of (p1 · · · p7) ∈
E

Def3: In�nitisemal complete rigidity matroid

Given P = {p1 · · · pm}, pi ∈ Rk, embedding of G

M = (E, I) I =set of all linearly independent subsets of rows of the
complete rigidity matrix

1An independent set to which no elements can be added & maintain independent
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E =rows of the complete rigidity matrix

Def4: Generic k-dimension rigidity matroid of a graph G = (V,E) Gk = (E, I),
I is obtained as follows:

take any generic embedding P of G in k-dimension & de�ne I to be
the same as for the in�nitesimal rigidity matroid for PG

Def5: Abstract rigidity matroid on a complete graph of a vertex set V

E =set of all possible edges of V

The closure operator satis�es all matroid conditions and the following
condition:

5. if Q1, Q2 ⊆ E, & |V (Q1)| ∩ |V (Q2)| < k , then < Q1 ∪ Q2 >⊆
Completion(V (Q1)) ∪ Completion(V (Q2))

Def6: If Q1, Q2 ⊆ E are abstract rigid2, and |V (Q1) ∩ V (Q2)| ≥ k, then <
Q1 ∪Q2 > is rigid

3.3.2 Jackson-Jordon theorem

for d = 2, G = (V,E) generically has an unique solution (globally rigid)
⇔G is redundantly rigid & 3-connected or it is a triangle.

Redundantly rigid: removal of any edge preserves rigidity of G.

3.3.2.1 Hendrickson's theorem

G = (V,E) is globally rigid in d dimension ⇔G is reduntantly rigid for
d dimension & (d + 1) connected.

⇐proved

⇒Conely disproved for d ≥ 3

⇒proved (Jackson-Jordon theorem)

2Q is abstract rigid if < Q >= Completion(V (Q))
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3.3.3 Owen's theorem

A graph is quadratically solvable ⇔it is not 3-connected.

Quadratically solving: A consraint system (G, d) is quadratically solvable if
it is triangularizable into quadratics.

⇐proved

⇒For planar graph, a graph is quadratically solvable ⇒it is not 3-
connected

⇒For general graph, open problem
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