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1 Problem Categories

2 Five Questions

1. Given graph G, characterize d for which (G,d) has a realization.
Here d are constraints, for example distance constraints.

2. Given graph G and constraints d, provide a realization.

3. Given grpah G, generically classify it into two categories:

e It has finite number of realizations.

— One realization

— Many realizations

e It has infinite number of realizations.
4. Given G, generically characterize the realization space.

5. Given nongeneric G, with fixed or restricted d, answer question 3
and 4. Give the classification and description of its realization space.

3 Working on these Five Questions

3.1 Question 1

Problem: G is a complete distance graph, find {d : (G, d) has a realization in R¥space}.



Theorem: Cayley-Menger conditions are the necessary and sufficient
conditions that (G, d) has a realization in R¥space.

3.2 Question 4

Question 1 and 4 are equivalent in the sense that if we understand
one of them, we understand the other.

3.3 Question 3

3.3.1 Laman’s theorem: A graph G generically has only finitely
many solutions iff the following two conditions hold:

1. Vsubgraph S C G, 2|Vs| — |Es| >3
2. 2|\Vg| = |Eg| =3
3.3.1.1 General Laman theorem: A graph G = (V, E) generically has

at most finitely many solutions iff Isubgraph G’ = (V,E') with &' C E
such that

1. Vsubgraph S C G', 2|Vg| — |Es| > 3
2. 2\Vg/|— |Eg| =3
3.3.1.2 Definition of Generic

Embedding: can be understanded in the following three ways:
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Given (G,d) o/w dg
{(@1yizoye - Tayn) + (20 = 20)® + (Yo — yu)* = &3, V(v w) € E(G)\E2}

<

dg = {(za - Ib)2 + (Yo — yb)27 o (a,b) ¢ BE(G), : (zy — 17111)2 + (Yo — yw)2 =
3, V(v,w) € E(G)}

There is one to one map between these two sets.

Typical embedding: An embedding @ of G is generic if



Ja small enough neighborhood of (dg,c), dg,c+e, all realization of (G,dg,q+¢) are rigid <
Q is rigid.

Alternately, One can define a small enough neighborhood of @ itself,
Require all corresponding realization to be rifid for their correspond-
ing distance values.

3.3.1.3 Rigidity of Graph:
Defl: A Graph is rigid Ja generic embedding that is rigid.

Def2: A Graph is rigid if all generic embeddings are rigid.

These two definitions turn out to be equivalent and we will give the
proof in the following notes.

Def3: A Graph is globally rigid if it is rigid &

Vgeneric embedding @ with distances dg,g, Q s the unique generic realization of (G,da,q)

Def4: An embedding @ of G is rigid if

3 a small enough R?" — neighborhood Q¢, such that for YQ' €
Qe, Q' is a realization of (G,dg,¢) < Q' is a rigid motion of Q.

Def5: An embedding @Q of G is generic if

3 a small enough R*" —neighborhood Q¢, such that VQ' € Q¢, Q' is rigid <
Q is rigid.

Question: Given a particular embedding @ € R?” of G, Decide

1. is Q generic?

2. is Q rigid?



3.3.1.4 Laman’s theorem Proof

Laman’s-theorem Given graph G = (V, E), G is generically rigid in 2[k] di-
mensions < [=] 3G’ = (V,E’), E' C E such that

1L VSC G, 2|Vs|— |Es| =3 [k|Vs| - |Es| > ( e )]

k+1
2 2V - 181 =3 ivi-1El=( *51 )

e =DProof:

Def: Rigidity Matrix Rp g of an embedding P in R¥of a graph G = (V, E) is

p1 p2 _k Di Plo|

€1

€2 e; = (vi — vj)

e 00 0 (pi—p;) O

U
Fact1: Consider the vector : u; € R¥, st RpgU = 0 it means
Uy
uy w8t Vi (vi,v5) € B < (pi —py)(us —uy) >=0

The set of independent U’s with this property is a basis for the tangent space
of the variety Y(v;,v;) € E  |l¢; — qj|| — |lpi — p;l| =0 at the point p € RFIVI

Fact2: row rank of Rpg = k|V|—rank of Spa

Lemmal: P is generic then P is rigid&Rp g has rank k|V| — ( & —2|— 1 )

Proof:

<True, Full rank then rigid



k+1

=if Rpg has rank </<;|V|—( 9

P is not generic.

) then if P is rigid =

Lemma?2: if P is generic embedding of G = (V, E) & Rp, has (k v—( k —;— 1 )

rank then
Laman’s theorem for general dimensions k must hold.

Laman’s theorem =-for general k dimensions follows from lemmal,
lemma?2 and definition of generic rigidity of G

e < Proof

Laman’s theorem <only for 2dimensions, starting from a graph G =
(V,E) for which the RHS holds, laman showed

1. G has “Henneberg” construction

2. if G has a henneberg construction, then it has a generic and rigid embed-
ding.

Laman’s theorem <: If a graph G = (V| E) satisfies Laman condition,
then Ja generic rigid embedding P € RV of G

Lemmal: If G satisfies Laman condition 1, then graph G has a Henneberg
construction

Observationl: If graph G has a henneberg construction, then the abstract
underlying matroid underlying G is “l-extendible”

Lemma?2: If G satisfies the Laman condition 1 and the abstract rigidity ma-
troid underlying G is “l-extendible” then the edges in G are generically
independent

Observation2: If G satisfies both Laman conditions, then G has a generic rigid
embedding.

Matroid:
Defl: Matroid M: finite set (E,Z), & T C Power(E) &

1. ¢



2. S5€Z then VQCS, QeI
3. S(not mazximal) € Z, then Ju ¢ S, Yv e S, st (SN\wU{u}) €T

(31t 51,5 € Z, |S1] < |S2| then Jan element u € S\ S1, s.t S;U{u} €7)

Examples:
1. Let E be a set of vectors in R™ or F™(any field), Let Z be the set of all
linearly independent subset of E, claim (F,7) is a matroid.
2. G=(V,E), Mg = (E,I), T = {any subset of edge that does not have a cycle}
3. Fanoplane E = {p; - --pr}, Z = set of all subsets of points that are not collinear

Facts: All maximal' independent sets have the same number elements called
rank(M) in them

Def2: Matroid M: finite set E & a closure <>: Power(E) — Power(E)

L QC<@>

2. << Q>>=<Q >

3. If Q1 C Qo then < Q7 >C< Qg >

4. If s,t € EN<T > then se<TU{t} > te<TU{s} >

Examples:

1. fano plane, £ = {p;---pr},< p1 >=p1

for k > 2, if p; - - - py lie on a line, then < p; -+ - p7 > are all points on this line
if p1 -+ - py donot lie on any line, then < p; ---p7 > are all points

2. affine dependent matroid

E={p;---pr} € R™, < p;---p; >=all points in the affine span of (p; ---p7) €
E

Def3: Infinitisemal complete rigidity matroid
Given P = {p;---pn}, p; € R¥, embedding of G

M = (E,7I) T =set of all linearly independent subsets of rows of the
complete rigidity matrix

L An independent set to which no elements can be added & maintain independent



FE =rows of the complete rigidity matrix

Def4: Generic k-dimension rigidity matroid of a graph G = (V, E) G, = (E,T),
7 is obtained as follows:

take any generic embedding P of G in k-dimension & define 7 to be
the same as for the infinitesimal rigidity matroid for Pg

Def5: Abstract rigidity matroid on a complete graph of a vertex set V
E =set of all possible edges of V

The closure operator satisfies all matroid conditions and the following
condition:

5. if Q1,Q2 C E, & [V(Q1)[N|V(Q2)] < k , then < @1 U Q2 >C
Completion(V(Q1)) U Completion(V(Qz2))

Def6: If Q,,Q, C E are abstract rigid?, and |V (Q1) NV (Q2)| > k, then <
Q1 U Q2 > is rigid

3.3.2 Jackson-Jordon theorem

for d =2, G = (V, E) generically has an unique solution (globally rigid)
<G is redundantly rigid & 3-connected or it is a triangle.

Redundantly rigid: removal of any edge preserves rigidity of G.
3.3.2.1 Hendrickson’s theorem

G = (V, E) is globally rigid in d dimension <G is reduntantly rigid for
d dimension & (d+ 1) connected.

<proved
=-Conely disproved for d > 3

=proved (Jackson-Jordon theorem)

2Q is abstract rigid if < Q >= Completion(V(Q))



3.3.3 Owen’s theorem

A graph is quadratically solvable <it is not 3-connected.

Quadratically solving: A consraint system (G, d) is quadratically solvable if
it is triangularizable into quadratics.

<proved

=For planar graph, a graph is quadratically solvable =it is not 3-
connected

=For general graph, open problem



