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Realizability of Graphs

A relization of a graph G is a function which assigns to each vertex i of G a point pi in 
some Euclidean space. When we draw a realization, we generally also draw the edges 
between vertices as straight lines. Two vertices may be assigned to the same point in a 
realization and edges may intersect and even overlap.

Definition 1: A graph G is d-realizable if, given any realization p1, … , pn of the graph in 
some finite dimensional Euclidean space, there exists a realization q1, … , qn in Ed with 
the same edge lenghts: | pi – pj | = | qi – qj | for all {i, j}  E(G).ϵ

Examples:
1. A path is 1-realizable, because we can arrange the vertices in order on a line with 

the appropriate distance between any two points.
2. A tree is also 1-realizable.
3. A triangle is not 1-realizable.

In this paper, we look at the question of which graphs are d-realizable for d ≤ 3:

Theorem 1: A graph G is 1-realizable if and only if it does not have K3 as a minor (i.e., 
G is a forest).

Theorem 2: A graph G is 2-realizable if and only if it does not have K4 as a minor.

Theorem 3 (Main Theorem): A graph G is 3-realizable if and only if it does not have 
either K5 or the 1-skeleton of the octahedron as a minor.

Theorem 1: A graph G is 1-realizable if and only if it is a forest (a disjoint collection of  
trees).

Proof: Any forest with any specified edge lengths can be realized in one dimension. If a 
graph is not a forest, then it contains a cycle as a subgraph. This cycle can be realized in 
the Euclidean plane (three edges have length 1, others 0). There is no realization in the 
line with the same edge lengths. So, a graph cpntaining a cycle is not 1-realizable. □

In general, if a graph G is d-realizable, then any subgraph of G is also d-realizable.

If we require all edges to have positive length in this proof, it would not change the d-
realizability of graphs. Let G be a graph, v = |V(G)| and e = |E(G)|. Consider the function 
f: Rdv → Re which takes a realization of G in Rd and returns the length of each edge of G. 
The image of f applied to a closed ball of radius M is a compact set in Re. Thus, the set of 



edge lengths which cannot be realized in Rd inside a closed ball of radius M is an open set 
in Re. If a graph G has realization p = (p1, … , pn) in RN with some zero length edges that 
is not realizable in Rd with the same edge lengths, then a  sufficiently small perturbation 
of p = (p1, … , pn) to a configuration with no zero length edges in RN will still not be 
realizable with the same edge lengths in Rd.

Theorem 2: A graph G is 2-realizable if and only if it does not have K4 as a minor.

Definition 2: A minor of a graph G is any graph obtained from G by a sequence of edge 
deletions and edge contractions (identify the two vertices belonging to an edge and then 
remove any loops or multiple edges).

Theorem 4: If a graph G is d-realizable and H is a minor of G, then H is d-realizable.

Definition 3: A graph property is called minor monotone if it is closed under the 
operation of taking minors.

Theorem 5 (The Graph Minor Theorem): Every minor monotone graph property has a 
finite list of forbidden minors; i.e. there exists a finite list of graphs G1, … , Gn such that a 
graph G satisfies the graph property if and only if G does not have any Gi as a minor.

Definition 4: A graph is series parallel if it is a subgraph of a graph that is constructed 
from a K2 by repeatedly attaching subdivided edges to two adjacent vertices.

Theorem 6 (Wagner 1937): A graph G is series parallel if and only if G does not contain 
K4 as a minor; i.e. K4 is the only forbidden minor for series parallel graphs.

Theorem 2: A graph G is 2-realizable if and only if it does not have K4 as a minor.

Proof: Suppose G does not have K4 as a minor. G is series parallel. We assume that G is 
maximally series parallel (we cannot add more edges). A maximally series parallel graph 
can be constructed from K2 by attaching subdivided edges with exactly one subdivion 
between two adjacent vertices.

The graph K2 is 2-realizable. If we attach a subdivided edge to adjacent vertices with 
edge lengths satisfying the triangle inequality to a graph that is realized in R2, the 
resulting graph can also be realized in R2. By induction, all maximally series parallel 
graphs are 2-realizable.

For the opposite direction, suppose that a graph  G is 2-realizable. K4 is not 2-realizable 
(K4 can be realized in R3 as the skeleton of a tetrahedron). Thus, G cannot contain K4 as a 
minor. □



Theorem 3 (Main Theorem): A graph G is 3-realizable if and only if it does not have 
either K5 or the 1-skeleton of the octahedron as a minor.

Definition 5: Let G1 and G2 be two graphs, both containin a Kk as a subgraph. The k-sum 
of G1 and G2, denoted G1 G2, is the graph obtained by identifying the two Kk’s.

Definition 6: A graph is a k-tree if it can be obtained through a sequence of k-sums of 
Kk+1’s. A graph is a partial k-tree if it is a subgraph of a k-tree.

If G1 and G2 are both d-realizable and both contain Kd as a subgraph, G1 G2 is also d-
realizable.

Forests are equivalent to partial 1-trees, 1-realizable graphs are partial 1-trees. Series 
parallel graphs are partial 2-trees, 2-realizable graphs are partial 2-trees. Thus, all partial 
d-trees are d-realizable.

Theorem 7 (Arnborg, Proskurowski, and Corneil 1990): The forbidden minors for 
partial 3-trees are K5, the 1-skeleton of the octahedron (K2,2,2), V8, and C5 x C2.

If any of these graphs is not 3-realizable, then it is a forbidden minor for 3-realizability. 
We know that K5 is not 3-realizable.

Theorem 8: The 1-skeleton of the octahedron (K2,2,2) is not 3-realizable.

Proof: We construct a realization of the octahedron in E4 which cannot be realized in E3.

Step 1. Start with a degenerate triangle with edge lengths 1, 1 and 2.
Step 2. Attach vertex 4 to this degenerate triangle at vertices 1 and 3 with edge lengths 

2 and 2 .
Step 3. Attach vertex 5 to vertices 1, 2 and 4. Place this vertex in the third dimension. 
Make all of the new edges have length 1.
Step 4. Attach vetrex 6 to vertices 2, 3 and 4. In three dimensions, place this vertex either 
above or below the plane. Make all of the new edges have length 1. There are only two 
possible realizations in E3.
Step 5. Add a final edge between vertices 5 and 6. In E3, this edge can have two possible 
lengths 2  and 2. In E4, this edge can be any length.



Thus, the octahedron is not 3-realizable. □

Theorem 9: The graph V8 is 3-realizable.

Definition 7: A tensegrity, denoted G(p) is a configuration p = (p1, . . . , pn) and a graph 
G, where each edge of the graph is labeled as a cable, strut, or bar, and where each vertex 
is labeled as being pinned or unpinned. Cables are allowed to decrease in length and 
shown as dotted lines (or stay the same length). Struts are allowed to increase in length 
and shown as double lines (or stay the same length). Bars are forced to remain the same 
length and shown as single lines. Pinned vertices are forced to remain where they are.

Definition 8: Fix a graph G. Let p and q be two configurations of G. If G(q) satisfies the 
cable, strut, and bar conditions of G(p), then we say that G(p) dominates G(q), which we 
denote by G(p) ≥ G(q). More precisely, G(p) ≥ G(q) if for every pinned vertex i , pi = qi , 
and for every edge {i, j },

• | pi − pj | ≥ | qi − qj | if {i, j } is a cable,
• | pi − pj | = | qi − qj | if {i, j } is a bar,
• | pi − pj | ≤ | qi − qj | if {i, j } is a strut.

Definition 9: An equilibrium stress for G(p) is an assignment of real numbers ωij = ωji to 
each edge {i, j} ∈ E(G) such that for each unpinned vertex i of G,             

Σj: {i,j}ϵ E(G) ωij (pi − pj) = 0

We denote a stress by a vector ω, where the components of the vector range over the 
edges of G. We often refer to an equilibrium stress as simply a stress. The existence of an 
equilibrium stress is what we use to argue that certain vertices span low enough 
dimension.



Definition 10: A tensegrity G(p) is unyielding if any other configuration q with G(p) ≥ 
G(q) has the same edge lengths as in p.

Theorem 10: If G(p) is an unyielding tensegrity with exactly one strut or cable, then 
G(p) has an equilibrium stress that is non-zero on at least one edge.

Proof: Suppose the only equilibrium stress on G(p) is zero on all edges. R(p) is a 
surjective linear transformation. So, there exists an open neighborhood U about p ∈ RNv 
and an open neighborhood V about f (p) such that f maps U onto V. So, there exists a 
realization q such that p and q have the same bar lengths but q has a longer strut length or 
a shorter cable length. Thus, G(p) is not unyielding. □

Lemma 1: Let G(p) be a tensegrity with exactly one strut or cable and suppose that G is 
connected and remains connected if the strut or cable is removed. Then there exists a 
configuration q with G(p) ≥ G(q) and G(q) unyielding.

Proof: Let v = |V(G)| and f : Rv.(v-1) → R1. Every configuration of G spans at most v − 1 
dimensions; thus, every configuration of G exists in Rv-1. Consider the set of 
configurations that have the same bar lengths as in G(p) and that have at least one of the 
vertices pinned. This set is compact: since G with the strut or cable removed is 
connected, every vertex has a maximum distance it can be from the pinned vertex. Thus, f 
attains a maximum on this set. This maximum occurs at an unyielding configuration 
G(q), since there is no configuration with the same edge lengths and a longer strut length.

Lemma 2: If a realization p of V8 has any of the following situations, then it can be 
folded into E3:

1. Four vertices are collinear;
2. Three vertices, not consecutive on the outer cycle, are collinear; 
3. Each vertex in the set {3, 6, 7, 8} (or an isomorphic set) lies in the same plane or line 
as its neighbor.

Proof: If vertices 1, 2, 4, 5, and 7 are in E3, then each remaining vertex can be rotated 
about the plane spanned by its neighbors into E3. 



If four vertices or three non-consecutive vertices are collinear, then there are 5 such 
vertices that span a 3-dimensional subspace. Thus, situations 2 and 2 can be folded into 
E3.

Start with four vertices assumed to be in E3 and, one by one, show that the remaining 
vertices must also be in E3. If vertex i lies in a plane with its neighbors and vertex i and 
two of its neighbors are in E3, then either the third vertex is in E3 or vertex i is collinear 
with its other two neighbors (meaning the third vertex is in E3). 

Vertices 2, 3, 6, and 7 span at most a three-dimensional space. We assume that p2 , p3, p6, 
p7 ∈E3. Vertex 6 lies in the same plane as its neighbors, 2, 5, and 7. 2, 6 and 7 are already 
in E3. If 2, 6, and 7 do not span all of the plane, then they lie on a line and the entire 
realization can fold into E3 by situation 2. Otherwise, the entire plane is in E3, so vertex 5 
is also in E3. Vertex 7 lying in a plane with its neighbors forces vertex 8 to be in E3. 
Vertex 3 lying in a plane with its neighbors forces vertex 4 to be in E3. Vertex 8 lying in a 
plane with its neighbors forces vertex 1 to be in E3. □

Theorem 9: V8 is 3-realizable.

Proof: Let p be a realization of V8. Let G(p): V8 plus a strut. 

This tensegrity has an unyielding realization q such that G(q) has a non-zero stress. We 
should show a non-zero stress on the tensegrity implies that one of the situations of the 
previous lemma. We will call a vertex zero vertex if all of the incident edges have a stress 
of zero. We will call a vertex non-zero vertex if at least one of the incident edges has a 
non-zero stress.

Case 1: Vertex 5, 6, 7, or 8 is a zero vertex. 

Suppose vertex 5 is a zero vertex. Vertex 6 is adjacent to 5, so the edge {5, 6} has a stress 
of zero. Vertex 6 either has exactly two incident edges with non-zero stress (2, 6 and 7 
are collinear, V8 can fold into E3) or all edges incident to vertex 6 have zero stress, 
making 6 a zero vertex. In this case the non-zero stress lies entirely on vertices 1, 2, 3, 
and 4. To have a non-zero stress all four of these vertices have to be collinear.



Case 2: Vertex 2 or 3 is a zero vertex. 

Either 2 and 3 are both zero vertices or situation 2 occurs. The non-zero stress lies 
entirely on {1, 4, 5, 6, 7, 8}. If 2 is a zero vertex, then 6 is a zero vertex or 5, 6, and 7 are  
collinear. If 3 is a zero vertex, then 7 is a zero vertex or 6, 7, and 8 are collinear. Thus, 
either case 1 occurs, or vertices 5–8 are all collinear.

Case 3: None of vertices 2, 3, 5, 6, 7, or 8 is a zero vertex. 

Then each of these vertices must lie in the same plane as their neighbors, so we have 
situation 2. □

Theorem 11: The graph C5 × C2 is 3-realizable.

One of the following must occur;
• C5 × C2 can be folded into E3,
• Pin the stressed vertices and add a strut between two other vertices, resulting in 

another stressed configuration that can be folded into E3, or
• There is a sequence of realizations of C5 × C2 that can be realized in E3 

converging to the unyielding configuration (unyielding configuration has a 
realization in E3).

Lemma 3: Let G(p) be a tensegrity, with vertex i having degree 2. Let the neighbors of 
vertex i be vertices j and k. Let H be the graph obtained from G by removing vertex i and 
its incident edges and adding the edge {j, k} (if the edge does not already exist). Let the 
configuration q be the same as p but not including vertex i . If G(p) has an equilibrium 
stress, then H(q) has an equilibrium stress.

Proof: Let ω be the equilibrium stress on G(p). Let α be the equilibrium stress on H(q). 
For the edge {j, k}, the stress is:

Since ω is an equilibrium stress, this is equivalent to:

α satisfies the equilibrium condition at vertices j and k. □

Lemma 4: If there are realizations of C5 × C2 that cannot be realized in E3, then there 
exists such a realization where the lengths of the edges along a cycle cannot be added and 
subtracted to give zero.

Proof: Let v = |V(C5 × C2)|. Let e = |E(C5 × C2)| and f : R3v → Re.



The image of a closed ball of radius M under this f is a compact set, since f is a 
continuous function. Thus, the set of edge lengths with no realization in E3 inside a closed 
ball of radius M is an open set. Thus, given a list of edge lengths that cannot be realized 
in E3 where the lengths of the edges along one of the cycles can be added and subtracted 
to give zero, there must be a nearby list of edge lengths without this property that can also 
not be realized in E3. □

Lemma 5: Let G(p) be a tensegrity with a stress that is non-zero on all edges. If G has n 
vertices, then the dimension of the span of the n vertices is at most n −2. Additionally, if 
G is not the complete graph on n vertices, then the dimension of the span of the n vertices 
is at most n − 3.

Proof: The only tensegrity in En-2 with n vertices and a stress that is non-zero on all edges 
has G = Kn. □

Lemma 6: Consider the tensegrity G(p) shown in figure. If there is a stress that is non-
zero on every edge of this tensegrity, then the configuration p lies in E3.

Proof: Every vertex that has degree 3 must be either coplanar or collinear with its 
neighbors. If a degree 3 vertex is collinear with two of its neighbors, then it must be 
collinear with the third neighbor. We should show that a vertex is in E3. Use “if vertex i 
lies in a plane or a line with its neighbors and vertex i and two of its neighbors are known 
to be in E3 and to span the plane or line, then the third vertex is also in E3”. 

The four vertices 1, 2, 9, and 10 span at most three dimensions. Vertex 1 lies in a plane 
(or a line) with its neighbors, 2, 3, and 9, so vertex 3 is in E3. Vertex 2 lies in a plane (or 
line) with its neighbors, so vertex 4 is in E3. Vertex 9 lies in a plane (or line) with its 
neighbors, so vertex 7 is in E3. Vertex 10 lies in a plane (or line) with its neighbors, so 
vertex 8 is in E3. Vertex 7 lies in a plane (or line) with its neighbors, so vertex 5 is in E3. 
Vertex 5 lies in a plane (or line) with its neighbors, so vertex 6 is in E3. Therefore, if there 
is a non-zero stress on every edge of this tensegrity, all vertices are in E3. □



To simplify the later proofs, we use the notation <a> to mean the affine span of the vertex 
a and the neighbors of a. We use the notation <a> ⇒ b to mean that;

• b is a neighbor of a,
• <a> is a line or a plane (that is, a is coplanar or collinear with its neighbors),
• a and its neighbors other than b are known to be in E3,
• and because of this b is also in E3.

Definition 11: A Y–∆ transformation is an operation applied to a graph that removes a 
vertex i with degree 3, and adds edges between all pairs of vertices adjacent to vertex i .

Lemma 7: Let G be a graph and let p = (p1, . . . , pn) be a realization of the graph. Let H 
and q = (p1, . . . , pi-1, pi+1, . . . , pn) be the graph and realization obtained by performing a 
Y – ∆ transformation on a vertex i of G. If there is a realization of H in E3 with the same 
edge lengths as in q, then there is a realization of G in E3 with the same edge lengths as in 
p.

Proof: We can construct the realization of G by realizing H, and then folding the vertex i 
into E3 along the plane formed by the vertices adjacent to i. □

Lemma 8. Let G(p) be an unyielding configuration of the tensegrity C5 × C2 plus a strut. 
Suppose that there is a cycle of length 4 which includes the strut that is collinear. Then 
there is a realization of C5 × C2 in E3 with the given edge lengths.

Proof. Assume 3 edges in bold are collinear. Vertices 3, 6, and 8 are collinear. By the 
previous lemma, if the resulting configuration can be realized in E3, the original 
configuration can also be realized in E3. 3, 6, and 8 are collinear, so 3, 6, 8, 2, and 9 are 
all in E3. We can rotate the remaining vertex, vertex 7 or 5, about the plane spanned by 
vertices 3, 6, 8, and 9 and into E3. □

Theorem 11: The graph C5 × C2 is 3-realizable.

Proof: For the proof we should consider the subgraph of C5 × C2 that does not contain 
removed vertices and edges. It suffices to show that the resulting graph is in the 
appropriate dimension. We can show that C5 × C2 is 3-realizable by considering all cases 
of removed edges and vertices. □



We showed that the graphs V8 and C5 x C2 are 3-realizable. So, there can be other graphs 
which are not 3-realizable but do not have K5 or the octahedron as a minor. 

We can eliminate this possibility by showing that any graph containing V8 or C5 x C2 as a 
minor either contains K5 or the octahedron as a minor or is 3-realizable.

Lemma 9: If any edge is added between non-adjacent vertives of V8, the resulting graph 
has K5 as a minor.

Proof: There are two ways to add an edge to V8. When we contract the dotted edges, the 
resulting graph is K5. □

Lemma 10: If any edge is added between non-adjacent vertices of C5 x C2, the resulting 
graph has either the octahedron or K5 as a minor.

Proof: There are three ways to add an edge to C5 x C2. Contracting the dotted edges 
produces the octahedron or the K5. □

Definition 12: A graph H is a subdivision of a graph G is H can be obtained from G by 
replacing every edge {i, j} of G with a path from vertex i to vertex j. 

Lemma 11: Let H be a graph whose vertices are of maximum degree 3. If a graph G has 
H as a minor, then G contains a subdivision of H as a subgraph. 

Theorem 3 (Main Theorem): The forbidden minors for 3-realizability are K5 and the 
octahedron.

Proof: We should show that if a graph G does not have K5 or the octahedron as a minor, 
then it is 3-realizable. G is connected. 

If G does not contain V8 or C5 x C2 as a minor, then it is a partial 3-tree and 3-realizable.



Suppose G contains V8 as a minor. G must contain a subdivion of V8. We will crate G as 
a subgraph of the 2-sum of 3-realizable graphs.

Remove the subdivion of V8 from G and consider the components of the resulting graph. 
Each component has to be connected in G to exactly one of the subdivided edges of V8.

If a component connects to two subdivided edges, then there should be a path in G from 
the subdivided version of {i, j} to the subdivided version of edge {k, l}. The subdivided 
edges can be contracted in G so that the path goes from i to k, which contradicts lemma 1.

Let V{i,j} be the union of all vertices from the components associated with the subdivided 
edge {i, j} and the vertices from the subdivided edge.

Add the edges to G that correspond to the contraction of the subdivided edges. Call this 
new graph H. We should create H as a 2-sum of smaller graphs. Let H{i,j} be the induced 
subgraph of H on the vertices V{i,j}. Then, H is a 2-sum of V8 and all the H{i,j} by attaching 
along the edges {i, j}.

The graphs H{i,j} are minors of G, and cannot contain K5 or the octahedron as a minor. So 
H{i,j} are 3-realizable. Thus, H is 3-realizable. G is a subgraph of H. G is 3-realizable. □

Every 3-realizable graph is a subgraph of a graph that can be obtained by a sequence of 
3-sums and 2-sums involving K4, V8 and C5 x C2.

Example 1: The 1-skeleton of the cube is a partial 3-tree, and therefore 3-realizable.

Take the 3-sum of 1-skeleton of the tetrahedron with four other K4’s.



Example 2: The graph K3,3 is a partial 3-tree, and therefore 3-realizable.

Take the 3-sum of a triangle with three K4’s.

Example 3: The Cauchy graph on n ≥ 5 vertices Chn is 4-realizable.

Chn is the graph obtained from a cyclic graph by placing an edge between every other vertex. Chn 
is a minor of Chn+2. Ch5 is K5, Ch6 is octahedron and neither of them are 3-realizable.

Discussion and Open Problems

Theorem 12: Any graph G with e edges is d-realizable if e < (d+1)(d+2) / 2. Furthermore, G is 
still d-realizable if c, and G is not the complete graph Kd+1.

Conjecture 1. If a graph G has e edges and e < (d+1)(d+2) / 2, then G is a partial d-tree. 
Furthermore, if G has e = (d+1)(d+2) / 2, and G is not the complete graph Kd+1, then G is still a d-
tree.


