Smallest enclosing circles and more

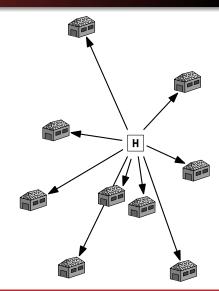
Computational Geometry

Lecture 4: Smallest enclosing circles and more

Facility location

Given a set of houses and farms in an isolated area. Can we place a helicopter ambulance post so that each house and farm can be reached within 15 minutes?

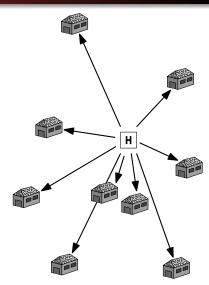
Where should we place an antenna so that a number of locations have maximum reception?



Facility location in geometric terms

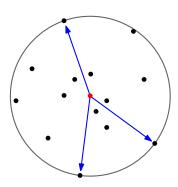
Given a set of points in the plane. Is there any point that is within a certain distance of these points?

Where do we place a point that minimizes the maximum distance to a set of points?



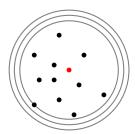
Facility location in geometric terms

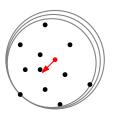
Given a set of points in the plane, compute the smallest enclosing circle



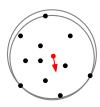
Observation: It must pass through some points, or else it cannot be smallest

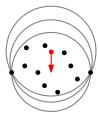
- Take any circle that encloses the points, and reduce its radius until it contains a point p
- Move center towards p while reducing the radius further, until the circle contains another point q



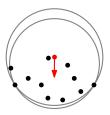


- Move center on the bisector of p and q towards their midpoint, until:
 - (i) the circle contains a third point, or
 - (ii) the center reaches the midpoint of p and q



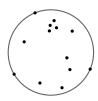


Question: Does the "algorithm" of the previous slide work?



Observe: A smallest enclosing circle has (at least) three points on its boundary, or only two in which case they are diametrally opposite

Question: What is the extra property when there are three points on the boundary?



Randomized incremental construction

Construction by randomized incremental construction

incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points

Putting in random order

The points may be given in any order, the algorithm will just reorder them

- Let j be a random integer in [1,n]
- Swap p_j and p_n
- Recursively shuffle p_1, \ldots, p_{n-1}

Putting in random order takes O(n) time

Expected running time

Every one of the n! orders is equally likely

The expected time taken by the algorithm is the *average* time over all orders

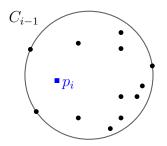
$$\frac{1}{n!} \cdot \sum_{\Pi \text{ permutation}}$$
 time if the random order is Π

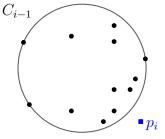
Let p_1, \ldots, p_n be the points in random order

Let C_i be the smallest enclosing circle for p_1, \ldots, p_i

Suppose we know C_{i-1} and we want to add p_i

- If p_i is inside C_{i-1} , then $C_i = C_{i-1}$
- If p_i is outside C_{i-1} , then C_i will have p_i on its boundary

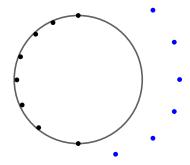




Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

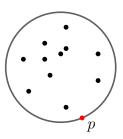
Adding a point

Question: Suppose we remembered not only C_{i-1} , but also the two or three points defining it. It looks like if p_i is outside C_{i-1} , the new circle C_i is defined by p_i and some points that defined C_{i-1} . Why is this false?



How do we find the smallest enclosing circle of $p_1 \dots, p_{i-1}$ with p_i on the boundary?

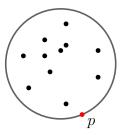
We study the new(!) geometric problem of computing the smallest enclosing circle with a given point p on its boundary



Smallest enclosing circle with point

Given a set P of points and one special point p, determine the smallest enclosing circle of P that must have p on the boundary

Question: How do we solve it?



Randomized incremental construction

Construction by randomized incremental construction

incremental construction: Add points one by one and maintain the solution so far

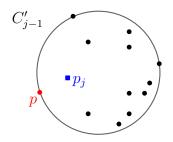
randomized: Use a random order to add the points

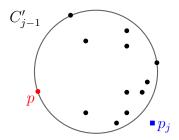
Let p_1, \ldots, p_{i-1} be the points in random order

Let C'_j be the smallest enclosing circle for p_1, \ldots, p_j $(j \le i - 1)$ and with p on the boundary

Suppose we know C'_{i-1} and we want to add p_j

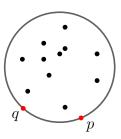
- ullet If p_j is inside C_{j-1}' , then $C_j'=C_{j-1}'$
- If p_j is outside C'_{j-1} , then C'_j will have p_j on its boundary (and also p of course!)





How do we find the smallest enclosing circle of $p_1...,p_{j-1}$ with p and p_i on the boundary?

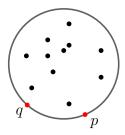
We study the *new(!)* geometric problem of computing the smallest enclosing circle with two given points on its boundary



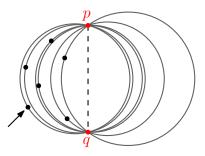
Smallest enclosing circle with two points

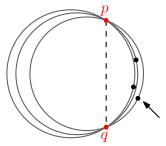
Given a set P of points and two special points p and q, determine the smallest enclosing circle of P that must have p and q on the boundary

Question: How do we solve it?

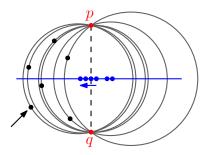


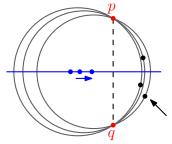
Two points known





Two points known





Algorithm: two points known

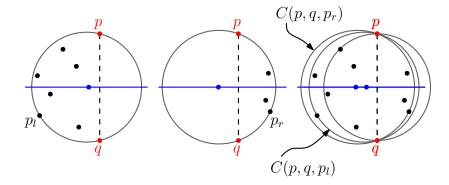
Assume w.lo.g. that p and q lie on a vertical line. Let ℓ be the line through p and q and let ℓ' be their bisector

For all points left of ℓ , find the one that, together with p and q, defines a circle whose center is leftmost $\rightarrow p_l$

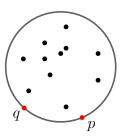
For all points right of ℓ , find the one that, together with p and q, defines a circle whose center is rightmost $\rightarrow p_r$

Decide if $C(p,q,p_l)$ or $C(p,q,p_r)$ or C(p,q) is the smallest enclosing circle

Two points known



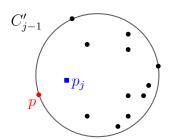
Smallest enclosing circle for n points with two points already known takes O(n) time, worst case

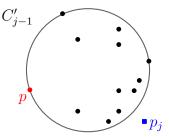


Algorithm: one point known

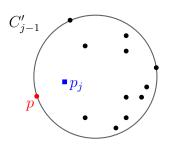
- Use a random order for p_1, \ldots, p_n ; start with $C_1 = C(p, p_1)$
- for $j \leftarrow 2$ to n do

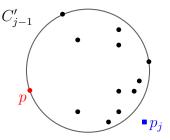
 If p_j in or on C_{j-1} then $C_j = C_{j-1}$; otherwise, solve smallest enclosing circle for p_1, \ldots, p_{j-1} with two points known $(p \text{ and } p_j)$



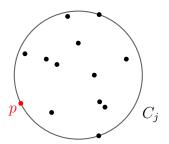


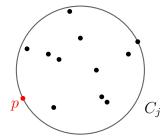
If only one point is known, we used randomized incremental construction, so we need an *expected time analysis*



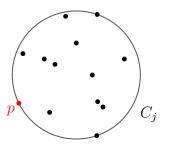


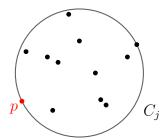
Backwards analysis: Consider the situation *after* adding p_j , so we have computed C_i



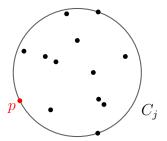


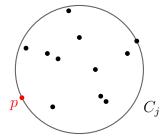
The probability that the j-th addition was expensive is the same as the probability that the smallest enclosing circle changes (decreases in size) if we remove a random point from the j points





This probability is 2/j in the left situation and 1/j in the right situation





The expected time for the j-th addition of a point is

$$\frac{j-2}{j} \cdot \Theta(1) + \frac{2}{j} \cdot \Theta(j) = O(1)$$

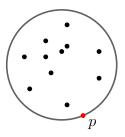
or

$$\frac{j-1}{j} \cdot \Theta(1) + \frac{1}{j} \cdot \Theta(j) = O(1)$$

The expected running time of the algorithm for n points is:

$$\Theta(n) + \sum_{i=2}^{n} \Theta(1) = \Theta(n)$$

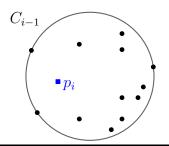
Smallest enclosing circle for n points with one point already known takes $\Theta(n)$ time, expected

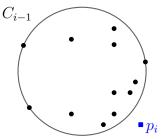


Algorithm: smallest enclosing circle

- Use a random order for p_1, \ldots, p_n ; start with $C_2 = C(p_1, p_2)$
- for $i \leftarrow 3$ to n do

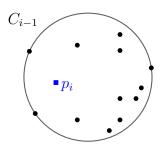
 If p_i in or on C_{i-1} then $C_i = C_{i-1}$; otherwise, solve smallest enclosing circle for p_1, \ldots, p_{i-1} with one point known (p_i)

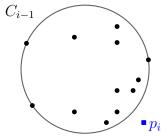




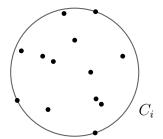
Analysis: smallest enclosing circle

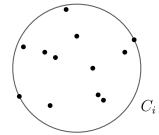
For smallest enclosing circle, we used randomized incremental construction, so we need an *expected time analysis*



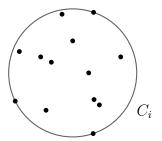


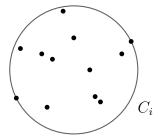
Backwards analysis: Consider the situation *after* adding p_i , so we have computed C_i



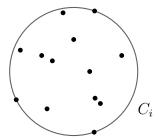


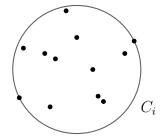
The probability that the i-th addition was expensive is the same as the probability that the smallest enclosing circle changes (decreases in size) if we remove a random point from the i points





This probability is 3/i in the left situation and 2/i in the right situation





The expected time for the *i*-th addition of a point is

$$\frac{i-3}{i} \cdot \Theta(1) + \frac{3}{i} \cdot \Theta(i) = O(1)$$

or

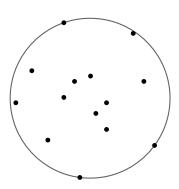
$$\frac{i-2}{i} \cdot \Theta(1) + \frac{2}{i} \cdot \Theta(i) = O(1)$$

The expected running time of the algorithm for n points is:

$$\Theta(n) + \sum_{i=3}^{n} \Theta(1) = \Theta(n)$$

Result: smallest enclosing circle

Theorem The smallest enclosing circle for n points in plane can be computed in O(n) expected time



When does it work?

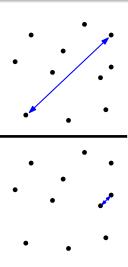
Randomized incremental construction algorithms of this sort (compute an 'optimal' thing) work if:

- 1.) The test whether the next input object violates the current optimum must be possible and fast
- 2.) If the next input object violates the current optimum, finding the new optimum must be an *easier* problem than the general problem
- 3.) The thing must already be defined by O(1) of the input objects
- 4.) Ultimately: the analysis must work out

Diameter, closest pair

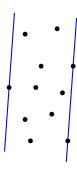
Diameter: Given a set of *n* points in the plane, compute the two points furthest apart

Closest pair: Given a set of n points in the plane, compute the two points closest together



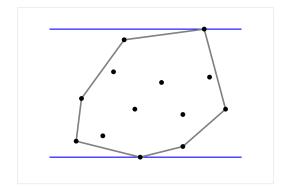
Width

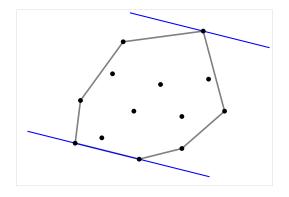
Width: Given a set of *n* points in the plane, compute the smallest distance between two parallel lines that contain the points (narrowest strip)

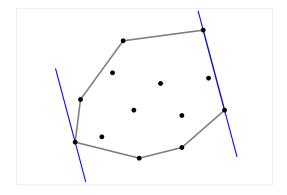


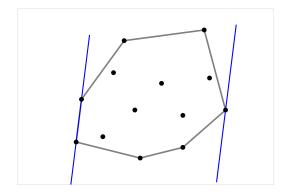
The width can be computed using the rotating callipers algorithm

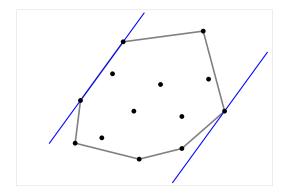
- Compute the convex hull
- Find the highest and lowest point on it; they define two horizontal lines that enclose the points
- Rotate the lines together while proceeding along the convex hull

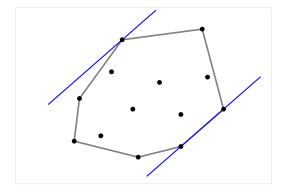








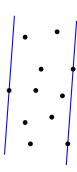




Width

Property: The width is always determined by three points of the set

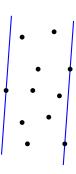
Theorem: The rotating callipers algorithm determines the width (and the diameter) in $O(n \log n)$ time



Width by RIC?

Property: The width is always determined by three points of the set

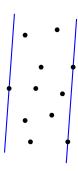
We can maintain the two lines defining the width to have a fast test for violation



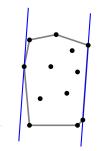
Conditions
Diameter and closest pai
Width
More examples

Adding a point

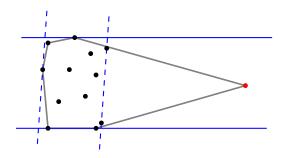
Question: How about adding a point? If the new point lies inside the narrowest strip we are fine, but what if it lies outside?



Adding a point

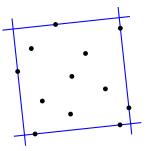


Adding a point



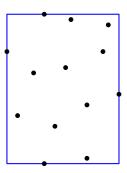
Width

A good reason to be very suspicious of randomized incremental construction as a working approach is *non-uniqueness* of a solution



Minimum bounding box

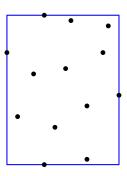
Question: Can we compute the minimum axis-parallel bounding box by randomized incremental construction?



Minimum bounding box

Yes, in O(n) expected time

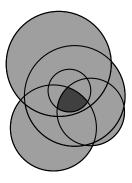
 \dots but a normal incremental algorithm does it in O(n) worst case time



Lowest point in circles

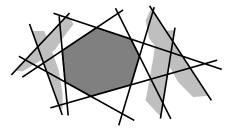
Problem 1: Given *n* disks in the plane, can we compute the lowest point in their common intersection efficiently by randomized incremental construction?

Problem 2: Given *n* disks in the plane, can we compute the lowest point in their union efficiently by randomized incremental construction?



Half-plane intersection

Problem: Given a set of *n* half-planes, can we decide efficiently if their intersection is empty?



Red-blue separation

Problem: Given a set of *n* red and blue points in the plane, can we decide efficiently if they have a separating line?

