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1 Introduction

Before going into the definition of what a game is, we first define some background terms.

1.1 Background

Definition 1 (Topological space[1]) A topological space, also called an abstract topological space,
is a set X together with a collection of open subsets T that satisfies the four conditions:

1. The empty set H is in T .

2. X is in T .

3. The intersection of a finite number of sets in T is also in T .

4. The union of an arbitrary number of sets in T is also in T .

Definition 2 (Convex Set[5]) A convex set is a region where, for every pair of points within the
region, every point on the straight line segment that joins the two points is also in the set.

Definition 3 (Closed Set[2]) A topological space that contains all its limit points.

Definition 4 (Compact space[4]) A topological space that is closed and bounded.

Definition 5 (Concave function[3]) f : Ω Ñ R is concave if for any x and y in the interval and
for any α P r0, 1s

fpp1´ αqx` αyq ě p1´ αqfpxq ` αfpyq

Alternatively, a function f : Ω Ñ R is concave if the set @t Ωt “ tx : fpxq ě tu is convex.

1.2 Games

In this section we introduce basic terminology in game theory.

Definition 6 (Strategy Space) A strategy space in an n player game is Σ1ˆΣ2ˆ¨ ¨ ¨ˆΣn, where
Σi is the set of strategies for player i.

Definition 7 (Strategy Profile) A strategy profile in an n player game is s P Σ1ˆΣ2ˆ¨ ¨ ¨ˆΣn.

Definition 8 (Game) A game is a tuple prns, S, Uq, where rns is the set of players, S “ Σ1 ˆ

Σ2,ˆ ¨ ¨ ¨ ˆ Σn is the strategy space, U “
Ť

i Ui, and Ui : Σ1 ˆ Σ2,ˆ ¨ ¨ ¨ ˆ Σn Ñ R is the utility
function for player i.

Definition 9 (Finite Game) A game in which there are a finite number of players and each player
has a finite number of strategies (Σi for each player is finite).
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Definition 10 (Pure Strategy) A player picks only one of discrete possible choices of strategy
from Σ.

Definition 11 (Mixed Strategy) A mixed strategy is a probability density function defined over
a strategy space.

Mixed strategy space of a pure strategy game can be be represented as convex combinations of
the original strategies.

Lemma 12 The mixed strategy space corresponding to a pure strategy space is convex.

Definition 13 (Symmetric game) A two player game is symmetric if A “ BT , where A and B
are the payoff matrices of the two players.

Definition 14 (Zero sum game) A game is called a zero sum game if Σiuipsq “ 0

Definition 15 (Countering strategy) A strategy profile s1 counters s if

@i @t uips1, . . . , si´1, s
1
i, si`1, . . . snq ě uips1, . . . si´1, t, si`1, . . . snq

Note: s´1 is used to denote ps1, . . . , si´1, s
1
i, si`1, . . . snq

Definition 16 (Nash Equilibrium) A Nash equilibrium in a game is a strategy that counters
itself.

Definition 17 (Pareto Equilibrium) Pareto Equilibrium is a strategy (profile) s such that

@iuipsi, s´iq ě uipt, s´iq@t : @jujpt, s´jq ě ujpsj , s´jq

Note that the extra qualification for t filters strategies that hurt others.

Definition 18 (Dominant strategy) A strategy is dominant for a player i if the following holds

@si@t uips´i, siq ą uips´i, tq

2 Nash Equilibrium

Theorem 19 (Existence of a Nash equilibrium[7]) If a game has a convex strategy profile space
Σ1 ˆ Σ2 ˆ . . .Σn and concave utility function ui, then the game has a Nash equilibrium.

Note that Nash’s theorem gives a sufficient condition for the existence of a Nash equilibrium. While
Nash’s theorem gives a way to verify whether a mixed strategy game has a Nash equilibrium or
not, it cannot be used to analyze pure strategy finite games, since the utility functions are discrete
and hence not continuous and convex. There exist alternate sufficient conditions for the existence
of Nash equilibrium in pure strategy games. One such condition is shown in the following theorem.

It is interesting to note that often, there is a simple mechanism that converts a game into a
dominant strategy and hence strategy-proof game; this is especially interesting in games without
perfect information - by making them strategy-proof no one has any incentive to hide anything and
it doesn’t matter that it is not a perfect-information game any more.

For instance, consider auctions as games where, there is a product that is being auctioned and
there are several bidders for this product. Each bidder or player in the game has a certain valuation
of the product. If a player wins the bid, his utility is the difference between his bid and his valuation.
If he doesn’t win, his utility is zero. A first price auction where, the highest bidder wins and pays
his bid amount is generally a game without perfect information. I.e., players generally do not know
each other’s valuation of the product. This game can be altered by making it a second price or
Vickrey auction where, the highest bidder wins, but only pays the amount of the second highest
bid. This compels players to bid their valuation of the product. As they only pay the second price
amount, they will always have a positive utility.
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Theorem 20 (Existence of Nash Equilibrium for Pure strategy games) In an n player game,
if every player has a dominant strategy, then there exists a Nash equilibrium.

A dominant strategy implies that the game is strategy proof and that players don’t have to care
about other players’ strategy at all. This makes the game uninteresting and most real world games
do not have dominant strategies. Next we give the proof of Nash’s theorem. But before that, we
discuss the following theorems which will be used in the proof of Nash’s theorem.

Theorem 21 (Brouwer’s fixed point theorem[8]) A continuous function f : Ω Ñ Ω on a com-
pact convex set of a topological space has a point x where fpxq “ x.

Theorem 22 (Kakutani’s fixed point theorem [6]) Let Ω be a non-empty, compact and convex
subset of some Euclidean space Rn. Let f : Ω Ñ 2Ω be a set-valued function on Ω with a closed
graph and the property that fpxq is non-empty and convex for all x P Ω. Then Ω has a point x such
that x P fpxq.

Proof: [Existence of Nash’s equilibrium]
Define ∆ : Ω Ñ 2Ω, where Ω “ Σ1 ˆ . . .ˆ Σn.

In particular for strategy profile s in Ω, ∆psq will be the set of all strategy profiles s1 that
counter s. To do this, we define ∆psq as the intersection of ∆ipsq where ∆ipsq is the set of strategies
s1 that counter s for the ith player. A strategy profile s1 counters a strategy profile s for the ith

player if @t uips
1
i, s´iq ą upri, s´iq. Each ∆ipsq is convex since the utility function for the ith player

is concave. so ∆psq is a finite intersection of convex sets and hence also convex. Since the utility
functions are continuous, the function ∆ is continuous. So ∆ is a function that satisfies the conditions
of Kakutani’s theorem So there is a s such that s P ∆psq, i.e, s counters itself and hence is a Nash
equilibrium.

3 Analysis of Games

3.1 Prisoner’s Dilemma

Prisoner’s dilemma is a 2 player game where the prisoners are on trial for a crime. Each prisoner
has two choices, confessing or staying silent. Their pay off for each of these choices are as given in
Table 1.

A/B Confess Silent
Confess 4, 4 1, 5
Silent 5, 1 2, 2

Table 1: Prisoner’s Dilemma

The prisoner’s dilemma game has a pure strategy Nash equilibrium when both prisoners confess.
Though this is does not give the best payoff for either player, in any other state of the game, each
player has something to gain by changing their strategy. Next we give an algorithm

3.2 Matching Pennies

The matching pennies is a 2 player game where two coins are tossed and if both coins have the same
side (i.e., both heads or both tails) player A wins, otherwise player B wins. The payoff matrix for
this game is shown in Table 2.

As can be seen from the payoff matrix, there is no pure strategy Nash equilibrium for this game.
However, as we’ll discuss later, the game has a mixed strategy Nash equilibrium.
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A/B Confess Silent
Confess 1, -1 -1, 1
Silent -1, 1 1, -1

Table 2: Matching Pennies

3.3 Tragedy of the commons

Tragedy of the commons is an n player game where there is a finite amount of resource that the n
players need to share. If player i uses xi amount of resource, then their utility is given by

uipxq “ 0 if pΣixi ą 1q

“ xip1´ Σjxjq otherwise
(1)

To maximize his own utility, each player tries to utilize as much of the resources as possible. However,
if the total consumption increases beyond the available resources, nobody gets anything.

To understand the Nash equilibrium in this game, let us consider the game from the perspective
of a single player i. Let us assume that t “ Σj‰ixj resource is utilized by all other players. From
i’s perspective, this is a simple optimization problem. Consuming x resource results in a utility of
xp1´ t´ xq which gives an optimal utility of x “ 1´t

2 . This yields a stable state when each player

is being selfish and maximizing their own utility, i.e., xi “
p1´Σj‰ixjq

2 . This has a unique solution
when xi “ 1{pn` 1q for all i.

Notice that this solution has extremely low resource utilization. The utility for each player is

xi “
p1´Σj‰ixjq

2 “ 1
pn`1q2 . Thus, the total resource utilization is only 1{n. Each user, by being

selfish overuses the resource, driving the overall utilization down.

3.4 Pollution Game

This is an extension of the prisoner’s dilemma to n players. In this game there are n countries. Each
country can either pass legislation to control pollution or choose not to do so. Assume that passing
legislation costs 3 units for each country. Not passing legislation adds a cost of 1 for every country
in the game.

The way the game is set up, the cost of controlling pollution is clearly higher than the cost of not
controlling it. Suppose k countries out of the n choose not to control pollution. The cost incurred
by each of these k countries is k, but the cost incurred by the other n´ k countries is k ` 3 each.

The only Nash equilibrium in this game is when no country passes legislation and the cost for
each country is n. But, a far better solution to the game is when all countries pass legislation and
the cost incurred by each country is only 3.
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4 Analysis of Games

4.1 Battle of the Sexes

Battle of the sexes is a two player game where a boy and a girl , are deciding how to spend their
evening. They have two options, going to a baseball game or going to a softball game. The boy
prefers baseball and the girl prefers softball, but they would like to spend the evening together rather
than separately. The payoffs for each of these scenarios is captured in the table payoff matrix shown
in Table 3.

Girl/Boy Baseball Softball
Baseball 5, 6 1, 1
Softball 2, 2 6, 5

Table 3: Battle of the Sexes

In this game, the strategy profiles where the boy and the girl spend the evening separately from each
other are not stable. Assuming that the other player’s strategy remains unchanged, each player has
a choice of switching their strategies and getting a better payoff. The two strategy profiles where the
players spend the evening together are stable. Assuming the other player’s strategy is unchanged,
each player is getting the best payoff with their current choice of strategies. Thus this game has two
Nash equilibria.

4.2 Cars at an Intersection

In this game, two cars approach an intersection at the same time. If both attempt to cross at the
same time, there will be a fatal collision. The payoff matrix for this game is as shown in Table 4

1/2 Cross Stop
Cross -100, -100 1, 0
Stop 0, 1 0, 0

Table 4: Cars at an Intersection

Considered as a pure strategy game, this game has two Nash equilibria and correspond to the
states where one of the player crosses. Considered as a mixed strategy game, there is a third
Nash equilibrium where both players cross with an extremely low probability, say ε and crash with a
probability of ε2. The pure strategy Nash eqilibria have a payoff of 1. The mixed strategy equilibrium
has a low (expected) pay off and a positive chance of crashing.

4.3 Auctions

Auctions are n player games where each player is bidding for a product being auctioned. Each player
i has an internal valuation of the product vi, which is typically not known to other players. Each
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player bids an amount bi for the product and the highest bidder wins. Such auctions are sometimes
called first price auctions. The utility for each player is as given below.

ui “

#

vi ´ bi, if bi ą maxj‰ibj .

0, otherwise.

If the players knew the valuation of other players, all the player with the highest valuation has
to do is bid slightly more than the valuation of the second highest bidder and get a positive utility.
This leads to a nice mechanism design called the Vickrey auction.

4.3.1 Vickrey Auction

Vickrey auctions, sometimes called second price auctions, are similar to first price auctions. Each
player has a valuation vi of the product and bids a value bi and the highest bid wins, but the winner
only pays the only the amount of the second highest bid. The utility for each player is as given
below.

ui “

#

vi ´maxj‰ibj , if bi ą maxj‰ibj .

0, otherwise.

In Vickrey auctions knowledge of other players’ utility does not affect anyone’s bid. Each player
essentially can bid their valuation and expect to get a positive utility. Thus Vickrey auctions are a
dominant strategy game and have a Nash equilibrium.

4.4 Pricing Game - Indivisible Version

Suppose that there are two sellers and three buyers in a market. Buyers B1 and B2 have access to
Seller S1 and buyers B2 and B3 have access to seller S2 as shown in the figure below. The sellers are
selling a product that each of the buyers is interested in and are willing to pay a maximum of $1 for
it. Given a choice, the buyers want to buy the product at the lowest price possible. Here we discuss
the indivisible version of the game, meaning that buyers buy all the goods they are interested in
from a single seller. Relaxing this condition gives us the divisible version described in Section 7.1.

Figure 1: Pricing game

The players in the game are the sellers whose sell the product at a price Pi. We assume that the
sellers cannot price differentiate, i.e., a seller cannot sell a product at different prices to different
buyers. For the sake of simplicity, we also assume that the seller does not incur any cost for producing
the products. Thus, their utility depends solely on how many of the product they sell ui “ ti ˆ Pi,
where ti is the number of products player i has sold.
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In this setup, buyers B1 and B3 have no choice in who they can buy from and they have to pay
whatever the seller demands. Buyer B2 has a choice and will invariably pick the one with the lowest
price. So, each player tries to price his product lower than the other player in order to get B2 to
buy from them. They try to price their products lower and lower till one of them reaches $0.5 at
which point, the other player raises his price to $1. The way it is set up, this game has no Nash
equilibrium.

5 Mixed Strategy Games

Given a two player pure strategy game G : prns, S, Uq, S “ Σ1ˆΣ2 is the strategy space, Sigma1 “

ts1
1, s

2
1u, U “ U1 Y Ui, and Ui : Σ1 ˆ Σ2 Ñ R is the utility function for player i. We define a mixed

strategy game G1 : prns, S1, U 1q. The mixed strategy for player i is given as Σi “ tλs
1
1 ` p1´ λqs

2
1u,

mixed utility function, u1
1ps

1
1, s

1
2q is defined as follows.

u1
1pλs

1
1 ` p1´ λqs

2
1, γs

1
2 ` p1´ γqs

2
2q “λγup1, 1q`

λp1´ γqup1, 2q`

p1´ λqγup2, 1q`

p1´ λqp1´ γqup2, 2q

ÿ

j

PjEp´ipuips
j
i , s´jqq

u1
1pmi,m´iq “ Esi,miEs´im´iuipsi, s´iq

u1pm1,m2q “λγu1p1, 1q `

λp1´ γqu1p1, 2q `

p1´ λqγu1p2, 1q `

p1´ λqp1´ γqu1p2, 2q

Proposition 23 Mixed utility function is n-linear for an n-player game.

Proposition 24 If mixed strategy m´i is fixed, mixed utility function is linear in mi.

Definition 25 For a mixed strategy game, the support of a mixed strategy is those pure strategies
that appear in the mixed strategy. i.e., suppipsiq “ tP

i
j : λij ‰ 0u.

For each user i and for each strategy j in suppipsq, uipsi, s´iq “ uipP
i
j , s´iq, si “ Σiλ

i
jP

i
j and

Σiλj “ 1. Thus, if we know the supp for each player, finding the actual weights λj can be done by
solving a linear system. However, finding supports is hard and the best known algorithm to find
the supports, the Lemke-Howsen algorithm runs in exponential time, unless the game is a zero sum
game (see Section 7). The following example illustrates this for the matching pennies game.

5.1 Matching Pennies

For each player i P tA,Bu, the strategy support is given by ts1
i , s

2
i u corresponding to playing heads or

tails respectively. Let λ indicate the player 1’s proportion of playing heads in his strategy (weight).
p1 ´ λq thereby indicates player 1’s proportion of playing tails. Let γ and p1 ´ γq indicate player
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2’s weights. Mixed strategy for player 1 is given by m1 “ λs1
1 ` p1 ´ λqs2

1 and for player 2, m2 “

γs1
2 ` p1´ γqs

2
2. We can solve the system as follows:

u1ps
1
1, γs

1
2 ` p1´ γqs

2
2q “ u1ps

2
1, γs

1
2 ` p1´ γqs

2
2q

“ γu1ps
1
1, s

1
2q ` p1´ γqu1ps

1
1, s

2
2q

“ γu1ps
2
1, s

1
2q ` p1´ γqu1ps

2
1, s

2
2q

“ γ ˆ 1` p1´ γq ˆ ´1

“ γ ˆ´1` p1´ γq ˆ 1

Solving these equations we get γ “ 0.5. Similarly, λ is obtained as 0.5.
Note: The matching pennies example was worked out by Aditya Mahadev Prakash.

5.2 Nash Equilibrium in Mixed Strategy Games

Note that the mixed utility function (as described above) is not concave and hence we cannot use
Nash’s theorem to analyze the game for the existence of a Nash equilibrium. As stated in the
following theorem, it turns out that we don’t really need concavity of the utility function for Nash’s
theorem to hold.

Theorem 26 (Stronger Nash’s theorem) A game tP, pΣiqiPP , puiqiPP u has a Nash equilibrium
if

i. XiΣi is convex.

ii. @iui are continuous.

iii. ui is concave in the ith argument.

Corollary 27 A mixed strategy Nash equilibrium exists for any finite game.

Earlier, we used the Kakutani’s fixed point theorem to prove the Nash’s theorem. This involved
defining a function from one strategy to a set of strategies. To prove the Stronger Nash’s theorem,
we instead use Brouwer’s fixed point theorem. To do this, we need to define a function that satisfies
the requirements in Theorem 26. We define such a function next:

fpsq :
´

max
arg
x
ruipr, s´iq ´ ||si ´ r||

2s

¯

i

But, before we can use this function, we need to prove that the max defined in the function is unique
and that the function fpsq is continuous.

Fact 28 fpsq :
´

max
arg
x
ruipr, s´iq ´ ||si ´ r||

2s

¯

i
is unique.

Proof: Any strictly concave function has a unique maximum. Notice that uipr, s´iq “ Σ
sPΩ

rsusps´iq,

where usps´iq is the utility function of r and ||r ´ s´i||
2 is strictly concave and thus has a unique

maximum.

Fact 29 @ifipsq is continuous.

Proof: If for a class of maximization problems
max
arg
x
pgpα, xqq are unique, then as a function of α,

max
arg
x

is continuous.

Now, we can use this function and Brouwer’s fixed point theorem to prove that a Nash equilibrium
exists for mixed strategy games.
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6 Symmetry of Games and Nash Equilibria

In 1951 Nash proved the following theorem [9].

Theorem 30 Symmetric games have symmetric Nash equilibrium.

Given an asymmetric game, we can construct a new symmetric game with the property that it has
a Nash equilibrium if and only if the original game has a Nash equilibrium. Thus Theorem 30 is
useful in non-symmetric games too.

Claim 31 An asymmetric two player game G with payoff matrices A and B respectively for the two
players, has a pure strategy Nash equilibrium if and only if the two player game G1 with the following
payoff matrices has a pure strategy Nash equilibrium.

A1 “

„

0 BT

A 0



B1 “

„

0 A
BT 0



7 Two Player Zero-Sum Games

A two player game is a zero sum game if the sum of payoffs of the two players is zero for any choice
of strategies. Typically, in such games, only the payoff of the row player is specified as the matrix
A. Each entry in A represents the gain of the row player and the loss of the column player.

Corollary 27 states that a Nash equilibrium exists for all finite games. Here we show that for the
particular case of zero-sum games, we can find the Nash equilibrium using linear programming.

Let λ and γ be the probability distributions for the strategies of the row and column players
respectively that lead to a Nash equilibrium. Here we think of λ as a row vector and γ as a column
vector. The expected utility value for the row player can be expressed as

u1 “
“

λ1 . . . λn
‰

»

—

–

a11 . . . a1n

...
. . .

...
an1 . . . ann

fi

ffi

fl

»

—

–

γ1

...
γn

fi

ffi

fl

Consider a strategy λ1 for the row player. The expected payoffs for different strategies of the
column player will be λA. Once λ is known, the column player will want to minimize his loss and
essentially play strategies that correspond to the minimum entries in λA. Thus the best strategy
can be found using the following linear program.

urowmax “ max
λě0

u

Σ
j
λj “ 1

@ipλAqi ě u

Similarly, the best strategy for the column player can be found using the following linear program.

ucolumnmin “ min
γě0

u

Σ
j
γ “ 1

@ipAγqi ď u

Theorem 32 The optimum solution for the linear programs described above gives us the λ and γ
that form the Nash equilibrium for the two player zero-sum game.
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Figure 2: Bipartite graph G and the corresponding network N for a pricing game.

Proof: Let λ˚ and γ˚ be strategies of the two players respectively that lead to the optimum
solutions to the two linear programs. Since this is a Nash equilibrium, we can argue that urowmax “
ucolumnmax “ u1. If the players play these strategies, then the row player cannot increase his win as the
column player is guaranteed by his strategy to not lose more than ucolumnmax . Similarly, the column
player cannot decrease his loss, as the row player is guaranteed to win urowmax by his strategy. So, the
strategies are at equilibrium.

7.1 Pricing Game - Divisible Version

This game is similar to the pricing game described in Section 4.4, except that each buyer can buy
part of their goods from one seller and the rest from other sellers. This game is set up as follows.
Let S be the set of sellers and B be the set of buyers. Buyer i has mi amount of money and has
access to Si Ď S sellers. Seller j has aj amount of goods and they sell their goods at pj .

Buyers don’t care which seller they buy from, but will try to maximize the total amount of goods
they can purchase with the money they have. For the given pricing strategy P “ rp1, p2, . . . , pns,
buyer i is only interested in the cheapest subset S1i Ď Si that exhausts mi. We call this the optimal
basket of goods for buyer i at price p.

Definition 33 (Market Clearing Price) A pricing strategy P is said to be market clearing or
equilibrium price if there exists an assignment of optimal basket to each buyer so that there is neither
surplus or deficiency of goods or demand is equal to supply.

Now we describe the algorithm for finding the market clearing prices. We create a bipartite
graph G “ pA,B,Eq where B - the set of buyers - and A - the set of sellers are connected by edges
E whenever a buyer can access a seller (Figure 2. Because of the assumptions made, each vertex
in G has a non-zero degree. For S Ď A of goods, let apSq denote the total amount of goods in S,
i.e., apSq “

ř

jPS aj . For a subset T Ď B of buyers, let mpT q “
ř

iPT mi denote the total money
possessed by all buyers in T .

Let ΓpSq denote the set of buyers who are interested in buying goods S or ΓpSq “ ti P B|SiXS ‰
Hu

Definition 34 (Feasible Price) A uniform price x is feasible if @ S Ď A, x ¨ apsq ď mpΓpsqq,
where Γpsq is the set of buyers that have access to seller s and apsq “ ΣjPSaj.

Definition 35 (Tightness) We say that the feasible price x˚ is tight if the condition in the above
definition become a strict equality.
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Theorem 36 (Max-Flow Min-Cut Theorem:) The max-flow min-cut theorem states that in a
flow network, the maximum amount of flow passing from the source to the sink is equal to the total
weight of the edges in the minimum cut, i.e. the smallest total weight of the edges which if removed
would disconnect the source from the sink [10].

Lemma 37 A uniform price x is feasible if and only if all the goods can be partitioned in such a
way that each buyer gets all the goods they are interested in.

Proof:
Ñ If D S Ď A where x ¨apSq ą mpΓpSqq, the goods in S cannot be sold because the buyers interested
in these goods do not have enough money to purchase it.
Ð We also create a network N by adding a source and a sink vertex to G as shown in Figure 2.
Assign a capacity of infinity to all the edges in G. For each edge from the source s to vertex j P A
introduce capacity of x ¨ aj . For each edge from vertex i P B to sink t, introduce capacity of mi.

Clearly, a way of selling all goods corresponds to a feasible flow in N that saturates all edges
going out of s. We will show that if x is feasible, then such a flow exists in N . By the max-flow
min-cut theorem, if no such flow exists, then the minimum cut must have capacity smaller than
x ¨apAq. Let S be the set of goods on the s´side of a minimum cut. Since edges pj, iq for good j P S
have infinite capacity, ΓpSq must also be on the s´side of this cut. Therefore, the capacity of this
cut is at least x ¨ apA ´ Sq `mpΓpSqq. If this is less than x.apAq then x.apSq ą mpΓpSqq, thereby
contradicting the feasibility of x.

With respect to a feasible x, if a set S is tight, then on selling all goods in S, the money of buyers
in ΓpSq will be fully spent. Therefore, x constitute market clearing prices for goods in S. The idea
is to look for such a set S, allocate goods in S to ΓpSq, and recurse on the remaining goods and
buyers.

7.2 Algorithm to obtain market clearing price

The algorithm starts with x “ 0 which is feasible, and raises x continuously, always maintaining its
feasibility. It stops when a non empty set goes tight. Let x˚ be the smallest value of x at which
this happens and let S˚ be the maximal tight set. x˚ is the maximum value for which the min-cut
is between the source and the sellers. It can be obtained by binary search. Once x˚ is obtained find
the set of nodes that can reach t in residual graph of this flow. This set, W , is the t´side of the
unique maximal min-cut in N at x “ x˚. Then, S˚ “ A´W , the set of goods on the s side of this
cut.

In the next iteration, the algorithm removes S˚ and ΓpS˚q, initializes the price of the goods in
A´ S˚ to x˚, and raises prices until a new set goes tight. The algorithm continues in this manner
until all goods have been assigned prices. It can be shown that the above algorithm computes
equilibrium prices and allocations in polynomial time.

8 Homework

1. Prove Claim 31.

2. In Section 4.3.1 we claimed that Vickrey auction is a dominant strategy game. Prove this and
show that the dominant strategy is for each player to bid their valuation.
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9 Recap

1. Stronger version of Nash theorem was discussed and proved.

2. First price and Vickrey auction was discussed. In first price auction, if all the valuations
Vi, i P t1, . . . , nu are known, the winning price is Pwin “ Vpn´1q ` ε. Vickrey auction forces all
the bidders to bid at their true valuation, which is a Nash equilibrium.

3. Sufficient conditions for Nash equilibrium: convex strategy space, utility function should be
concave

4. Any mixed strategy game has a Nash equilibrium. The example of matching pennies was
discussed.

5. Buyer-seller problem and market clearing price was discussed.

6. Nash theorem- every finite game has a mixed Nash equilibrium

10 Basics of NP-completeness

Definition 38 (Problem:) By a problem we refer to a yes or no problem, i.e., a function Ap9q from
a set of inputs to tYes,Nou. An instance of a problem is a given input x. The size |x| of an instance
x is the number of digits in the encoding of x.[11]

Definition 39 (Algorithm:) An algorithm T is a well-defined set of instructions which produce
a specific output state denoted YES. An algorithm is said to solve the problem A if T1 “ tx :
Apxq “YESu, i.e., it reaches the state YES precisely on the correct set of inputs. Note that the
definition is not symmetric with respect to replacing YES by NO.[11]

Definition 40 (Polynomial Time Algorithm:) Running time complexity of an algorithm de-
fined in terms of its input size n is polynomial if T pnq ď Opnkq for some constant k.

Definition 41 (Non-deterministic Polynomial (NP) Algorithm:) Class of algorithmic de-
cision problems that have a non-deterministic algorithm that runs in time polynomial in the
size of the input in the worst case.

Definition 42 (Non Deterministic Algorithm:) For the algorithm defined above, if we are pro-
vided a witness/guess/certificate y, where |y| ă |x|k, the algorithm is non deterministic if at least
for one of its guesses, Apxq “ Dpxq

Definition 43 (Deterministic Polynomial (P) Algorithm:) lass of algorithmic decision prob-
lems that have a deterministic algorithm that runs in time polynomial in the size of the input in
the worst case.

Definition 44 (P versus NP Problem:) We know that PĂNP, however, it has not yet been
proved whether PĎNP or PĹNP.
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Definition 45 (NP-hard:) A problem A is easier than B if there is a polynomial algorithm which
can translate every possible input of A to an input of B such that all A-inputs for which the A-answer
is Yes and only those are mapped to B-inputs for which the B-answer is Yes. An algorithmic decision
problem is NP-hard if @x P NP if x is reducible to y P P.

Definition 46 (NP-complete:) A decision problem that is NP-hard and in NP or a problem which
is harder in the above sense than all NP problems is NP complete.

In a 2 person game, determining the existence of a Nash equilibrium is NP-complete. Given
payoff matrices A and B for player 1 and 2, construct game with payoff matrix C. The first game
has a Nash equilibrium if and only if the second game has a Nash equilibrium.
Note: Nobody knows if determination of existence of potentially non-symmetric Nash equilibria for
symmetric games is NP-complete or not.

11 Nash and Correlated Equilibrium: Some complexity con-
siderations

Given a game G “ tt1, . . . , nu,Σ1ˆ¨ ¨ ¨ˆΣn, uipΣ1ˆ¨ ¨ ¨ˆΣnq@i P t1, . . . , nuu the following problems:

1. Whether there exists at least 2 Nash equilibria?

2. a Nash equilibrium in which player 1 has utility ě t

3. a Nash equilibrium in which 2 players have utility ě t

4. A Nash equilibrium whose support size ě ns

5. A Nash equilibrium whose support contains a strategy s

6. A Nash equilibrium whose support does not contain a strategy s

are NP-complete [11].

12 Lemke-Howson Algorithm for 2 player symmetric games

We will show that in 2 player symmetric games, finding a symmetric Nash is PPAD-complete.
Before we begin the algorithm it can be seen that there is a polynomial time reduction from

Nash to symmetric Nash. Given two matrices A and B, define C “
`

0 A
BT 0

˘

and let px, yq be the
symmetric equilibrium of this game. It is easy to see that for px, yq to be the best response to itself,
y must be a best response to x and x must be a best response to y. Hence x and y constitute a
Nash equilibrium to the original game.

Consider a symmetric utility matrix A of size nˆn. Consider a convex polytope P defined by 2n
inequalities Az ď 1, z ě 0. It is a non-empty bounded polytope since z “ 0 is a solution and since it
is to be assumed that all coefficients of A are non-negative and no column is zero. Also assume that
all vertices are non degenerate or all vertices lies on precisely n constraints. We say that a strategy
i is represented at vertex z if either Aiz “ 1 or zi “ 0 or both, that is, if at least one of the two
inequalities of the polytopes associated with strategy i is tight at z.

Suppose that at a vertex z, all strategies are represented. This would happen at z “ 0– but
suppose it is not. Then for the strategies i with zi ą 0, it must be the case that Aiz “ 1. Now
define a vector x as follows:

xi “
zi

řn
i“1 zi

(2)

xi’s are well defined since we assume z ‰ 0 and they all add up to 1, thereby constituting a
mixed strategy. We claim that x is a symmetric Nash equilibrium.
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12.1 Example

A “

»

–

0 3 0
0 0 3
2 2 2

fi

fl

The convex polytope for the above matrix is depicted in Figure 3.
The only vertices where all strategies are represented are z “ p0, 0, 0q and p0, 1

6 ,
1
3 q and the latter

corresponds to Nash equilibrium x “ p0, 1
3 ,

2
3 q

Figure 3: Convex polytope of strategies. Vertex 123 indicates that strategy 1 is represented twice,
i.e. z1 “ 0 and A1z “ 0. Figure edited from [12].

12.2 Pivot Method for finding Nash Equilibrium[12]

Fix a strategy, say strategy n, and consider the set V of all vertices of P for which all strategies
are represented except possibly for strategy n. This set of vertices is nonempty, because it contains
the vertex (0,0,0), so let us start there a path xv0 “ 0, v1, v2, . . . y of vertices in the set V. Since
we assume that P is non-degenerate, there are n vertices adjacent to every vertex, and each one
is obtainable by relaxing one of the tight inequalities and making some other inequality tight. So,
consider n vertices adjacent to v0 “ p0, 0, 0q. In one of these vertices, zn is non-zero and all other
variables are 0, so this vertex is also in V ; call it v1.

At v1 all strategies are represented except for strategy n and one strategy i ă n is represented
twice. By either relaxing zi “ 0 or Aiz “ 1, we obtain two vertices in V adjacent to v1. One of
them is the vertex we came from v0 and the other is bound to be a new vertex v2 P V .

If at v2 all strategies are represented, then it is a Nash equilibrium and we are done. Otherwise,
there is a strategy j that is represented twice at v2, and there are two other vertices in V adjacent
to v2 and correspond to these two inequalities. One of them is v1 and the other v3 and so on.

In this path, no vertex vi can be repeated, because repeating vi would mean that there are
three vertices that are adjacent to vi obtainable by relaxing a constraint associated with the doubly
represented strategy which is impossible. Since the polytope is finite, it cannot go on forever. It
can only stop at a vertex where each strategy is represented once, other than v0 which is the Nash
equilibrium.
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13 The Complexity Classes PPAD, FNP and TFNP

In 1994, Christos Papadimitriou introduced the complexity class Polynomial Parity Arguments on
Directed graphs (PPAD) to characterize the set of problems for which we know that a solution exists
but it is hard to find these solutions [13]. This is an interesting complexity class as it contains the
problem of finding Nash equilibrium.

Definition 47 (PPAD) PPAD or Polynomial Parity Arguments on Directed graphs is a complexity
class whose solution space is characterized by the following.

7. A directed graph is defined on a finite but exponentially large set of vertices.

8. Each vertex has indegree and outdegree at most one.

9. Given a string, it is a computationally easy problem to (a) tell if it is indeed a vertex of the
graph, and if so to (b) find its neighbors (one or two of them), and to (c) tell which one is the
predecessor and/or which one is the successor (i.e., identify the direction of each edge).

10. There is one known source (vertex with no incoming edges) called the standard source.

11. Any sink of the graph (a vertex with no outgoing edges), or any source other than the standard
one, is a solution of the problem.

PPAD is the class of problems where existence is known but the proof is non-constructive, by which
we mean that it is long. Note that the decision versions of the problems in PPAD take constant time
and hence PPAD is not quite the same as NP and showing PPAD completeness is weaker evidence
of intractability than showing NP-completeness. The following lemma illustrates this.

Lemma 48 Let Φ “ tG : every Nash equilibrium of the game G satisfies some φpxq}. If Φ is
NP-hard, NP = CO-NP.

Proof: If Φ is in NP, there exists a polynomial time reduction that reduces SAT to Φ. We start
with a formula in SAT and map it to a problem instance in Φ using this reduction in polynomial
time. Since the problem instance in Φ, which is of the form D a Nash equilibrium that doesn’t satisfy
φpxq, can be checked in polynomial time. This would mean that we have found a short proof for a
problem in CO-NP.

Now we define two additional complexity classes, FNP and TFNP and relate them to PPAD.

Definition 49 [Function NP] A binary relation R : X ˆ Y Ñ t0, 1u, where Dk : |y| ď |x|k, with
input sets X,Y is in FNP if and only if there is a deterministic polynomial time algorithm, Apx, yq
such that

Apx, yq “ Rpx, yq.

Example 1 [Examples of FNP Problems]
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• Longest Common Subsequence: Given two words S “ ps1, ..., snq, T “ pt1, ..., tnq what is
the longest common subsequence of S, T . Here the input is x “ tS, T u and y “ LCSpS, T q.
|y| ă maxt|S|, |T |u. We can test this property in polynomial time using dynamic programming.

• CNF-SAT: Given a boolean circuit and collection of literals C “ tφ,Lu give a truth assign-
ment to L satisfies φ. Here x “ C and y “ t0, 1u|L| is a truth assignment. We can test this
property in |φ| time by evaluating each clause and taking the conjunction.

Claim 50 [NP Ă FNP ]

For the proof, take the deterministic verifier for any set in NP to be the FNP set.

Definition 51 [Total FNP] Given a polynomial time checkable predicate Rpx, yq and an input x
output a y such that Rpx, yq “ 1 when such a y exists. (Or, equivalently, state that no such y exists.)

Definition 52 (MAX CNF-SAT) The decision problem of MAX CNF-SAT(k, φ, L) is to decide
whether k clauses of a CNF circuit φ over literal set L can be satisfied. A function version of this
problem, FMAX CNF-SAT(φ,L), asks for the assignment that satisfies the maximum number k s.t.
MAX CNF-SAT(k, φ, L) is true. A maximally satisfying assignment always exists since the number
of clauses is finite.

Lemma 53 MAX CNF-SAT is in TFNP.

Note that SAT is NOT IN TFNP: not all propositions have a satisfying assignment. The function
problem FMAX CNF-SAT(φ,L) P TFNP. So immediately, NP Ć TFNP Ď FNP.

14 Sperner’s Lemma

In this section we introduce the Sperner’s Lemma which is a combinatorial analog of the Brouwer’s
fixed point theorem and is equivalent to it. We start by defining some background terms.

Definition 54 [Simplex] A k´dimensional simplex is the convex hull of k` 1 points in Rk which
have differences with any single point in the collection that are linearly independent.

Let’s see an example

Example 2 [Triangle] Take 3 points in general position in R2, P1, P2, P3. If the three points are
collinear then the resulting configuration is not a simplex (it is a lower dimensional simplicial com-
plex) as the difference with, say, P1 for P2 is just a multiple of P3´P1 by the definition of collinearity.
Meanwhile, if the three point are not collinear then we have a triangle, which is a (the) 2´dimensional
simplex.

Often, what is important to study is not so much the specific layout of a simplex, but the relations
between points in the simplex. In the case of a single simplex, the relationships are defined by m-
faces, intuitively the edges, faces, and surfaces of the simplex, which define groupings of points. Any
k points in a k´simplex are co-k´facial and so the groupings can be described as exclusions of the
missing k ` 1th point: so there are kC1 “ k difference k´faces.

Exercise 1 Show that for a k´simplex there are

ˆ

k ` 1
m` 1

˙

distinct m´faces.

Definition 55 [Triangulation of a Simplex] A triangulation of a k´simplex A into n triangles
is an arbitrary arrangement of k´simplices tSiu

n
i“1 such that
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•
n
Ť

i“1

Si “ A: they partition A.

• S˝i
Ş

S˝j “ H: the interiors of the triangles are mutually disjoint.

• The triangles intersect only along lower-dimension (j ă k) simplices (j´faces).

The definition is a bit wordy, but the triangulation is a very fundamental thing that our intuition
tends to be right about. So proofs require checking the conditions carefully but to come up with the
proof working with the idea of a triangulation (mentioned above) is usually good enough.

Figure 4: Illustration of k´simplices for k “ 2, 3 embedded in R2 and R3. Sperner’s lemma
is actually a topological statement so viewing the simplices we discuss through a graph lens is
encouraged. The dotted lines and ˝’s represent a potential triangulation.

Definition 56 [Sperner Coloring] A Sperner Coloring (or Sperner labelling) is a labelling of a
triangulation of a n´simplex such that

• The points of the original simplex are labelled uniquely (1 through n ` 1) with an ordered
labelling.

• Any point in the triangulation on a face of the simplex is labelled with a label from one of the
points of the original simplex along that face.

• The interior points are labelled with any of the labels.

An example of a Sperner Labelling (a coloring with symbols) is shown in Figure 5.

Lemma 57 [Sperner’s Lemma] Any triangulation of an n´dimensional simplex with an n´color
Sperner Labelling contains an odd number of panchromatic simplices.

Proof: We prove the Sperner’s lemma using induction on the number of dimensions n. The base
case is a 1´simplex where it is easy to show that this is true. We start with one color at one end
point and end with another at the other end point and therefore must switch between the colors an
odd number of times.
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Figure 5: A simple Sperner coloring on a 2´simplex. Chirality of the panchromatic triangles
guaranteed by Sperner’s Lemma is indicated by red and blue edges. Openness is indicated by the
dotted lines. Note that dotted lines are also colored. Some panchromatic triangles can be entered
from different edges, but none can be entered from the same edge along 2 different paths.

Now we show that the Sperner’s lemma is true for a 2´simplex. Along a given edge of the original
simplex, label edges as open or closed depending on whether they are 2´color or not. Apply the
same labelling throughout the greater triangulation. On the boundary of the original simplex is a
unique triangle (of the triangulation) adjacent to the face of a given open edge. Of the faces of this
triangle, at most 1 is open. Following the open edges this way, label the faces traversed as closed as
we follow the path. Then, from a given initial edge either we have a path through the triangulation
that leads back to the given edge we began with, or we have a path that leads to a triangle in which
the only open edge is the one by which we arrived. In the latter case we have found an n´colored
simplex. In the former case we have ’closed’ two edges on the outer face of the original simplex.

Since there are an odd number of open faces of the triangulation on any face of the original
simplex, their must be an edge that we enter and cannot leave in the above fashion (by parity). This
corresponds to at least 1 n-colored simplex of the triangulation. Similar arguments can be made for
higher dimensions and the induction holds.

14.1 Sperner’s Lemma and Brouwer’s Fixed Point Theorem

Now we show the relation between Sperner’s lemma and Brouwer’s fixed point theorem. Let us
begin by recalling Brouwer’s fixed point theorem

Theorem 58 [Brouwer] Any continuous function f : D Ñ R mapping a convex, compact domain
into itself (fpDq Ă R) has a point x0 such that fpx0q “ x0.

In Brouwer’s fixed point theorem we have the continuity condition assumed:

@x P D,@ε ą 0Dδpx,εq : @y||x´ y|| ă δ ñ ||fpyq ´ fpxq|| ă ε

where || ¨ || indicates the appropriate norm. Here the δpx, εq can be made universal for the whole
domain.1 So we will try to create a Sperner labelling of points in the domain in such a way that

1Since we are in a compact domain D we can cover D by a finite collection of open balls, use δε “ max
UPC

sup
xPU

δpx,εq,

to represent a ’global’ δ associated with each epsilon (continuous functions are uniformly continuous over compact
sets). Since the δ is finite for each x (recall compactness, diameter of a compact convex set) the sup exists and is
finite. This is a technical note that makes the proof easier.
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the uniform continuity property immediately gives us the Brouwer Fixed Point theorem. First we
need an intermediate definition that will make the particular rule for making the Sperner Labelling
clearer.

Definition 59 [Barycentric Coordinates] Given an n´simplex S the barycenter coordinates of
a point x in the convex hull of S, S, is a convex combination of the vertices of the simplex. That is

x “
ÿ

i

αipi P S

has barycentric coordinates ~α.

Now let’s define a Sperner Labeling procedure for continuous functions.

Definition 60 [Continuous Sperner Labelling] For a continuous map f into its n´dimensional
compact, convex domain D let the continuous Sperner labelling be the function L : D Ñ rn`1s defined
by Lpxq “ mintk |pfpxqqk ď xku.

The subscript j is used to denote the entry in the jth coordinate.

Claim 61 [Continuous Sperner Ñ Sperner ] Given a continuous function into its compact,
simplex domain ∆ the continuous Sperner labelling function maps any points on a face of the original
simplex to a legally labelled symbol in the Sperner labelling of that simplex.

Proof: Fix an ordered labelling the the vertices of the simplex. Each of the points pi on the
vertices vi are uniquely labelled by the continuous Sperner since pik “ 0 unless k “ i. For points
on the faces use barycentric coordinates: if x P F |F “ tx|αk “ 0u then Lpxq P rnszk which is the
definition of the Sperner Labelling.

Theorem 62 [Brouwer on Simplex] Let f : ∆ Ñ ∆ be a continuous function over a simplex ∆.
Then Dx0 | fpx0q “ x0.

Proof: Take a collection of sequences in ∆, tSiu
8
i“1 s.t lim

nÑ8
Sn is dense in ∆ and Si Ă Si`1

— Si`1 is a refinement of Si. Apply the continuous Sperner labelling to Si. By Sperner’s lemma
there is a panchromatic cell in Si, call it Ti. This means that the points labeled j in Ti, p

ij satisfies
fppijqj ă pijj . Since lim

n
Sn is dense in ∆ there is an n such that T ˝i

Ş

Sn is nonempty. For this n

repeat the argument with ∆ “ Ti to get another (contained) panchromatic cell. Take the sequence
of points formed by all of the panchromatic cells obtained this way associated with the nth entry
(an infinite set provided by Sperner’s Lemma) and call each one tri,nu

8
i“1. Since the size of the

panchromatic triangles is shrinking there is a common limit among all of these subsequences: x˚.
Now we will show that fpx˚qi “ x˚i for all i. Since rN,n is labeled n we have that fprN,nqn ă

prN,nqn and passing to the limit fpx˚qn ď px
˚qn for all n. But no index can be strictly less, since

the bound on the other indices would for the barycentric coordinates to add up to a number strictly
less that 1. Therefore, we must have equality in each index in the limit.
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15 Introduction

Previously, we proved that mixed Nash was reducible to the ”End of the line” problem via the
Nashpmixedq ď Brouwer ď Sperner ď PPAD reduction. Now we will show the PPAD-completeness
of Sperner, Brouwer, and Nash following a PPAD ď Sperner ď Brouwer ď Nashpmixedq reduc-
tion in the opposite direction.

16 PPAD-completeness of Sperner

In the definition of the PPAD problem, we are given a directed, acyclic graph (DAG) on a finite, but
exponentially large set of vertices with a circuit that tells us if we are at a vertex in the graph and
the neighboring vertices in a computationally easy way. However, we are unable transform the entire
explicit PPAD graph to a Sperner instance in polynomial time because the DAG is exponentially
large. This problem of succinctness forces us to transform the circuit for computing neighboring
vertices when given a vertex to a circuit that generates the Sperner coloring of a neighboring vertex
when given a colored vertex.

Our goal is to identify a piecewise linear, single dimensional subset L of the cube, corresponding
to the PPAD graph. We define m “ n ` 4. Then we map non-isolated nodes on the PPAD graph
map to pairs of segments (main and axillary segments) such that u P 0, 1n. The main segment will
be defined by points u1 “ p8xuy ` 2, 3, 3q and u

1

1 “ p8xuy ` 6, 3, 3q and the auxiliary segment by
u2 “ p3, 8xuy ` 6, 2m ´ 3q and u

1

2 “ p3, 8xuy ` 10, 2m ´ 3q. From there, we connect these segments
by adding an orthonormal path connecting the end of the main segment to the beginning of the
auxiliary segment using breakpoints u3 “ p8xuy`6, 8xuy`6, 3q and u4 “ p8xuy`6, 8xuy`6, 2m´3q.
Next, we map edges to orthonormal paths. The edge between u and v maps to an orthonormal path
connecting the end of the auxiliary segment of u with the beginning of main segment of v using
the breakpoints p8xvy ` 2, 8xuy ` 10, 2m ´ 3q and p8xvy ` 2, 8xuy ` 10, 3q. The resulting directed,
orthonormal line is L.

Claim 63 Two points p, p
1

of L are closer than 3 ˚ 2´m in Euclidean distance only if they are
connected by a part of L that has length 8 ˚ 2´m or less.

Claim 64 Given the circuits P , N of the PPAD instance, and a point x in the cube, we can decide
in polynomial time if x belongs to L.

Claim 65 u is a sink in PPAD graph ðñ L is disconnected at u
1

2 and u is a source in PPAD
graph ðñ L is disconnected at u1

Now we have embedded the generic PPAD graph in r0, 1s3 and now we will look to reduce this
to 3D (dual) Sperner [14].

With dual Sperner, we color the center of the cubelets rather than the vertices of the subdivisions
where the solution to dual-Sperner is a vertex of the subdivision such that all colors are present in
the surrounding centers of cubelets. We defined Kijk to be the center of the cubelet whose least
significant corner has coordinates pi, j, kq ˚ 2´m.
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Lemma 66 If the canonical simplicization of the dual graph has a panchromatic simplex, then this
simplex contains a vertex of the subdivision that is panchromatic [14].

We define the canoncial boundary coloring to be different than normal Sperner coloring[14]:
$

’

’

’

&

’

’

’

%

Kijk Ð 0, if any of i, j, k is 2m ´ 1

Kijk Ð 1, if i “ 0, unless already colored

Kijk Ð 2, if j “ 0, unless already colored

Kijk Ð 3, if k “ 0, unless already colored

Lemma 67 The modified boundary coloring of dual-Sperner still guarantees existence of panchro-
matic simplex [14].

We then use the following two coloring rules for the reduction[14]:

• All cube lets get color 0 unless they touch line L in the embedded PPAD graph

• All cube lets surrounding line L at any point are given colors 1, 2 and 3 to prevent line L from
touching color 0.

We place colors 1, 2 and 3 clockwise around L where color 3 appears twice. We must also be aware
of which cubelets around L that we color with color 3 during a walk as to prevent any panchromatic
vertices at the turns by making sure that the pair of colored 3 cubelets lies above L for the main
segment for u and below for the main segment for v [14]. The coloring on the connecting segments
is impossible to efficiently decide locally so we must assume that all edges pu, vq of the PPAD graph
join an odd u with an even v. We place the pair of color 3 cubelets below the main segment for even
u’s and above for odd v’s. The resulting walk will only give us panchromatic vertices at the ends.

Claim 68 A point in the cube is panchromatic in our coloring if and only if [14]:

• an endpoint u
1

2 of a sink vertex u of the PPAD graph, or

• an endpoint u1 of a source vertex u! “ 0n of the PPAD graph

Claim 69 Given the description of generic PPAD graph, there exists a polynomial-size circuit com-
puting the coloring of every cubelet Kijk in Sperner. [14]

17 PPAD-completeness of Brouwer

Claim 70 The boundary coloring of the dual-Sperner instance is no longer legal, but no new panchro-
matic points were introduced by the modification because color 0 composes most of the cube.

Proof: The points that were not, but potentially could become new panchromatic after the
modification are those where: x1, x2, orx3 “ 1 ´ 2´m, but since the ambient space is the ambient
color 0 and line L is far from the boundary, this will not happen.

For the reduction from dual-Sperner to Brouwer, we define a Brouwer instance on the cube
defined by the convex hull of the centers of the cubelets and map the colors to the direction of the
displacement vector fpxq ´ x where α “ 2´2m[14]:

$

’

’

’

&

’

’

’

%

color 0 (green) [ambient] ÝÑ p´1,´1,´1q ˚ α

color 1 (yellow) ÝÑ p1, 0, 0q ˚ α

color 2 (red) ÝÑ p0, 1, 0q ˚ α

color 3 (blue) ÝÑ p0, 0, 1q ˚ α
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We then extend f on the remaining cube by interpolation and canonically triangulating the cube.
We compute displacement f at some x by finding x’s simplex S then[14]:

if x “
ř4
i“1 wi ˚ xi, where xi are the corners of S, we define fpxq ´ x :“

ř4
i“1 wi ˚ pfpxiq ´ xiq

Claim 71 Let x be a 2´3m-approximate Brouwer Fixed Point of f . Then the corners of the simplex
S containing x must have all colors/displacements[14].

18 PPAD-completeness of Nash (mixed)

Definition 72 (Graphical game) games defined to capture sparse player interactions such as
those arising under various geographical, communication, or other constraints, where players are
considered nodes in the graph and a player’s payoff is only affected by its own strategy and the
strategies of its indirection neighbors[14].

Definition 73 (Separable multiplayer games) (polymatrix games) graphical games with edge-
wise separable utility functions. Each edge is a 2-player game and the player’s payoff is given by
the sum of payoffs from all adjacent edges:

řn
i´1 x

T
uA

pu,viqxvi where n is the number of adjacent
edges[14].

We begin the reduction at Brouwer, a stylized, discrete version of Brouwer’s fixpoint theorem.
The problem once again is succinctness, as we do not have an explicit Brouwer function lookup
table where we would be able to easily perform a polytime reduction to a Nash payoff matrix.
This is because the PPAD graph we started with was exponentionally large so our initial Sperner
reduction and the subsequent Brouwer reduction were based on transforming the circuit (which
we can do in polynomial time) rather than transforming the entire explicit input. We follow this
pattern for the reduction to polymatrix Nash where we take the circuit that converts a Brouwer
function value and find a polytime transformation to a circuit that computes a player’s response in
a graphical, seperable, multiplayer game such that finding a Brouwer fix point will correspond to a
Nash equilibrium of this graphical game.

18.1 Binary Computation with Games

We present a function φ derived from the mapping of a unit cube to itself. We define a three player
game with players x, y, and z where x and y only care about their inputs and z only cares about
x and y. We are able to define payoff matrices for z such that we can create logical AND, OR,
and NOT gates. We define φ as a Boolean Circuit, a directed, acyclic graph of such gates with 3n
input bits px, y, zq representing the 3D coordinate of the cubelet in question, and two output bits,
representing the applied displacement of the four possible displacements from the Brouwer instance.
In this scenario each bit has a binary strategy set 0, 1. Any function φ meeting the previously stated
criteria can be represented as such a circuit problem. Our goal: given a Boolean circuit describing
φ, find a fixpoint of φ. [14]

18.2 Real Arithmetic with Games

We define a game where three of the players will choose the three numbers needed to represent
a point in the cube. The other players analyze these coordinates to determine the exact cubelet
that houses the point by simulating the circuit to compute the displacements at the cubelet and
neighboring cubelets. If the point is a fixpoint of φ, this is a Nash equlibrium and the three players
have no incentive to change their mixed strategy.
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Table 5: List of Gadgets [14]
copy z “ x
addition z “ minp1, x` yq
subtract z “ maxp0, x´ yq
set equal to constant z “ maxp0,minp1, αqq
multiply by constant z “ maxp0,minp1, α ˚ xqq

comparison

$

’

&

’

%

1, if x ą y

0, if x ă y

˚, if x “ y

When looking at the ”other players” from the game mentioned above, the strategy of an ”other”
player should result in a Nash equilibrium based on the inputs of the three original players if and
only if the point is a fixpoint, meaning there is some arithmetic relationship between the inputs and
the mixed strategy of the output player that results in such a Nash equilibrium. We are looking for
a game that can do real arithmetic to find this relationship.

18.3 Gadgets

We are able to break up the larger game into sub-games by using basic arithmetic and logic operations
to define this relationship. Each of these sub-games will have a Nash equilibrium based on the
operation (multiplication, addition, subtraction, AND, OR, NOT, etc...) [15].

Addition Gadget A game with properties:

• 4 players

• 2 pure strategies 0,1 so mixed strategy [0,1]

• Payoffs

– upw : 0q “ Prrx : 1s ` Prry : 1s

– upw : 1q “ Prrz : 1s

– upz : 0q “ 0.5

– upz : 1q “ 1´ Prrw : 1s

w

x

y

z

Figure 6: The addition gadget is defined by input players x and y, output player z, and auxiliary
player w

Note that when constructing a gadget, for example multiplication, where y “ 1 if x ą 1{2 and
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y “ 0 if x ă 1{2, the output is undetermined when x “ 1{2 and we must maintain this behavior [14].
Thus, such a multiplication gadget is non separable while all the others stated above are separable.
We will only use separable gadgets in our reduction.

18.4 Fixed Point Computation

So any circuit composed of the separable gates can be implemented with a separable game. This
circuit, which we’ll call a game-inspired straight-line program, need not be a DAG circuit, but does
allow feedback[14].

Suppose function f : r0, 1sk Ñ r0, 1sk is computed by a game-inspired straight-line program. We
can construct a polymatrix game whose Nash equlibria are in a many-to-one and onto correspondence
with the fixed points of f so we are able to try to reduce PPAD to simply finding a fixed point of
such a game-inspired straight-line program[14].

The game consists of three variables (x, y, z), whose mixed strategies represent a coordinate in
the unit cube r0, 1s3. This coordinate is the input of a series of operators which extract the most
significant bit of the coordinate to determine the cubelet that the point is in. Based on these inputs
and a series of gadgets, we could compute the outputs of the circuit for φ for a cubelet and its
adjacent ones, deciding whether this is a fixpoint and hence a Nash equilibrium. This holds except
in the scenario noted above where x “ 1{2 resulting in indeterminate output from the operators
when the point lies on the boundary of the cubelet, which could result in a game with no Nash
equilibria. Therefore, instead of using the point px, y, zq as our input of φ we use a series of points
around px, y, zq to get the average displacement p∆x,∆y,∆zq for px, y, zq [15]. We consider the
”good set” of coordinates to be those which do not lie on the boundary of any subdivision. We
discard all others. This prevents and indeterminable output. We then close the loop by adding the
components of the average displacement to the three variables to complete the graphical game in
which the variables’ strategies affect them.

Claim 74 The average displacement is zero if and only if we are near a fixpoint [14]

Claim 75 The points on the unit cube where the average displacement is the zero vector are Nash
equlibria and hence panchromatic and can be recovered in polynomial time given px, y, zq [14].

Theorem 76 Given a polymatrix game G there exists a ε˚ such that[14]:

1. |ε˚|“ polyp|G|q

2. given a ε˚-Nash equilibrium of G we can find in polynomial time an exact Nash equilibrium of
G.

Proof:
1. Polymatrix Nash ” Polymatrix Nash
2. Polymatrix Nash is PPAD-complete
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19 Social Welfare and Social Choice

A “ set of alternatives t1, . . . , nu

λi “ player i’s ordering of A

λ “ pλ1, . . . , λnq

λpa, bq “

#

0 if b is preferred to a in λ

1 if a is preferred to b in λ

Definition 77 (Social welfare function) A function F : λn Ñ λ is called a social welfare func-
tion. F aggregates the preferences of all voters into a total social order of the candidates.

Definition 78 (Social choice function) A function F : λn Ñ A is called a social choice function.
F aggregates the preferences of all voters into a social choice of a single candidate.

20 Arrow’s Theorem

There are a few properties that are desirable in social welfare functions:

Definition 79 (Unanimity) A social welfare function F satisfies unanimity if, when all voters
have the same preferences, then the aggregate social preference is the same.

@a, b, i pa ą bqλi Ñ pa ą bqλ

where λ “ F pλq

Definition 80 (Independence of irrelevant alternatives) A social welfare function F satisfies
independence of irrelevant alternatives if the social preference between any two alternatives a and b
depends only on the voters’ preferences between a and b.

@a, b P A & λ “ pλ1, . . . , λnq & λ1 “ pλ11, . . . λ
1
nq

@irλipa, bq “ λ1ipa, bqs ùñ λpa, bq “ λ1pa, bq

where λ “ F pλq & λ1 “ F pλ1q

Definition 81 (Dictatorship) Voter i is a dictator in a social welfare function F if

@λ “ pλ1, . . . , λnq, F pλq “ λi

That is, the aggregate social choice is always the preference of the dictator. It is generally desired
that a voting system have no dictators.

Unfortunately, it is has been shown that it is impossible to satisfy all three of these properties
in voting systems with more than just two candidates. We will introduce the theorem behind this
and prove it.
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Theorem 82 (Arrow’s Theorem) Every social welfare function F with |A| ě 3 that satisfies
unanimity and independence of irrelevant alternatives has a dictator.

Proof: Let F be a social welfare function which satisfies unanimity and independence of irrelevant
alternatives.

Claim 83 (Pairwise neutrality) Let λ “ pλ1, . . . , λnq and λ1 “ pλ11, . . . , λ
1
nq such that @iλipa, bq “

λ1ipc, dq. Then, λpa, bq “ λ1pc, dq.

Without loss of generality, λpa ą bq “ 1 and b ‰ c. For each i, combine λi and λ1i to create λ˚i .
Put c before a and d after b, preserving the internal order of pa, bq and pc, dq.

λ˚ “ F pλ˚1 , . . . , λ
˚
mq

From unanimity, pc ą aqλ˚ and pb ą dq˚λ

Using transitivity, pc ą dqλ˚

Using independence, pc ą dqλ1

Take a ‰ b and define λi in which exactly the first i players prefer a to b. Let i˚ be such that
pb ą aq

λi˚
j

for j ă i˚ and pa ą bq
λi˚
j

for j ě i˚. We will show that i˚ is a dictator for F .

Take c ‰ d ‰ e. Define λ1 “ pλ11, . . . , λ
1
nq where λ1i “ λi except we move e to the top of λ1i

for i ă i˚ and to the bottom of λ1i for i ą i˚. For λ1i˚ we move e so that pc ą e ą dqλ1
i˚

. By

independence of irrelevant alternatives, we have not changed the relative rankings betweem c and d.
Also notice how the relative ranking of c and e is the same as for a and b in λi

˚

, but the preferences
for e and d are the same as a and b in λi

˚
´1. Thus, by the pairwise neutrality claim, λpc, eq “ 1 and

λpe, dq “ 1, and by transitivity λpc, dq “ 1.

21 Gibbard-Satterthwaite Theorem

We will now take a look at dictatorships in the context of social choice functions. First, we will
introduce some definitions.

Definition 84 (Monotonicity) f is monotonic if

fpλiλ´iq “ a ‰ a1 “ fpλ1iλ´iq

ùñ pa1 ă aqλi and pa1 ą aqλ1i

Definition 85 (Strategically manipulated) A social choice function f can be strategically ma-
nipulated by voter i if Dλ such that pa ă a1qλi where a “ fpλq and a1 “ fpλ1, . . . , λ

1
i, . . . , λnq. This

means that if voter i prefers a1 to a, they can ensure that a1 is socially chosen over a by misrepre-
senting their preference to be λ1iq. f is called incentive compatible if it cannot be manipulated.

Definition 86 (Pareto efficient) A social choice function f is Pareto efficient if whenever an
alternative a is at the top of every individual i’s ranking, λi, then fpλq “ a.

Theorem 87 (Gibbard-Satterthwaite Theorem) If |A| ě 3, any monotone, Pareto efficient
social choice function has a dictator.
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λ1 . . . λn´1 λn λn`1 . . . λN
b . . . b a a . . . a
a . . . a b . .
. . . . .
. . . . .
. . . . .
. . . b . . . b

Ñ

Social Choice Social Order
a
.

a .
b
.
.

Figure 7: Situation before b is raised above a in λn

λ1 . . . λn´1 λn λn`1 . . . λN
b . . . b b a . . . a
a . . . a a . .
. . . . .
. . . . .
. . . b . . . b

Ñ

Social Choice Social Order
b
a

b .
.
.

Figure 8: Situation after b is raised above a in λn

We will prove this theorem using the proof presented in [16].
Proof: Consider any two alternatives a and b, and a profile of rankings in which a is ranked
highest and b is ranked lowest for every individual. Pareto efficiency implies that the social choice
as this profile is a.

Consider now changing individual 1’s ranking by raising b in it one position at a time. By
monotonicity, the social choice remains equal to a so long as b is below a in 1’s ranking. But when b
finally does rise above a, monotonicity implies that the social choice either changes to b or remains
equal to a. If the latter occurs, then begin the same process with individual 2, then 3, etc. until for
some individual n, the social choice does change from a to b when individual n prefers b to a. See
figures 7 and 8.

Now consider Figures 9 and 10. Figure 9 is derived from Figure 7 by moving a to the bottom of
λi for i ă n and moving it to the second last position in λi for i ą n. Figure 10 is derived similarly
from Figure 8. We will argue that these changes do not affect the social choices. First, note that
the social choice in Figure 10 must, by monotonicity, be b because the social choice in 8 is b and no
individual’s ranking of b vs. any other candidate changes in the move from Figure 8 to Figure 10.
Next, note that the profiles in Figures 9 and 10 differ only in the individual n’s ranking of a and b.
So, because the social choice in Figure 10 is b, the social choice in Figure 9 must, by monotonicity,
be either a or b. But if the social choice in Figure 9 is b, then by monotonicity, the social choice in
Figure 7 must be b, a contradiction. Hence, the social choice in Figure 9 is a.

Consider candidate c. Because the profile of ranking in Figure 11 can be obtained from the Figure

λ1 . . . λn´1 λn λn`1 . . . λN
b . . . b a . .
. . b . .
. . . . .
. . . a . . . a
a . . . a . b . . . b

Ñ

Social Choice Social Order
a
b

a .
.
.

Figure 9: Derived from Figure 7 by moving a to the bottom of λi for i ă n and moving it to the
second last position in λi for i ą n.
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λ1 . . . λn´1 λn λn`1 . . . λN
b . . . b b . .
. . a . .
. . . . .
. . . a . . . a
a . . . a . b . . . b

Ñ

Social Choice Social Order
b
.

b .
a
.
.

Figure 10: Derived from Figure 8 by moving a to the bottom of λi for i ă n and moving it to the
second last position in λi for i ą n.

λ1 . . . λn´1 λn λn`1 . . . λN
. . a . .
. . c . .
. . b . .
c . . . c . c . . . c
b . . . b . a . . . a
a . . . a . b . . . b

Ñ

Social Choice Social Order
a
.

a .
.
.
.

Figure 11: Introducing c to Figure 9.

9 profile without changing the ranking of a vs. any other candidate in any individual’s ranking, the
social choice in Figure 11 must, by monotonicity, be a.

Consider the profile of rankings in Figure 12 derived from the Figure 11 profile by interchanging
the rankings of candidates a and b for individuals i ą n. Because this is the only difference between
the profiles, and because the social choice in Figure 11 if a, the social choice in Figure 12 must, by
monotonicity, be either a or b. But the social choice in Figure 12 cannot be b because candidate c
is ranked above b in every individual’s ranking, and monotonicity would then imply that the social
choice would remain b even if c were raised to the top of every individual’s ranking, contradicting
Pareto efficiency. Hence the social choice in Figure 12 is a.

Note that an arbitrary profile of rankings with a at the top of individual n’s ranking can be
obtained from the profile in Figure 12 without reducing the ranking of a vs. any other candidate in
any individual’s ranking. Hence, monotonicity implies that the social choice must be a whenever a
is at the top of individual n’s ranking. So, we may say that individual n is a dictator for candidate
a. Because a was arbitrary, we have shown that for each alternative a P A, there is a dictator for a.
But there cannot be distinct dictators for distinct candidates, hence there is a single dictator for all

λ1 . . . λn´1 λn λn`1 . . . λN
. . a . .
. . c . .
. . b . .
. . . . .
. . . . .
. . . . .
c . . . c . c . . . c
b . . . b . b . . . b
a . . . a . a . . . a

Ñ

Social Choice Social Order
a
.
.

a c
.
.
b
.
.

Figure 12: Interchanging the rankings of candidates a and b for individuals i ą n
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candidates.
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22 Price of Anarchy

The price of anarchy (PoA) tells us how good or bad a Nash Equilibrium is. Formally, we have

PoA “ minSPNEV pSq
maxSV pSq

.

Here we define some function V : S Ñ R. The smaller this ratio is, the larger the price you
are paying for using a distributive/non-cooperative/selfish strategy instead of central optimization.
When playing a pure strategy game, we have

PoA “ minSPPNEV pSq
maxSV pSq

.

There is also a price of stability (PoS), and it is defined as

PoS “ maxSPNEV pSq
maxSV pSq

.

Price of anarchy and price of stability satisfy the following properties.

PoApPSNEq ď PoApMSNEq ď PoApCNEq ď 1
PoSpPSNEq ď PoSpMSNEq

PoApq ď PoSpq

PSNE, MSNE, CNE stands for pure strategy, mixed strategy and cooperative Nash Equilibrium,
respectively. The last property states that for any kind of game we are playing, the PoA for that
game is no larger than the PoS for that game.

22.1 Congestion Game

We will start with a congestion game example. Let
- N be the number of players, and pΣiqiPN . So Σi Ď 2E ;
- E be the set of edges, and each e P E;
- deplpEqq be the delay function. de “ fe and for now, assume fe is a linear function fepxq “

aex` be and fepxq “ x;
- lepSq be the load function of a strategy and lepSq “ |ti : e P Siu|.

The cost of each player is therefore cipsq “ ΣePN lepsq. The price of anarchy is therefore
maxSPNEV1pSq
minSV1pSq

. The numerator and the denominator are switched since it is a congestion game.

Theorem 1 there are linear congestion games with |n| ě 3 with pure price of anarchy for V1

being 5
2 , a best to worst ratio.

Theorem 2 for any linear congestion game, the pure price of anarchy (@S˚ P NASH ñ
V1pS

˚
q

V1pP q
q

of V1 is less than or equal to 5
2 .

Lemma for any α, β ě 0, αpβ ` 1q ď 1
3β

2 ` 5
3α

2.
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Now we will attempt to prove theorem 2.

Proof of theorem 2 let S˚ be a Nash Equilibrium and let P be an optimal strategy. Cost for
player i is cipS

˚
i q “ ΣePS˚i

lepS
˚q, with lepS

˚q being the number of players choosing channel e in the

strategy profile S˚.
We want to bound, so we have VipS

˚q “ ΣcipS
˚q “ ΣePEl

2
epS

˚q with respect to V1pP q “
minSV1pSq “ ΣicipP q “ ΣePEl

2
epP q. At S˚ Nash, the cost of player i should not decrease when

switched to P .
We have cipS

˚q “ ΣePS˚i
lepS

˚q ď ΣePPi
pS˚´i, P q ď ΣePPi

plepS
˚q`1q, and V1pS

˚q “ ΣiPNcipS
˚q ď

ΣiPNΣePPiplepS
˚q`1q “ ΣePElepP qplepS

˚q`1q ď 1
3ΣePEl

2
epS

˚q` 5
3ΣePEl

2
epP q “ V1pS

˚q ď 1
3V1pS

˚q`
5
3V1pP q.

An optimal strategy P is for each player to select his or her first strategy. A worst case Nash
S˚ is for each player to select his or her second strategy. At this Nash Equilibrium, each player has
cost 5, while the cost for each player is 2 in the optimal allocation.

22.1.1 Smoothness

A game is called pλ, µq-smooth for λ ą 0 and µ ď 1 if, for every pair of states s, s1 P Σ, we have

ΣiPNcips
1
i, s´iq ď λ ¨ costps1q ` µ ¨ costpsq

Smoothness directly gives a bound for the PoA.

Theorem in a pλ, µq-smooth game, the PoA for pure Nash Equilibria is at most λ
1´µ .

Proof let s be the worst PNE and s1 “ s˚ be an optimum solution. Then:

costpsq “ ΣiPNcipsq ď ΣiPNcips
˚
i , s´iq (as s is NE)

ď λ ¨ costps˚q ` µ ¨ costps˚q (by smoothness)

On both sides subtract µ ¨ costpsq, this gives

p1´ µq ¨ costpsq ď λ ¨ costps˚q

and rearranging yields

costpsq
costps˚q ď

λ
1´µ

22.2 Fair Cost Sharing Game

Now we introduce Fair Cost Sharing Game.
- Set N of n players, set R of m resources
- Player i allocates some resources, i.e., strategy set Σi Ď 2R

- Resource r P R has fixed cost cr ě 0
- Cost cr is assigned in equal shares to the players allocating r (if any).

Fair cost sharing games are congestion games with delays drpxq “
cr
x .

Social cost turns out to be the sum of costs of resources allocated by at least one player:

costpSq “ ΣiPNcipSq “ ΣiPNΣrPSi
drpnrq “ ΣrPR,nrě1nr ¨

cr
nr
“ ΣrPR,nrě1cr
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Theorem every fair cost sharing game is pn, 0q-smooth. Thus, the PoA is upper bounded by n.
The class of fair cost sharing games is tight, i.e., there are games in which the PoA for pure Nash
Equilibria is exactly n.

PoA is large, but pure Nash Equilibrium is not necessarily unique. What do other pure NE cost,
what about the best one?

Price of Stability for Nash Equilibria:
- Consider ΣPNE as the set of pure Nash Equilibria of a game Γ
- Price of Stability is the ratio:

PoS “
mins1PΣPNE costps

1
q

costps˚q

PoS is a best-case ratio and measures how much the best PNE costs in comparison to an optimal
state of the game.

22.3 Potential Function and Social Delay (and a little bit on the exam
question #3)

A change in social delay is the change in delay when player i goes from strategy S to S1 and is as
follows:

∆psi, s
1
i, s´iq “ ΣePps1izsiqYpsizs1iqdeplepS

1qq ´ deplepSqq

Change in potential function is defined as follows:

ΦpS1q ´ ΦpSq “ ΣepΣ
lepS

1
q

k“1 depkq ´ Σ
lepSq
k“1 depkqq

Proven by Dr. Sitharam on Piazza, these two equations are equal. However, the social delay function
is not always the potential function. In the case of exam question #3, normalizing the social delay
function yields exactly the potential function. Furthermore, intuitively, a potential function must
satisfy the following property, illustrated in a diagram below:

To have a function be a potential function, it must be able to choose any Manhattan path to the
destination while resulting in the same value at the destination. In this diagram, one can take the
down-right path or the right-down path and end up at the same potential function.

23 Network/Routing Games and Braess’s Paradox

Many literatures on the inefficiency of equilibria concerns routing games, because routing games shed
light on an important practical problem: how to route traffic in a large communication network that
has no central authority. Here we have Pigou’s example:

— Feb. 25 - Mar. 3-35



- Traffic wants to flow from s to t
- Edges have latency or delay. The upper edge has a latency of 1 unit, while the lower edge

depends on how many people chooses it.

All players are making private decisions. We have a lot of players now, and each wants to
minimize his or her latency.

In order to reduce his or her latency, each player has to reason about the latency of the lower
edge. However, this does not have a stable outcome because it depends on how many people are
using that edge. Let us look at another example:

Here, the only Nash Equilibrium is when there is an equal amount of players going through top
and bottom route. Under any other circumstances, players would want to switch from the slower
route to the faster route. Therefore, any other situation where x ‰ N

2 isn’t a Nash Equilibrium,
with x being the number of players occupying either route. Suppose a 0 weight bridge connects C
and D:

One would think that this bridge would improve the traffic flow. However, this bridge impedes
traffic flow. Discovered by Dietrich Braess from Ruhr University, Germany, he noticed that if every
player makes the optimal self-interested decision as to which route is the quickest, the shortcut could
be chosen too often for players to have the shortest travel times possible. The idea behind this is
that the Nash Equilibrium may not equate with the best overall flow through a network.
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A more general version of this paradox is the Pigou’s Paradox. This paradox, in short, states that
expanding a road system as a remedy to congestion is ineffective and often even counterproductive.

Homework
1. Verify that feplepSqq “ aelepSq ` be for theorem 1.
2. Verify that every player choosing his or her second strategy is a Nash Equilibrium.
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24 Introduction

Mechanisms with money are a way to “solve” dictatorship issues with Social Choice and Social
Order voting systems that are based on a linear ordering of the options as inputs to the Social
Choice/Social Order function.

24.1 Description of the game

The game consists of:
A group of players N
A group of alternatives/options A
Each player has a valuation vi P Vi for each a P A
Each player has some “money” mi

The utility function for player i is defined as uipa,miq “ vipaq ´mi

25 What is a mechanism?

A way to change the game so that some facet of it changes e.g.,
- Add a Nash Equilibrium to a game that does not have one.
- Make not having perfect information irrelevant.
Mechanisms are formally defined in a later section.

26 Example: Vickrey auction

26.1 Game Description

A Vickrey auction can be described in the following way:

N : A set of players

A : “i-wins”,i P N

vipaq “

#

wi if a=“i wins”,

0 otherwise

If a “ “i-wins”, then mi “ p

Hence,

uipaq “

#

wi ´ p if a=“i wins”,

0 o/w

26.2 2nd Price Mechanism

“The player with the highest bid wins and pays the second-highest bid.”
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26.3 Strategy-proofing

Theorem 88 2nd price auction is strategy-proof.

Proof: Let i be the winner. For i,
Case 1: Changing to any value above the 2nd bid will not change the outcome.
Case 2: Going below the 2nd bid will cause ui “ wi ´ p to drop to 0.

For all other j ‰ i,
Case 1: Raising above vi will cause a loss of vj ´ vi.
Case 2: Changing to any value below vi will not change outcome.

Hence, no player has an incentive to bid anything other than their valuation. The game is strategy-
proof.

27 Direct Mechanisms

Definition 89 (Direct Mechanism) A direct mechanism is where
f : V1 ˆ V2 ˆ ¨ ¨ ¨ Ñ A Social choice function from valuations instead of ordering
Pi : V1 ˆ V2 ˆ ¨ ¨ ¨ Ñ < Price for each player

Definition 90 (Strategy-proof Mechanism) A mechanism is Strategy-proof/Incentive-compatible
if @i,@vi P Vi:

If a “ fpVi, V´iq and a
1

“ fpV
1

i , V´iq

then

ui “ Vipaq ´ PipVi, V´iq ě V
1

i paq ´ PipV
1

i , V´iq “ u
1

i

For any value function, a player cannot gain from reporting a different valuation.

27.1 VCG Mechanisms

A mechanism is a VCG mechanism if:

fpV1V2 . . . Vnq “ argmax
aPA

ÿ

iPN

uipaq

P pV1V2 . . . Vnq “ hipV´iq ´
ÿ

j‰i

VjpfpV1V2 . . . Vnqq

for any function hi that does not depend on Vi.

Theorem 91 @hi, a VCG mechanism is strategy-proof.

Proof: Fix a player i and a value vector V´i for the other players. Let Vi be the true valuation
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and V
1

i be a false valuation for the ith player and

a “ fpVi, V´iq

a
1

“ fpV
1

i , V´iq

ui “ vi ´ pi

“ Vipaq ´ rhipV´iq ´
ÿ

j ‰ iVjpaqs

“ Vipaq `
ÿ

j‰i

Vjpaq ´ hipV´iq

“
ÿ

i

Vipaq ´ hipV´iq (3)

Similarly,

u
1

i “ v
1

i `
ÿ

j‰i

Vjpa
1

q ´ hipV´iq

“
ÿ

k

Vkpa
1

q ´ hipV´iq (4)

Since a maximizes f ,

ÿ

kPN

Vkpa
1

q ď
ÿ

kPN

Vkpaq (5)

6 ui ě u
1

i (6)

27.2 Grove’s Mechanism

Definition 92 (Individual Rationality) If a player participates their utility is non-negative.

@i, ui “ VipV1V2 . . . Vnq ´ PipV1V2 . . . Vnq ě 0 (7)

Definition 93 (No positive transfer)

PipV1V2 . . . Vnq ě 0 (8)

The Grove function is defined as follows:

hipV´iq “ max
bPA

ÿ

j‰i

Vjpbq (9)

PipV1V2 . . . Vnq “ max
bPA

ÿ

j‰i

Vjpbq

looooooomooooooon

Let b* be the maximizer

´
ÿ

j‰i

VjpfpV1V2 . . . Vnqq (10)

Theorem 94 A VCG mechanism with the Grove function has the above two properties (Individual
Rationality and No positive transfer), assuming Vipaq ě 0.
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Proof: For Individual Rationality, we can see that

uipaq “Vipaq ´ Pipaq

“Vipaq `
ÿ

j‰i

Vjpaq ´
ÿ

j‰i

Vjpb˚q

ě
ÿ

j

Vjpaq ´
ÿ

j

Vjpb˚q

ě0 (11)

To see that the mechanism also enforces No positive transfer,

Pi “
ÿ

j‰i

Vjpb˚q ´
ÿ

j‰i

Vjpaq ě 0 (12)

27.2.1 Revisiting the Vickrey auction

A “ t“i wins”, i P Nu

Vipaq “

#

wi if a ““i wins”

0 otherwise

f “
ÿ

jPN

Vjp“k wins”q “ wk

Also, note that k is the argmax value for “k wins”. f will choose the player with maximum value of
wk. For i w/ max value wi,

ÿ

j‰i

Vjp“i wins”q “ 0

ÿ

j‰i

Vjpb
˚q “ ws

where ws is the second highest bid value.

27.2.2 Auction with k identical items

A “ t“S wins”, S Ď N, |S| “ ku

Vip“S wins”q “

#

wi if i P S

0 o/w

At the max value of f S includes the k players with the highest valuation. Fix player i and calculate

Pi “max
S1

ÿ

jRS

θjpS
1

q

looooooomooooooon

Grove’s function

´
ÿ

j‰i

VjpSq

“wk`1

So the price that the k winners pay should be the k ` 1th highest bid.
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27.2.3 Public project

A “ t“build”, “not build”u

C “ Cost of building

Each player has a worth wi of the bridge

wi “

#

wi if A=“build”

0 o/w

To ensure Individual Rationality and No positive transfer, the social choice function should be

If
ÿ

i

wi ě C Ñ “build”

If
ÿ

i

wi ă C Ñ “not build”

To ensure fair payment:

Pi “

#

C ´
ř

j‰i wj if wi ě C ´
ř

j‰i wj

0 o/w

This ensures
ÿ

i

Pi ď C (13)

If we add another “reasonable” condition that the cost of the bridge is covered,

ÿ

i

Pi ě C (14)

(13) implies Individual Rationality and (14) implies No positive transfer. Both cannot be simulta-
neously satisfied with the condition (people may pay even if the bridge is not built). An example is
shown to illustrate the mechanics:

Example 3 C “ 3 w1, w2 P t0, 2u

w1 “ w2 “ 2 then P1p2q ` P2p2q ě 3(Cost of bridge covered) (15)

w1 “ w2 “ 0 then P1p2q ` P2p2q ě 0(No positive transfer) (16)

Given (15) and (16), either:

P1p2q ` P2p0q ě 3{2 (17)

P1p0q ` P2p2q ě 3{2 (18)

must be true. One player does not care if the bridge is built. In either case, the bridge will not be
built (7

ř

i wi ă C). However, from (17) and (18) someone still paid. This contradicts Individual
Rationality, and therefore the third condition cannot be enforced.
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27.2.4 Buying edges in a network

The game is to find the shortest (least expensive) path from S to E, with a mapping from players
to edges.

vcppq “

#

´ce ife P P

0 o{w

f : Shortest path w.r.t. costs

Pe “ Cost of the shortest path in the graph w/o e
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

hi

´Shortest path in the graph without e’s cost
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

ř

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

Grove’s function

This mechanism is strategy-proof. No player needs to hide their real valuation and it satisfies
Individual Rationality and No positive Transfer.

28 Introduction to Indirect Mechanisms

All the games considered so far have the players have a true public valuation. This is not necessarily
true, as players might announce a valuation that is not their true valuation.

28.1 Hidden Valuation game description

A mechanism is considered where players have a private information space T1ˆT2 . . . Tn Ti : AÑ R.
The player’s “action” space is X1 ˆX2 . . . Xn

Player strategies: Each row and column for a player is a space function, siptiq si : Ti Ñ Xi

Previously, we considered the strategies themselves to be actions.
Player utilities: uipti, sipt´iqq

28.2 Revelation Principle

Theorem 95 If D a strategy-proof mechanism that implements a scoial choice function f , then D a
direct strategy-proof mechanism implementing f .

This is the same as saying, “If you design a mechanism where players have no incentive to lie, then
you have a mechanism where players have no incentive to hide.”
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29 Brief Review of Mechanism Design

Mechanism Design is interested in designing economic mechanisms with the goal of implementing
desired social choices in a strategic setting, with the assumption that different members of society
act rationally. Common scenarios/examples of mechanism design include:

12. Elections: Each voter has his own preferences, and the outcome of an election is a single
social choice: a candidate being elected

13. Markets: Each participant has his/her own preferences, and the outcome is a single social
choice: the reallocation of money and goods

14. Auctions: Auction rules define the social choice: the identity of a winner

15. Government Policy: Enacting laws, and public projects. Each citizen has his/her set of
preferences, but a single choice is made: which laws are enacted, and which projects are
commenced

A direct mechanism consists of two parts:
‚ a social choice function V1

Ś

...
Ś

Vn Ñ A
‚ a collection of payment functions where pi : V1

Ś

...
Ś

Vn Ñ R is
the amount player i pays.

29.1 Key Terms

Definition 96 (Social Choice) An aggregation of the preferences of the different participants to-
ward a single joint decision.

Definition 97 (Strategy Proofness / Incentive Compatibility) :

A mechanism is Strategy-proof/Incentive-compatible if @i,@vi P Vi:

If a “ fpVi, V´iq and a
1

“ fpV
1

i , V´iq
then
ui “ Vipaq ´ PipVi, V´iq ě Vipa

1q ´ PipV
1

i , V´iq “ u
1

i

Definition 98 (Indirect Mechanism) Players have:

Types-Spaces: T 1, ..., T n

Private Information: ti P T i ti : AÑ R
Actions: X i, ..., Xn

Strategies: Si : T i Ñ X i

Utilities: uipti,S-iptiqq

Definition 99 (Direct Mechanism) Players have:

Social Choice Function f: V i

Ś

V 2

Ś

...
Ś

V n Ñ A
Payment: P i : V i

Ś

...
Ś

V n Ñ R
Utility: uipq Ñ V ipq ´ P i
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Definition 100 (Greedy Algorithm) An algorithm which makes a locally optimal choice at each
stage with the hope of finding a global optimum.

30 Revelation Principle

Definition 101 (Incentive Compatible) Player i whose valuation is vi would prefer telling the
truth to the mechanism rather than possibly ”lie” v

1

i, since this gives him higher utility.

For every player i, every vi P V1, ..., vn P Vn and every v
1

i P Vi
Telling the truth: a “ fpvi, v´iq
Lying: a

1

“ fpv
1

i, v´iq

Value of telling truth is greater than value of lying: vipaq ´ pipvi, v´iq ě vipa
1

q ´ ppv
1

i, v´iq

Theorem: If D an arbitrary mechanism that implements f in dominant strategies, then D an
incentive compatible (strategy-proof) direct mechanism that implements f.
The payouts of the players in the incentive compatible mechanism are identical to the payouts at
equilibrium of the original mechanism.

31 Bayesian Nash Equilibrium

Definition 102 A strategy of a player i is a function si : Ti Ñ Xi. A profile of strategies s1, ..., sn
is a Bayesian-Nash Equilbrium if for every player i and every type ti we have that siptiq is the best
response that i has to s´ipq when his type is ti, in expectation over the types of other players.

Given n players:
‚Type spaces: T1, ..., Tn
‚Distributions: D1, ..., Dn on type spaces T1, ..., Tn
‚Action spaces: X1, ..., Xn

‚ Strategies: si : Ti Ñ Xi

‚Alternative set A
‚Players’ valuations functions vi : Ti

Ś

A :Ñ R
‚Outcome function a : X1

Ś

...
Ś

Xn Ñ R
‚Payment functions p1, ..., pn where pi : X1

Ś

...
Ś

Xn Ñ R
‚Expected Utility:
ED´i

ruipti, siptiq, s´ipt´iqs ě ED´i
ruipti, x

1

i, s´ipt´iqs
where ED´i denotes the expectation over the other types t´i being
chosen according to distribution D´i
Implements social function f : T1

Ś

...
Ś

Tn Ñ A

The main idea is that each player i must choose his action xi
when knowing ti but not the other tj ’s but rather only knowing the
prior distribution Dj on each other tj . The behavior of player i in
such a setting is captured by a function that specifies which action
xi is taken for every possible type ti.
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32 Revenue Equivalence

Theorem (The Revenue Equivalence Principle):
Under certain weak assumptions, for every two Bayesian-Nash imple-
mentations of the same social choice functions f , we have that if for
some type t0i of player i, the expected payment of player i is the
same in the two mechanisms, then it is the same for every
value of ti.
In particular, if for each player i there exists a type t0i where the two
mechanisms have the same expected payment for player i, then the
two mechanisms have the same expected payments from each player
and their expected revenues are the same.

32.1 Auction Example

First Price Auction:
Single Item
Two players: ”Alice” and ”Bob”
Private values of item: tAlice “ a “ V aluea; tBob “ b “ V alueb
Bids: Alice’s x, Bob’s y
Distribution: DBob over b and DAlice over a
Typespaces: TAlice of Alice, and TBob of Bob P `R
Possible Outcomes: Alice wins, Bob wins
If Bob Wins: vAlice “ 0 and vBob “ tBob
If Alice Wins: vAlice “ tAlice and vBob “ 0
Win Criteria: if x ě y then Alice wins, else Bob wins
Payment Function: Alice pays 0 when she loses, and x when she wins; Bob pays 0 when he
loses, and y when he wins

Find strategies: SAlice for Alice and SBob for Bob such that they are Bayesian Nash
Equilibrium, and best-replies to each other.

Lemma: In a first price auction among two players with prior distributions of the private
values a, b uniform over the interval r0, 1s, the strategies xpaq “ a{2 and ypbq “ b{2 are in
Bayesian-Nash Equilibrium.

Since x ă y if and only if a ă b,
then the winner is the player with the highest private value.

Proof: Consider Alice’s optimal response x to Bob’s strategy y “ b{2, when Alice has
value a. uAlice “ 0 if shes loses, and uAlice “ a´ x if she wins, and pays x.
Thus, expected uAlice “ PrrAlicewinswithbidxs ¨ pa´ xq
Given Bob’s strategy y “ b{2, Alice wins when x ě b{2 This happens with a probability of
2x for 0 ď x ď 1{2 and 1 for x ě 1{2 and 0 for x ď 0.
To optimize the value of x, find the maximum of the function 2xpa ´ xq over the range
0 ď x ď 1{2
Find the maximum by taking the derivative with respect to x, and equating it to 0, which
gives 2a´ 4x “ 0 whose solution is x “ a{2
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Second Price - Vickrey Auction
‚Single Item
‚Players: Alice, and Bob
‚Value: Player i has value wi of item
‚Utility: ui “ wi ´ p where p is price paid for item, or 0 if the player loses
‚Whoever bids the most, pays the price of the second highest bidder.
Given this game set-up, if Alice knew Bob’s valuation y, then Alice would make her
valuation x “ y ` ε, where ε is some very small number, assuming x ď p

Lemma: x “ a{2 and y “ b{2 are Bayes’ Nash Equilibrium

Proof: Consider which x is optimal response to y “ b{2
Utility for Alice is 0 (loss) or a´ x (win)
uapxq “ Prrx ą ypbqs
If Alice bids ě 1{2 she will win, so consider 0 ď x ď 1{2
Probability Dbrx ą ypbqs for ypbq “ b{2 and x P r0, 1{2s
Probability Dbr2x ą bs “ 2x and uapxq “ 2xpa´ xq
maxp2xpa´ xqq
0 ď x ď 1{2
pσ2xpa´ xqq{pσxq “ 2a´ 4x “ 0
x “ a{2 and y “ b{2

Revenue Equivalence From Both Auctions
Revenue First Price Auction: maxpa{2, b{2q
Revenue Second Price Auction: minpa, bq
When a and b are chosen uniformly from r0, 1s, the expected value of minpa, bq “
maxpa{2, b{2q “ 1{3
Thus, both auctions generate equivalent revenue in expectation.
This is a general circumstance for every two Bayesian-Nash implementations of the same
social choice function.

33 Combinatorial Auctions

Definition 103 Combinatorial Auction: An auction such that there is a set of m indivisible
items that are concurrently auctioned among n bidders. Bidders have preferences regarding subsets
- bundles - of items. Every bidder i has a valuation function vi that describes his preferences in
monetary terms.

Definition 104 Valuation v: is a real-valued function for each subset S of items, vpSq is that
value that bidder i obtains from winning the bundle. A valuation must have ”free disposal” i.e., be
monotone: for S Ď T , vpSq ď vpT q, and vpHq “ 0
Valuation vi of bidder i is private information.

Definition 105 An allocation of the items among bidders is S1, ..., Sn where Si
Ş

Sj “ H for
every i ‰ j.
The social welfare obtained by an allocation is

ř

i vipSiq.
A socially efficient allocation is an allocation with maximum social welfare among all allocations.
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Definition 106 Single Minded Valuation: A valuation v is single minded if there exists a
bundle of items S˚ and a value v˚ P <` such that vpSq “ v˚ for all S Ě S˚, and vpSq “ 0 for all
other S. A single-minded bid is the pair pS˚, v˚q

Goal: Design a mechanism that will find the socially efficient allocation.
Mechanism must be:
‚Incentive Compatible
‚Computationally Efficient
‚Attains a value which is within

?
m of the optimal solution.

Difficulties:
‚ Computational complexity: The allocation problem is NP-Complete even for simple
special cases.
‚ Representation and communication: The valuation functions are exponential size objects
since they specify a value for each bundle.
‚ Strategies: Analysis of strategic behavior of bidders.

34 NP-Completeness for Epsilon Approximation of Alloca-
tion Problem

Recall, an allocation gives disjoint sets of items Si to each bidder i, and aims to maximize social
welfare

ř

i vipSiq

Definition 107 (Allocation Problem) :
INPUT: pS˚i , v

˚
i q for each bidder i “ 1, ..., n

OUTPUT: A subset of winning bids W Ď 1, ..., n such that for every i ‰ j P W,S˚i X S˚j “ H
(i.e. the winners are compatible with each other) with maximum social welfare

ř

iPW v˚i
‚This problem is a ”weighted-packing” problem, and is NP-Complete, and is reduced from the
Independent-Set problem.
‚Consequently, the allocation problem has no polynomial time OpM1{2´εq approximation for any
ε ą 0

35 Greedy Algorithm for
?
n Approximate Allocation

The Greedy Mechanism for Single-Minded Bidders:
Initialization:
‚ Reorder the bids such that v˚1 {

a

|S˚1 | ě v˚2 {
a

|S˚2 | ě ... ě v˚n{
a

|S˚n | ‚ W ÐH

For i “ 1...n do: if S˚i X pYjPWS
˚
j q “ H then W Ð W Xi

Output:
Allocation: The set of winners is W .
Payments: For each i P W,pi “ v˚j {

b

|S˚j |{|S
˚
i | where j is the smallest index such that

S˚k X S
˚
j “ H (if no such j exists, then pi “ 0)

When computing payments, j is chosen as the bidder who lost because of player i.
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Theorem
The greedy mechanism is efficiently computable, incentive compatible, and produces a

?
m

approximation of the optimal social welfare.

36 Greedy Algorithm Proofs

Incentive Compatibility:

Lemma
Any mechanism for single-minded bidders in which losers pay 0 is incentive compatible if
and only if it satisfies the following two conditions:
‚Monotonicity - A bidder who wins with bid pS˚i , v

˚
i q keeps winning for any v

1

i ą v˚i and

for any S
1

i Ă S˚i
‚Critical Payment - A bidder who wins pays the minimum value needed for winning:
the infimum of all values v

1

i such that pS˚i , v
1

iq still wins

Monotonicity implied since increasing v˚i or decreasing |S˚i | will cause i to be visited
sooner.
Critical payment is met, since: 1 : i wins as long as he appears in the greedy order before
some j who wants an item in his bundle.
2 : Payment computed is precisely the value which causes i to swap places with j in the
greedy order.

Proof
‚ Utility of a player is always non-negative
The proof is primarily based on the fact that the player will always only pay the critical
value p assuming that their bid pS, vq with value v is greater than p.
If the valuation v ă p, then the player will not win, and pay 0
If v ă p and v

1

ą v, but v
1

ą p, then pS, v
1

q will win, but this is not necessarily beneficial
because this would be an inaccurate representation of the package value.

Approximation Factor:

Lemma
Let OPT be an allocation (i.e. set of winners) with maximum value of

ř

iPOPT v
˚
i and let

W be the output of the algorithm, then
ř

iPOPT v
˚
i ď

?
m
ř

iPW v˚i
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Proof
For each i PW let OPTi “ j P OPT, j ě i|S˚i X S

˚
j ‰ H be the set of elements in OPT that

did not enter W because of i.
Clearly OPT Ď YiPWOPTi and the lemma will follow once we prove for every i P
W,

ř

jPOPTi
v˚j ď

?
mv˚i

Estimate
ř

jPOPTi
v˚j ď v˚i {

a

S˚i
ř

jPOPTi

b

S˚j
Then use Cauchy-Schwarz inequality:
ř

jPOPTi

b

|S˚j | ď
?
OPTi

b

ř

jPOPTi
|Sj |

Every S˚j for j P OPTi intersects S˚i .
Since OPT is an allocation, these intersections are disjoint, and thus |OPTi| ď |S

˚
i |. Since

OPT is an allocation
ř

jPOPTi
|Sj | ď m.

Thus
ř

jPOPTi

b

|S˚j | ď
b

|S˚j |
?
m and plugging into the Cauchy-Schwarz Inequality, gives

the claim
ř

jPOPTi
v˚j ď

?
mv˚i
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Mechanisms without Money

Previously, we considered a number of environments where it was possible to enforce an optimal social
outcome given that the environments involved some transfer of ”money.” By ”money,” we mean that
preference orderings are specified using quasi-linear valuations and cost / payment functions. We
saw that in the general case, implementing a mechanism with money becomes an NP-Hard problem.
In particular, this situation occured with VCG mechanisms in combinatorial auctions.

However, there are many environments in which no transfer of money can be made, and as such,
preferences are specificed strictly as an ordering. Arrow’s Thorem and the Gibbard-Satterthwaite
Theorem have already shown us that in this scenario, any mechanism / social choice function will
lead to a dictatorship. This leads us to instead impose conditions on the set of preferences in a game,
in an effort to design good mechanisms. Here, we consider such problems and study guarantees of
optimality and strategy-proofness. As it turns out, mechanisms without money can be thought of
as a set of measures that can work to characterize the performance of approximated solutions to
NP-Hard problems.

37 Single-Peaked Preferences

We can look specifically at the class of problems where there is a set of individuals whose preferences
can be mapped to a singular point in some space.

Definition The notion of single-peaked preferences is as follows:

• There is a one-dimensional ordering of alternatives: A “ r0, 1s

• Each individual i has a single peak x˚i P A, s.t. @a, b P A:

x˚i ě a ą bñ a ąi b

37.1 Median Voter Scheme

It turns out that a straightforward way to make a fair decision in the case of single-peaked preferences
is to just pick the median point of all the agents’ preferences. Formally, we define a Median Voter
Scheme with a social choice function F having the property that it is strategy-proof, onto, and
anonymous i.f.f there exists y1, . . . , yn P A, s.t. for all px˚1 , . . . , x

˚
nq:

F px˚1 , . . . , x
˚
nq “ medianpx˚1 , . . . , x

˚
n, y1, . . . , ynq

Of course, our environment doesn’t need to be limited to r0, 1s or even R1. Instead, we can use
any metric space where individuals have a preferred point within the space. To make this more
concrete, we can look at the k-facilities problem.
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37.2 k-Facilities Problem

Definition We have k facilities that we want to decide the location of, based on where each
individual i wants a facility to be (xi). However, each of the n individuals may report that they
each want a facility at a different location yi rather than their desired location xi.

For the 1-Facility problem, where the space is defined on a r0, 1s line, the median voter scheme
(choosing the median of all reported locations y1, . . . , yn) is an optimal and strategy-proof mecha-
nism. To see this, consider the case where there are three players with preferences x1, x2, and x3

placed on a line so that x1 ă x2 ă x3. If x1 reported y1 to be to their left so that y1 ă x1, this
would not affect the median being x2; if they reported it to the right of x2 so that x2 ă y1 ă x3, the
median would become y1 but it would be farther away from x1 than if y1 ă x2. A similar argument
holds for the other two players. As such, no player has a reason to report a location different from
their preferred location.

In the case of the 2-Facility problem on a r0, 1s line however, the optimal solution is not strategy-
proof – an individual can mis-represent their preferred position in order to bring one of the two
facilities closer to them. This same issue ends up extending into any generalized metric space for
k ě 2 facilities, with any number of players.

It turns out though that for the 1-Facility problem in a general metric space, the optimal solution
isn’t strategyproof, and a strategy-proof solution is a dictatorship. However, there are known bounds
on two types of strategy-proof mechanisms relative to the optimal solution:

Deterministic Dictatorship : cost ď pn´ 1qOPT

Randomized Dictatorship : cost ď 2OPT

In other words, a randomized mechanism will not be significantly worse than the optimal solution. In
the case of the facilities problem, a randomized mechanism is a social choice function F mapping the
location profile py1, . . . , ynq to a distribution over sets of k facilities. An additional benefit of finding
an approximate randomized mechanism is computational efficiency: a randomized mechanism is
solvable in polynomial size of the input, whereas the exact optimum is an NP-Hard problem. This
property has connections with the notion of finding the core of a game, which will be highlighted in
the next section.

38 Cooperative Games

As we just saw, it is possible to characterize the quality of mechanisms obtained for a game where we
specifically impose conditions on the preferences of players. Once again, we notice that the notion
of finding the optimal social welfare / cost in a combinatorial optimization game ends up being an
NP-Hard problem, whereas approximating it to a reasonable accuracy turns out to be solvable in
polynomial size of the input.

In the study of cooperative games, this idea becomes much clearer with the notion of finding
the core of a game: a stable, optimal solution where no individual can benefit from breaking from
a coalition with other individuals. Determining whether some game has a core (the core-emptyness
problem) is an NP-Hard problem with the strict formulation of a core. Relaxing this formula-
tion, much like relaxing the constraints on optimality in the prior section, allows us to formulate
approximate core-emptyness as a linear programming problem, solvable in polynomial time.

38.1 Definition

Similar to non-cooperative games, in a Cooperative Game there is a set of players N and a valuation
vpSq, where S is a coalition. We also define a coalition structure CS, which is a partition of N .
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With this in mind, we can define the optimum for the game G as:

OPTpGq “ max
CS

ÿ

SPCS

vpSq (19)

There are a few properties and classifications for cooperative games we can look at. In particular,
a cooperative game is:

Simple: if vpSq P 0, 1

Monotone: if for any S Ď T Ď N :

vpSq ď vpT q (20)

Superadditive: if for disjoint S, T Ď N :

vpSq ` vpT q ď vpS Y T q (21)

Convex: if for S Ď T Ď N and i P NzT :

vpS Y iq ´ vpSq ď vpT Y iq ´ vpT q (22)

38.2 Core of a Game

In cooperative games, the core can be interpreted as a scenario in which no agent can benefit from
breaking away from the coalition. First, we define an imputation as a vector x P Rn which satisfies
efficiency :

ř

iPS xi “ vpSq, @S P CS. We say that an imputation x is in the core of a game if:

ÿ

iPS

xi ě vpSq,@S Ď N (23)

Example of a Core for 3 players : We then take xi to be the individual valuation of a player
i (xi “ vptiu), and vpSq to be the valuation of a coalition of players. For a 3-player game, the
valuation of a full coalition vpt1, 2, 3uq “ vpNq “ x1 ` x2 ` x3. Then, we can rewrite equation 23
into the following three inequalities:

x1 ` x2 ě vpt1, 2uq Ñ x3 ď vpNq ´ vpt1, 2uq

x2 ` x3 ě vpt2, 3uq Ñ x1 ď vpNq ´ vpt2, 3uq

x1 ` x3 ě vpt1, 3uq Ñ x2 ď vpNq ´ vpt1, 3uq

The core then becomes the feasible region defined by the full system of constraints.

38.3 Core-Emptiness and Core-Approximation

It’s possible for the core of a game to be empty, in that there is no imputation x which satisfies the
system of linear constraints defining the core. Determining whether the core is non-empty in the
general case turns out to be NP-Hard.

We can relax the definition of a core with that of a γ-approximate core:
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Definition A vector x P RN is in the γ-core of the game if it satisfies:

γ-Budget balance: vpNq ě
ř

iPN xi ě γvpNq, γ ď 1

Core Property:
ř

iPS xi ě vpSq,@S Ď N

This formulation ends up being solvable as a polynomial-size LP problem.

38.4 Shapley Value

The Shapley value can be considered as a ”fair” way to share cost, and has the benefit that it always
exists for any given game unlike the core which can be empty. The Shapley value may also not be
within the core of a game which does have a non-empty core. Another issue with the core is that
if it is non-empty, then there could be more than one imputation which satisfies it – creating the
additional problem of determining a way to decide which satisfying imputation should be picked.
The Shapley value eliminates this issue by providing just a single solution.

To define the Shapley Value, we need to look at the marginal contribution that a player i adds
if they were to join a coalition S among the set of players N . This is simply:

mipSq “ vpS Y tiuq ´ vpSq (24)

Note that the order in which players join a coalition can affect their marginal contribution mi. We
define the predecessors of i in joining S to be:

Pipσq “ tj P N |σpjq ă σpiqu, σ P ΠpNq (25)

where ΠpNq is a permutation of players. Then,

mipσq “ mipPipσqq. (26)

Definition If the ordering of players is chosen uniformly at random, then the Shapley value for
some player i is

φi “ Ermipσqs “
1

n!

ÿ

σPΠpNq

mipσq (27)

The Shapley Value has the following properties:

Efficiency:
ř

iPN φi “ vpNq

Symmetry: Players who contribute equally are paid equally: φi “ φj if mipSq “ mjpSq

Dummy: A player who adds no value should not be paid anything: φi “ 0 if mi “ 0

Additivity: φipσ1q ` φipσ2q “ φipσ1 ` σ2q

Theorem 108 Any value that satisfies efficiency, symmetry, dummy, and additivity is the Shapley
Value.

HW: Prove this theorem.
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39 Online Algorithms

Keeping in theme with this idea of approximate algorithms to hard optimization problems and
characterizing the trade-offs made when using one, we can look at the topic of online algorithms.
Although only briefly covered towards the end of the week, online algorithms are algorithms which
operate without seeing its full input all at once: the input arrives ”online,” or dynamically over time.
These are in contrast to offline algorithms which see the input all at once. We can characterize the
performance of an online algorithm to an offline algorithm using the notion of competitive ratio.
To illustrate this, we can look at the problem of matching on a bipartite graph.

Let there be a bipartite graph G “ pU, V,Eq, where |U | “ n. The vertices U are known in
advance (offline), while the vertices V arrive dynamically (online) along with their edges E. We’d
like to maximize the size of the matching in G. We define the competitive ratio as:

ALGpG, πq

OPT pGq
ě α (28)

where α ď 1, G is the game, and π is the input order that arrives online.
Keeping in mind the previous pattern we’ve observed when characterizing the complexity and

performance of various algorithms / mechanisms, it turns out for this problem, the competitive ratio
of several online algorithms are as follows:

Deterministic algorithm ď 1{2

Random ranking algorithm = 1´ 1
ε

It turns out that there is an upper bound for any randomized, online algorithm:

Theorem 109 No randomized algorithm has a competitive ratio that is greater than 1´ 1
ε `Op1q.

— April 3 - April 5-55



Algorithmic Economics CIS 6930/CIS 4930 Spring 2018

Lecture 11 April 16 - April 20
Lecturer: Dr. Meera Sitharam Scribe: Archit Rathi

40 Introduction

Near the end of the previous lecture, we discussed briefly about the concept of online algorithms.
Quite simply, online algorithms are algorithms that function without seeing the all the input. Instead,
the input arrives in pieces or one by one, and the algorithm performs its actions on whatever portion
of the input its received. Clearly, an algorithm that has all its input upon start (offline algorithms)
will tend to perform better than online algorithms. If we consider the offline algorithm as the optimal
solution, we know have a way to understand the performance of an online algorithm:

Online Algorithm

Optimal (Offline) Algorithm

The ratio between the performance of the online algorithm and the optimal is called a compet-
itive ratio. We see that the competitive ratio can be no greater than 1(where the offline algorithm
has optimal performance).

41 Bipartite Graph Matching

Let’s establish some definitions first:

Definition 110 (Bipartite) A bipartite graph is a graph whose vertices can be split into two dif-
ferent sets, where each vertex is never connected to another vertex in its own set. For example, for
sets U and V , the vertices in U can only connect to the vertices in V and vice versa.

Definition 111 (Matching) Matching exists in a graph no set of edges share any vertices. A
graph is matching if each vertex either has 0 or 1 edge connected to it.

Image we had two sets of vertices (U and V ), which combined made up a bipartite graph. Our
setup would then be:

• All the vertices in V are known at the start of the algorithm(offline)

• The vertices in U arrive one by one. Any vertex u P U comes with all the edges it’s connected
to

• As soon as the new vertex u P U arrives, it is matched arbitrarily

Given this, we can update the competitive ratio given in the introduction to be more pertinent.
If A is the online algorithm and O is the optimal, then:

ApG, πq

OpGq

where G is the graph and π is the order the online input arrives in.
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42 Maximum Matching

Theorem 1 The competitive ratio of any deterministic online matching algorithm is at most 1
2 .

Definition 112 (Deterministic Algorithm) A deterministic algorithm is an algorithm that al-
ways outputs the same thing given a certain input, regardless of the machine operating it.

To understand why Theorem 1 is true, consider at the example below[17]:

The vertices v1, v2 are both known at the beginning of the algorithm. When vertex w1 arrives, the
algorithm has the option between edges pv1, w1q or pv2, w1q. Imagine that the algorithm arbitrarily
chose the first of the two, but then vertex w2 arrived and its only connection was v1, which is
already matched. In this scenario, the maximum matching would have been 2, but our algorithm
had a matching of 1. In every deterministic algorithm, the online algorithm will have a matching at
most 1

2 the maximum possible matching. Every maximal matching has a size of at least one half off
that of maximum matching.

43 Algorithmic Ranking

So far, all the online algorithms we’ve analyzed have been purely deterministic. If a deterministic
algorithm can only achieve a competitive ratio of 1

2 , then maybe a procedure that involves some
randomization could potentially do better. As a result, the Ranking algorithm was created, and
with it, a maximum competitive ratio of 1´ 1

e was achieved.

Theorem 2 Ranking achieves a competitive ratio of 1´ 1
e .

Let’s attempt to prove this, using the proof we learned in class and [18]

Consider a bipartite graph, G, with the two sets U and V , where U is the set that comes on-
line. At the beginning of the algorithm, a random permutation of V is create and is called σ and
the order the online input arrives in is called π. It is critical that V is randomly permuted. If it is
not, than the upper bound is the same as that of a deterministic algorithm. Upon arrival of every
vertex u P U , we attempt to find a matching for u. If no matching is achievable, we match u to a
vertex v P V that minimizes σpvq. Using this notation, let RankingpG, σ, πq represent the matching
of graph G with online order π and ranking σ
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Lemma 1 If x P G, H “ G{ txu, and πH , σH are π, σ restricted to H, then the matchings be-
tween RankingpG, σ, πq and RankingpH,σH , πHq differ by a single alternating path starting at vertex
x

We can see Lemma 1 occur in the image above. After vertex x is removed, the matching from
RankingpG, σ, πq differs to the matching from RankingpH,σH , πHq by a single alternating path. If
we keep removing vertices, that are not in the matching, we see that the competitive ratio comes
from graphs with a perfect matching. For the rest of these notes, we’ll assume G has a perfect
matching m˚.

Lemma 2 Fix u P U and v “ m˚puq. If v is not matched by RankingpG, σ, πq, the u is matched to
vertex v‘ such that σpu1q ď σpuq
Proof: If v is not matched by RankingpG, σ, πq, then when u arrives, its eligible neighbors include
v. Following that, there must exist a v1 where σpu1q ď σpuq

Lemma 2 helps us prove Lemma 3 below.

Lemma 3 Let xt be the probability that a vertex of V with σpuq “ t is matched. Then 1 ´ xt ď
1
n

ř

1ďsďt xs .

In the Lemma 3 above, xt is the probability that a matching occurs, so therefore 1 ´ xt is the
probability that a matching doesn’t occur. With this lemma, we can now prove Theorem 1. Since
G has perfect matching, the competitive ratio is basically

inf
nÑ8

1

n

ÿ

1ďsďn

xs

where n “ |U |. We can now rewrite Lemma 3 as

Stp1`
1

n
q ě 1` St´1
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where
St “

ÿ

1ďsďt

xs

The infimum clearly occurs when the inequalities are tight. From here, we get

St “
t
ÿ

s“1

p1´
1

n` 1
qs

which then leads to a competitive ratio of at least

1

n

n
ÿ

s“1

p1´
1

n` 1
qs “ 1´ p1´

1

n` 1
qn

which asymptotically approaches 1´ 1
e as n approaches infinity.

Proof of Lemma 3: Suppose v P V with rank t “ σpuq. Remember that 1 ´ xt is the proba-
bility that v is not matched. Let u be a vertex where v “ m˚puq and Rt´1 Ă U mean the set
of vertices of U matched by the algorithm to the vertices of V who have a rank less than t ´ 1.
The cardinality of Rt´1 is

ř

1ďsďt´1 xs. We can now use Lemma 1: if v is not matched, then u
is a part of Rt´1. Unfortunately, u and Rt´1 are not independent and therefore this proof is incorrect.

Lemma 4 Let u P U and v “ m˚puq. If σ1 is a permutation, then σi is the permutation we get from
σ1 by removing vertex v and putting it back where its rank is i. If v is wasn’t matched in the Ranking
of σ1, then, for every i, u is matched by Rankingpσiq to a vertex vi whose rank σipviq is at most σ1pvq

Using Lemma 4, we can now correct our proof. Let’s say we have a random permutation σ and
another permutation σ1 that we can get by randomly picking a vertex v P V , taking it out of σ and
putting it back so the rank is t. Using Lemma 4, we see that if v is not matched by Rankingpσ1q,
then u is matched to Rankingpσq with a vertex, v̄ such that σpv̄q ď t. This basically means that
u P Rt and that u is now independent of Rt.

44 Ranking Example

As an end to these notes, let’s consider a quick application of the Ranking algorithm: Google Ad-
words.

In a search engine like Google, companies will often bid on certain keywords when buying ads.
It is up to Google to decide which companies to show and how to much to charge them. Imagine
bidders are represented by V and the keywords by U . As each keyword comes one by one, the bids
placed by the company for it are revealed, upon which Google decides which company to choose for
that keyword. This example is essentially an online bipartite matching example where every bid is
either 1 or 0 and the budget of every company is 1.

Another example is the pricing game we discussed earlier in this course. The image below should
give you a reminder of what the game was. (It was discussed in Lecture Notes 2, Section 1.4)
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As we can see, this is another Bipartite graph. In this case we could view the Sellers as set V
and the buyers as set U . As more and more buyers come in, we have to decide how to match the
buyers to sellers for maximal matching.
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45 Dividing an Interval

Suppose we would like to divide the interval r0, 1s among n people. By divide the interval r0, 1s, we
mean find α1, ..., αn such that each αi is a finite union of disjoint intervals of r0, 1s, which we will
call a “piece”, and Yni“1αi “ r0, 1s. αi is the piece of r0, 1s that is given to the ith person. Further,
suppose that each person i has a valuation function vi that takes pieces of r0, 1s to how much that
person values that piece, and has the following properties:

16. vipαq P r0, 1s for any piece α

17. vipα` βq “ vipαq ` vipβq for any pieces α, β

18. If α Ď β, then vipαq ď vipβq.

19. vipr0, 1sq “ 1

20. vipHq “ 0

The following are two ideas of fairness that we can use to evaluate the division of the interval:

Definition 113 (Proportionality:) A division α1, ..., αn is proportional if for every person i,
vipαiq ě

1
n .

Definition 114 (Envy-Free) A division α1, ..., αn is envy-free if for every person i, and for every
other person j ‰ i, vipαiq ě vipαjq.

In proportionality, each person believes they have received at least their fair share of the interval.
In envy-freeness, there doesn’t exist a person who prefers a different person’s piece over their own.
Envy-freeness implies proportionality, but the reverse is not true (see homework).

Lemma 115 If a division α1, ..., αn is envy-free, then it is proportional.

Proof: Consider any person i. By properties (2) and (4) of the valuation functions,
řn
j“1 vipαjq “

vipr0, 1sq “ 1. By the pigeonhole principle, there must exist j such that vipαjq ě
1
n . Since α1, ..., αn

is envy-free, vipαiq ě vipαjq, which implies that vipαiq ě
1
n .

We now look at two examples of interval division.

Cake cutting In cake cutting, the interval represents an entire cake. The cake is rectangular and
cut by parallel lines into n connected pieces that are then given to n people. Different people may
value parts or portions of the cake differently. For example, one person may prefer the parts with
more icing on the end to those in the center, and the reverse may be true of another person.
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Roommate rent sharing In roommate rent sharing, we have three roommates and three rooms.
The interval is the division of the rent into the three rooms. Not only do we need to split the
rent among the rooms, but assign people to rooms. Different people may have different preferences
among the rooms. In addition, they may be willing to pay different amounts for each room. For
this application, properties (3)-(5) of valuation functions would be dropped since people prefer lower
rents.

45.1 Applying Sperner’s Lemma

Does there always exist a division of the interval that is envy-free? In the case of cake cutting, there
is. In fact, we may show this by using Sperner’s Lemma. We will specifically consider the case where
there are three people. Recall that Sperner’s Lemma, for the special case of triangles, is stated as
follows:

Lemma 116 Suppose that we have a triangulated triangle, and a Sperner Coloring of the vertices of
the triangulation in three colors. Then there exists at least one triangle with a vertex of each color.

Suppose that we have a cake represented by the interval r0, 1s, and people tA,B,Cu each with
valuation functions satisfying the conditions listed in Section 45. Consider any triangle with vertices
p1, 0, 0q, p0, 1, 0q, p0, 0, 1q, and any triangulation of that triangle. Each vertex px, y, zq in the triangu-
lation can be identified with a cut of the cake r0, xs, rx, x` ys, rx` y, x` y` zs “ rx` y, 1s. Assign
a person to each vertex in such a way that every elementary triangle has vertices assigned A,B, and
C. Let 1,2, and 3 be the pieces of the cake from left to right. “Color” each vertex with the piece
of the cake that the person who is assigned to the vertex prefers the most. By properties (3)-(5) of
the valuation functions, this is a Sperner Coloring. Therefore we can apply Sperner’s Lemma to say
there exists some triangle where each person values a different cut of the cake the most. Since we
can make the triangulation arbitrarily small, the limit gives a division that is envy-free.

45.1.1 Sperner’s Lemma for Roommate Rent Sharing

A similar approach will work to show the existence of an envy-free rent and room allocation for the
roommate rent sharing problem. However, notice that if we colored the triangle in the same way as
in cake cutting that this would not necessarily produce a Sperner Coloring since a lower rent would
be preferred. This issue can be dealt with by a new version of Sperner’s Lemma on the dual simplex,
where edges and vertices are switched.

46 Cake Cutting Algorithms

While Sperner’s Lemma can be used to show the existence of a fair division for cake cutting, finding
the fair division is another matter. There exists a number of algorithms in order divide a cake in a
fair way among n people. Throughout this section, we assume the Robertson-Webb model for cake
cutting [24].

46.0.1 Cut-and-Choose

This algorithm is specifically for cake division where there are only two people, tA,Bu. First, A
divides the cake into α, β such that vApαq “ vApβq “

1
2 . Then B picks x P tα, βu such that vBpxq

is greatest. Finally, A picks the remaining piece.

Lemma 117 Cut-and-Choose produces a division that is envy-free (and therefore also proportional).
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46.0.2 Dubins-Spanier

This algorithm takes place over n rounds, each on a subset of the cake ra, 1s Ď r0, 1s, starting with
r0, 1s. Each round goes as follows: First, each player i makes a mark mi on the cake ra, 1s such that
vipra,misq “

1
n . The player i with the left most mark cuts off ra,mis as their piece. The procedure

repeats with the remaining cake rmi, 1s.

Lemma 118 Dubins-Spanier produces a division that is proportional in Θpn2q time.

46.0.3 Evan-Paz

For this algorithm, we assume n “ 2k. The following procedure is recursively called on portions of
the cake ra, bs along with subsets of people assigned to that portion, starting with the entire cake
r0, 1s and all people: First, if there is only one person for the portion of cake, give the person the
entire portion as their piece. Otherwise, have every person i make a mark xi on ra, bs such that
vipra, xisq “

1
2vipra, bsq. Let y be the r

2 mark from the left of the portion, where there are r people
assigned to this portion. Divide the portion ra, bs into ra, ys and ry, bs. Those players i that made a
mark xi ď y, assign to the left portion, and others to the right portion. Follow the same procedure
with the two new portions and the people assigned to them.

Lemma 119 Evan-Paz produces a division that is proportional in Θpn logpnqq time.

In fact, Evan-Paz is provably optimal among divisions that are proportional.

Theorem 120 Edmonds and Pruh 2006 [20]: Any proportional protocol needs Ωpn logpnqq opera-
tions for cake cutting.

46.0.4 Selfridge-Conway

For this algorithm, we assume n “ 3. This algorithm takes place over three stages.
In the first stage, person 1 cuts the cake into three pieces of equal value according to v1. Next,

player 2 trims a single piece so that the two largest according to v2 are now tied according to v2.
Call the untrimmed cake Cake 1, and the cake without the trimmings Cake 2.

In the second stage, person 3 first picks which of the three pieces of Cake 1 they prefer. If it
wasn’t the trimmed piece, then person 2 gets the trimmed piece. If it was the trimmed piece, then
person 2 gets to pick their preferred one of the two remaining pieces. Let person x be the one who
now has the trimmed piece, x P t2, 3u. Let y “ t2, 3uztxu.

In the final stage, y cuts Cake 2 into three equal pieces according to vy. Then, the pieces of the
cake are chosen by x, 1, and y according to vx, v1, and vy respectively, in that order.

Lemma 121 Selfridge-Conway produces a division that is envy-free (and therefore proportional).

While there does exist an algorithm that produces an envy-free cake cutting for n people, it may
take arbitrarily long.

Theorem 122 Brams and Taylor 1995 [19]: There exists an unbounded envy-free cake cutting
algorithm.

47 Indivisible Goods

So far, division has occurred on an interval that could be broken into arbitrarily small pieces.
Consider a different situation, where we have a set G which is composed of m goods. There are
n people, and the ith person has a valuation function vi on subsets of goods. We seek to find an
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allocation A “ tA1, ..., Anu where A1, ..., An is a partition of G, and the ith player receives goods Ai.
In this case, finding divisions that are proportional and/or envy-free is infeasible, as the following
theorem shows.

Theorem 123 Nisan and Segal 2002 [22]: Let A be an allocation of G, eijpAq “ maxt0, vipAjq ´
vipAiqu, and epAq “ maxteijpAq : i, j P t1, ..., nuu. Then every protocol that finds an allocation
minimizing epAq uses an exponential number of bits of communication in the worst case.

48 Motivation of Fairness

We have previously assumed that the behavior of each person has only been motivated by the value
of what they receive, i.e. they are rational. However, this is not necessarily true, and some people
may in fact be motivated by fairness [23] [21].

Consider an experiment where there are two people, A and B, and A is offering B x money in
dollars, x P r0, 100s. If B accepts, B gets x dollars and A gets 100 ´ x dollars. If B declines, then
neither get any money. If we assume that B is rational, B’s utility will look like:

uB “

#

x accept

0 decline

And so B will always accept the offer if x ą 0. However, experiments show that this is not how all
people behave [21]. If x is too low, B may decline the offer since it is unfair, even though B would
have more money if she accepted. In this case, a more accurate utility would be, for some α ě 0:

uB “

#

x´ αpp100´ xq ´ xq accept

0 decline

In addition, B may be altruistic and not want to get more than A. In this case, B’s utility could be
for some α, β ě 0:

uB “

#

x´ αpp100´ xq ´ xq ´ βpx´ p100´ xqq accept

0 decline

49 Homework

21. Find a counter-example to the claim that if a division is proportional, then it is envy-free.
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